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Simple Summary: The idea of identifying persons using the fewest traits from the face, particularly
the area surrounding the eye, was carried out in light of the present COVID-19 scenario. This may
also be applied to doctors working in hospitals, the military, and even in certain faiths where the face
is mostly covered, except the eyes. The most recent advancement in computer vision, called vision
transformers, has been tested for the UBIPr dataset for different architectures. The proposed model
is pretrained on an openly available ImageNet dataset with 1 K classes and 1.3 M pictures before
using it on the real dataset of interest, and accordingly the input images are scaled to 224 × 224. The
PyTorch framework, which is particularly helpful for creating complicated neural networks, has been
utilized to create our models. To avoid overfitting, the stratified K-Fold technique is used to make the
model less prone to overfitting. The accuracy results have proven that these techniques are highly
effective for both person identification and gender classification.

Abstract: Many biometrics advancements have been widely used for security applications. This
field’s evolution began with fingerprints and continued with periocular imaging, which has gained
popularity due to the pandemic scenario. CNN (convolutional neural networks) has revolutionized
the computer vision domain by demonstrating various state-of-the-art results (performance metrics)
with the help of deep-learning-based architectures. The latest transformation has happened with the
invention of transformers, which are used in NLP (natural language processing) and are presently
being adapted for computer vision. In this work, we have implemented five different ViT- (vision
transformer) based architectures for person identification and gender classification. The experiment
was performed on the ViT architectures and their modified counterparts. In general, the samples
selected for train:val:test splits are random, and the trained model may get affected by overfitting. To
overcome this, we have performed 5-fold cross-validation-based analysis. The experiment’s perfor-
mance matrix indicates that the proposed method achieved better results for gender classification as
well as person identification. We also experimented with train-val-test partitions for benchmarking
with existing architectures and observed significant improvements. We utilized the publicly available
UBIPr dataset for performing this experimentation.

Keywords: convolutional neural networks; vision transformers; computer vision; periocular biometrics

1. Introduction

Biometrics refers to the science of uniquely identifying an individual based on their
physiological (face, iris) or alternatively behavioral (signature, gait) peculiarities [1]. The
requirement for biometrics in human identification creates a mutual trust for a wide range
of applications that is in everyone’s best interest. Building complex models for biometrics is
difficult since the differentiating characteristics could be identical. When more pictures of a
single individual are taken, it occasionally results in resemblance with other people. While
behavioral biometrics are also impacted by socio-environmental variables, physiological
biometrics progressively change over time. There are seven requirements for any feature
(modality) that can be utilized for biometric identification. They can be listed as permanence,
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performance, circumvention, universality, acceptability, uniqueness, and measurability [1].
The biometric modalities are fingerprint, face, iris, hand geometry, signature, gait, ear,
voice, palmprint, hand vein, and teeth [1]. Digital image processing techniques, along with
computer vision, pave the way to develop robust systems to integrate biometrics in day-
to-day life. Biometric technology is rapidly growing, and the applications are widespread
from security at the airport to mobile banking and law enforcement, etc.

One of the challenges we have been facing for a few years is the COVID-19 pandemic,
which is compelling humans to wear a mask. The features available during face recognition
earlier [2] are not available for classification. With the way the new variants and mutations
of existing ones are on the rise, alternate methods are necessary to identify subjects at the
workplace. It can be either for attendance purposes or to identify persons on the go at
any place based on the need. The physical contact with the hand needed for biometrics
may cause infectious diseases [3], so we need to explore the possibilities of contactless
biometrics. In the scenario of wearing a mask, the challenges faced are plenty since the
region of interest is limited, and the central part of the face is covered. When we have
signboards saying “No entry without a mask”, we should have mechanisms to ascertain
the person’s identity. It is a cause of concern in scenarios where the movement of the
public is restricted due to security issues. Figure 1 depicts the sample portion which is
not available for identification and highlights indirectly the challenges faced. It is well
known that identifying a person based on iris recognition needs good infrastructure, and it
is costly and requires cooperation from the user [4]. At the same time, the subject cannot be
brought too close to the measuring device because proximity can cause infections. In such
a scenario, periocular biometrics is useful for person identification as well as related tasks.
A periocular image is defined as the peripheral area of the human eye, which comprises
the eyebrows, eyes, and pre-eye orbital portion [5].
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Figure 1. (a) Person’s Image with a mask; (b) Person’s image without a mask to highlight the
challenges in identification.

To address the issue of person identification using periocular images, several algo-
rithms have been proposed by the researchers. Convolutional neural networks are popular
algorithms that helped to achieve competitive performance metrics for visual classification.
Recently, vision transformers [6] have been utilized by computer vision researchers for
image classification.

The generic steps followed by vision transformers [6] are as follows:

(A) Perform image resizing and normalization. For resizing, the size of the images will be
the same as the image size used during the development of the pre-trained model.

(B) The motivation of vision transformers comes from sentence transformers in NLP
(natural language processing). The sentence transformers expect sequences of words
as input. However, in the image processing context, sequences of words are not
available. Hence, the entire image is split into patches of equal size so that those
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patches could be further arranged as sequences to be fed to the encoder of the vision
transformer. It can be noted that even after splitting the original image, the patches
are still in 2-D form.

(C) Each patch is subsequently flattened to form a 1-D vector from a 2-D matrix.
(D) The 1-D vectors are further subjected to linear mapping. This assigns an intermediate

representation to the original 1-D vector. It may be a more reduced dimension than
the original 1-D vector’s dimensionality.

(E) A classification token is appended to every linearly mapped 1-D vector. This addi-
tional information will preserve the classification label.

(F) Using a positional encoding function, the vectors are mapped onto a set of values that
typically follow frequency patterns.

(G) The vectors are further subjected to an encoding process. This encoding is a two-step
procedure that involves the normalization of layers and the multi-head self-attention
algorithm. During normalization, a layer-specific mean subtraction and division by
standard deviation is performed. For multi-head self-attention, the following process
is performed: For every processed 1-D vector pertaining to its 2-D patch, a dot product
is computed using query (Q) and key (K). This will yield a cosine similarity between
Q and K. The product is normalized with the dimensions of the key vector (division
operation). The result is subjected to the softmax function, which will yield a matrix
whose values are in the range of 0 to 1. This matrix is multiplied with a value matrix.
This process will assign the similarity amongst patches, which is a final output of
the multi-head self-attention layer. At the end of this process, the linear mapping is
applied to reduce the dimensionality of the concatenated multi-head self-attention
matrix.

(H) The MLP (multi-layer perceptron) head defines intermediate layers that finally yield
the probability of predefined categories.

The main contributions of this work are (i) competitive performance metrics for person
identification as well as gender classification using periocular images and (ii) introduction
of the use of concatenated average pool and max pool layers in the vision transformer ar-
chitecture for periocular image classification. It can be inferred that the proposed technique
yields higher accuracies for person identification as well as gender classification.

The goal of this paper is to propose a technique for obtaining enhanced performance
metrics for periocular person identification and gender classification.

The remainder of the article is organized in this manner. Section 2 presents a literature
review of techniques related to periocular biometrics. Section 3 illustrates the resources
and techniques employed, which include the dataset used and transformers in NLP and
vision, followed by the proposed model, ROI (region of interest) for pre-processing, and a
step-by-step understanding of the proposed approach to obtain better accuracy. In Section 4,
we exhibit the results of the experimental work in a tabular form compared with previous
results obtained and graphical analysis. Finally, in Section 5 discussion on the results is
presented followed by the conclusion in Section 6.

2. Related Works

Among the first researchers in this area were Park et al. [7], who mentioned periocular
biometrics categorized under standalone biometric peculiarities. They have emphasized
extracting global and local information and used surface-texture and limited-neighborhood
operators to obtain a feature matrix for the purpose of categorization. Position variations,
masking of the iris, template aging, face occlusion, and eye regions were the utmost
discerning features, with pose deviations, template aging, occluded iris, face occlusion, and
eye areas being distinguished factors that cause overall accuracy to deteriorate [7,8]. The
authors designed a user interface to show human subjects who were shown a pair of ocular
images in an experiment. The features were ranked, starting with the most beneficial and
ending with the least beneficial, as (i) eye shape, (ii) eyelids, (iii) eyelashes, (iv) eyebrows,
(v) tear duct, (vi) skin, and (vii) outer corner. The testers were provided with multiple
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periocular images and were tasked with ascertaining the validity of the same [9]. When
shown images taken in the visible and NIR spectra, participants were told to identify
periocular pictures in pairs, whether they belong to the same or a different individual [10].

Projections-based methods like eigenvector-based PCA, derivatives, and discriminant
function analysis are also investigated [11]. When the performance of iris identification
algorithms deteriorates, the periocular area has been demonstrated to give exceptional
recognition rates in complicated picture acquisition settings considering inadequate image
blur, iris segmentation, specular reflections, and occlusions caused by eyelids and eyelashes.
The findings suggest that with the ocular region’s size, system accuracy does not necessarily
improve [12]. A periocular image is broken down into several boxlike areas, improving the
ability to differentiate the matched biometric pattern. It is achieved by an unsupervised
patch selection procedure [13]. A significant space of the periocular neighborhood is
viable for obstructed images. The joint representation of periocular texture and structure
effectively expresses and poses invariant representation [14]. For less restrictive periocular
matching outcomes, a periocular identification technique based on SCNN (semantics-
assisted convolutional neural networks) can outperform alternatives in accuracy and
matching time [15]. It uses explicit semantic information to extract natural periocular
properties automatically. Another study found five local textures or geometrical features
based on periocular area landmarks to possess discriminating racial information. Adaboost
training combined these features into a prominent feature that enhanced the average
accuracy rate [16]. A multi-scale technique was retrieved in which characteristics were
from the face, periocular, shoulders, and head area. They were then combined in a two-
stage process with a pair of classifiers, resulting in increased efficiency [17]. A merging
model technique outperforms the outcome of employing a particular CNN model for
the right and left pictures in terms of low-resolution deterioration and blockage. The
authors developed two separate CNN models for each eye, one for the left and one for
the right, and then combined them to produce a new CNN model [18]. Instead of iris
texture, gender-related information was mainly found in the periocular region. Linear
SVM and CNN were compared with handcrafted and deep features [19]. Another work
implemented periocular recognition for different pose variations and eye comparisons.
Based on the transfer learning approach, it was implemented on seven distinct standard
deep-learning-based CNNs [20]. In a feature fusion technique, a multiclass SVM classifier
was used to evaluate a mix of HOG and non-handcrafted features for three non-ideal
conditions, including the impact of spectacles, the effect of eye occlusion, and posture
variations [21]. Polygon and Rectangular shape ROIs were recommended for a person
wearing a mask based on the optimal size periocular ROI. They found that a broader
area was associated with better recognition accuracy [5]. Vision transformers have been
utilized in diagnosing COVID-19 in a framework consisting of following major phases:
(i) lung localization applying the UNet algorithm succeeded by (ii) classification [22]. The
transformer was scaled down to create the CMTs (CNN meets transformers) family of
models, which outperformed earlier convolution- and transformer-based models in terms
of precision and efficiency [23]. A thorough investigation of multiple indices of ViT model
robustness was conducted, with the results compared to ResNet baselines. The authors
observed that ViT models are, for the most extent, as reliable as ResNet equivalents on a
wide sphere of perturbations when pre-trained with enough data [24]. Transformers are
used to solve challenges that are not just restricted to NLP but also include computer vision.
ViT paves a new direction of research in this domain of periocular biometrics.

Transformers, first described in 2017 in the well-known work “Attention is All You
Need” [25], have quickly become one of the most widely utilized and exemplary designs
in natural language processing. In 2020, ViT was utilized for computer vision work, as
observed in [6].

The inductive biases that assume spatial structure as an input to CNN-based deep
neural networks are not present in vision transformers, allowing them to capture a broader
and global range of correlations at the cost of more extended data training. One of the
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important properties of vision transformers is its ability to extract features using adapt-
able and changeable receptive fields. Therefore, ViT models can handle defects in the
image, like patches negatively affecting the image or other imperfections [21]. To sum-
marize, after the advent of transformers, researchers are exploring the application of ViT
architectures to perform computer-vision-related tasks such as image classification, image
segmentation, etc.

Pixels are the basic unit of analysis for images. ViT, on the other hand, calculates
associations between numerous accompanying pixels in minuscule areas of an image (for
instance, 32 × 32 pixels) rather than calculating relationships between every pair of pixels
in a typical image. Units (with positional embeddings) are created in succession. The
embeddings can be computed in vector form. Every segment is grouped as a sequence
in linear form, sent to the transformer, and multiplied by the embedding matrix. In
classification problems, the class token is essential. The single input to the final MLP head
is a unique token [26]. The transformer encoder converts input tokens in the most typical
image classification architectures. The decoder part of the classic transformer layout is also
used in a few applications [27].

3. Materials and Methods
3.1. Dataset

For our experiment, we have chosen the UBIPr dataset, which has been publicly
available since 2012 and was created by Padole and Proenca [28]. It facilitates benchmarking
our results against earlier published work in this domain of periocular biometrics. A few
examples of images have been illustrated in Figure 2. The total count of images accessible
is 10,252, which have been stored in .bmp format and come from 342 individuals. The
acquired images were taken with a Canon E05 5D camera and belong to the visible range of
the electromagnetic spectrum. These images vary in the subject’s distance from the camera,
ranging from 4 m to 8 m, in increments of 1 m. The corresponding image resolution varies
from 1001 × 801 pixels to 501 × 401 pixels. They also have variations of 0, 30, and −30
degrees in terms of pose and gaze. The subjects chosen based on gender are in the ratio of
54.4% male and 45.6% female.
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Figure 2. Sample Images (UBIPr Dataset) [28].

The metadata in the dataset highlights the gender, hair occlusion, spectacles, camera
distance, canthus points, points on the inner and outer brows, the iris’s central point, pose
angle, gaze angle, eye closure, and size of the eyes.

3.2. Transformers in NLP

Transformer models are the go-to architectures in NLP. This topic is also gaining
interest among researchers in computer vision, namely, vision transformers (ViT) [6].

Let us look into the architecture of the transformers, which has also provided a
breakthrough in understanding images based on deriving query, key, and value vectors.
The mathematical equation governing scaled dot product attention [25] is indicated as (1).

Attention(Q, K, V) = softmax

(
Q·KT
√

dk

)
V (1)

where Q indicates a query vector, KT stands for a transposed key vector and V denotes
a value vector. The term dk indicates the dimension of the key vector, which is used
for scaling.
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The concept of Q (Query), K (Key), and V (Value) could be better understood by
looking at the following. Let us take an example of the retrieval of a video on Youtube [29].
In general, the search systems find the closest match between a query and several internal
key terms using similarity measures. Once a key that has smallest similarity measure has
been found, a mapping from an internal dictionary that contains the key’s corresponding
value is returned. Hence, that corresponding value is made available to the user.

We will utilize positional embeddings during this process since the transformer does
not process the input in sequential order but rather in parallel. For each element, it combines
information from the other aspects through self-attention. We must explicitly encode the
order of the inputs for the transformer to help further processing. At this stage, with
the help of positional embeddings, the inputs are arranged as a sequence. An additional
trainable (class) component is added to the series based on the location. The aforementioned
class embedding has been employed to determine the categorization of the source data
after it has been changed by self-attention.

Self-attention is a sequence-to-sequence procedure in which a sequence of vectors is
fed into the system, and a sequence of vectors emerges. The self-attention process enables
inputs to engage (‘self’) and decides who gets more significant attention. The context of
appearance is emphasized in this process. The outputs are aggregates of these attention
scores. Transformers are centered on attention mechanisms, referred to as multi-head
attention. The scaled dot product attention as well as multi-head attention mechanisms are
represented in Figure 3 [25].
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3.3. Transformers in Vision

ViT model was introduced in a research work designated “An image is worth
16 × 16 words: Transformers for Image Recognition at Scale” at ICLR 2021 [6]. Trans-
formers can be considered a comprehensive training method that appropriates various
types of data for better performance measures. The ViT model treats the whole image
(input) as an inherent image-patches collection, similar to how word embeddings are rep-
resented when text processing is done with transformers. Figure 4 illustrates the process
followed for image classification [6].
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For the processing of images based on the ViT Model, they have been initially broken
down into fixed-size patches. If an input image is given as H×W× C, wherein H indicates
height, W indicates width, C indicates channels, and P indicates patch size, then the new
patch image size is P× P× C. The total count of patches (N) is the entire image size divided
by the individual patches, i.e., N = (H/P) × (W/P). For example, if the input imagesize
is 224 × 224 along with a patch size of 16, then [(224/16) × (224/16)] = [14 × 14] = 196
patches or sequence tokens are constituted.

The next step is flattening the image patches into one dimension, which can be given
as H ×W × C = N × P × P × C = N × P2C. In general, the value of C is considered as 1
if the original vector is 1-D. The patches are projected via a linear layer that outputs the
latent vector of size D. For classification, we include a trainable ‘categorization token’ in
the process. The categorization token refers to a class token. The class token is appended to
every linearly mapped 1-D vector. This additional information will preserve the classifica-
tion label. Such a token is placed at the beginning of the patch sequence. After being sent
through the transformer, a learnable embedding of size D will be utilized for classification.
This approach is followed in BERT for NLP [30].

To maintain positional coordinates, position clusters are attached to patch embeddings.
At the initial time, the position embeddings carry no information about the 2D locations of
the patches; thus, all spatial interactions amidst them must be learned from scratch. The
encoder receives the resultant sequence of embedding vectors. After passing through the
transformer encoder, the class token is permitted to pay attention to meaningful repre-
sentations of the patches to learn an embedding for classification. The class token is to
be extracted from the encoder output. The dot product of the class token and the MLP
output gives a vector of 1 × NumClasses, followed by layer normalization and SoftMax
to help us with image classification tasks. The model versions involving tiny, small, and
base architectures add a new depth to understanding ViT. Several characteristics control
the shape of ViT models. The patch size, the dimensionality of patch embeddings and
self-attention (width), the size of encoder units (depth), the size of attention heads, and also
the MLP block’s latent dimensions are all factors to consider (MLP-width) [6]. The specifics
are illustrated in Table 1.
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Table 1. ViT Architecture Details [30].

ViT Model/Patch Width Depth (Layers) MLP Heads Parameters (Million) GFLOPS

T/16 192 12 768 3 5.5 2.5

B/16 768 12 3072 12 86 35.1

S/16 256 6 1024 8 5.0 2.2

B/32 768 12 3072 12 87 8.7

S/32 384 12 1536 6 22 2.3

To express the model and input patch sizes, we employed simple notation: ViT-S/16,
for example, denotes the “small” variation having a 16 × 16 input patch size. Similarly,
B denotes “base” and T denotes “tiny”. The models are pretrained based on the timm
PyTorch library [31].

3.4. Proposed Approach

This section discusses the pre-processing steps, mathematical framework for ROI
extraction from the UBIPr dataset, and our proposed model. The overall flow of the
proposed approach is indicated in Figure 5. The diagram illustrates the training and testing
phases. The train:val:test based approach follows the split of the dataset in a random
manner. During this random split, there may be a scenario where more samples from one
class are segregated to a training subset. Subsequently, when such training data is provided
to the deep learning architecture, the trained model is biased towards that class that has
more samples in the training set. In order to avoid this, it is recommended to use cross
validation techniques. The entire dataset is split into 5 folds for k-fold cross-validation
with k = 5. At one time, 4 out of 5 (4/5) folds are considered for training the model.
Subsequently, the testing data (1 out of 5) (1/5) fold is subjected to the trained model
to predict the labels. In the proposed experimentation, the multilayer perceptron can be
configured as per the probabilities of the number of classes required at the output layer.
For person identification, the MLP is configured as an n-class classifier with n = 342 (as per
UBIPr dataset specifications). In contrast, for gender classification, the MLP is configured
as a 2-class (binary) classifier. We have configured the vision transformer separately for
person identification and gender classification.
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3.4.1. ROI Extraction

The iris center has been used as a region of interest (ROI) by Park et al. [7]. This
method fails when gaze angle and pose variations are involved. The individual’s eyes are
occasionally partially or wholly closed. Due to this, we need to identify other techniques to
help recognize our image. The metadata and the UBIPr dataset enable us to retrieve the
periocular region of interest, of which the canthus points are the most helpful. We utilized
the approach illustrated in Liu et al. [20,32] to extract the ROI from images. The sequence
of steps to extract the ROI is mentioned as follows.

Step 1 —Let (a1, b1) be the coordinates of the medial canthus points (inner corner) and
(a2, b2) be the coordinates of the lateral canthus points (outer corner). The Euclidean
distance (D) between the medial and canthus points is determined as mentioned
in (2).

D =

√
(a1− a2)2 + (b1− b2)2 (2)

Step 2 —Compute a 2-D coordinate Ep = (Epx, Epy) using (3). This is a point where the line
connecting the medial and lateral canthus points meet.

Epx= (a1 +a2)/2, Epy= (b1 +b2)/2 (3)

Step 3 —Calculate the rectangle ROI’s upper-left coordinate (a3,b3) and lower-right coordi-
nate (a4,b4) as mentioned in (4) and (5), respectively.

(a3 , b3) =
(
Epx −1.2 × D, Epy − 0.8 × D

)
(4)

(a4 , b4) =
(
Epx + 1.2 × D, Epy + 0.8 × D

)
(5)

Step 4 —To get the rectangular ROI, use the calculated points (a3,b3) and (a4,b4).

3.4.2. Proposed Model

After the extraction of the ROI from the input image, the resultant region is subjected
to following set of steps in order to develop the ViT model during the training phase.
The trained model is stored in the system for testing purposes. During the testing phase,
the model predicts labels. These predictions are utilized to compute accuracy, which
determines the overall performance of the trained model.

Step 1 —The initial step of development is to apply pre-processing algorithms like resiz-
ing to 224 × 224 and normalizing the images in sync with the image-net dataset,
whose pre-trained weights are utilized for training, which forms the backbone of
the architecture.

Step 2 —After this pre-processing step, the images and corresponding labels are randomly
shuffled and passed as batches to the model to obtain the raw logits. The images are
first broken down into patches and flattened using the linear projection matrix, and
the positional embeddings are then added to it.

Step 3 —The transformer encoder block, analogous to a block contemplated by Vaswani
et al. [25], consists of self-attention blocks, normalization layers, fully connected
layers, and residual connections. The attention blocks are multi-headed, and hence
they can focus on different patterns of the image.

Step 4 —The embedding pertaining to the terminal FC layer is then passed to two pooling
layers–the average pool and the max pool. These are then concatenated before finally
being passed to the classification head.

Step 5 —Instead of the custom train-test split method, a stratified k-fold with k = 5 is used
to counter-balance the class imbalance. Instead of randomly splitting the dataset,
this ensures that the classes are equally stratified into each fold and hence the model
becomes less prone to overfitting.

Step 6 —The fully connected layer will output the desired class prediction using the Softmax
function, and the class having the foremost value becomes the predicted class.



Appl. Sci. 2023, 13, 3116 10 of 16

Step 7 —Setting this reliable cross-validation strategy is beneficial during inference because
now we have five folds, after completing training for every fold, and we can take
the mean of the model predictions as the final class.

The proposed architecture is shown in Figure 6. It may be noted that the average pool
and max pool layers are added and concatenated in the ViT architecture before processing
the vectors with the MLP head.
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4. Results

We have implemented our models using the PyTorch framework, which is very useful
for building complex neural networks with maximum flexibility and speed. We experi-
mented using ViT for person identification as well as gender classification as illustrated in
Sections 4.1 and 4.2, respectively.

4.1. Experiments for Person Identification

A classifier with ‘n’ classes (where ‘n’ stands for the number of unique persons in
the dataset, which in the case of the UBIPr dataset is n = 342) is implemented through
ViT for person identification. The baseline-architecture-based model was trained, and
it yielded a maximum accuracy of 98.19% using 5-fold cross-validation. Subsequently,
we experimented with a modified ViT architecture and reiterated the training to obtain a
maximum accuracy of 98.15% as indicated in Figure 7b. All experimental results pertaining
to five ViT models for person identification are depicted in Figure 7. It may be noted that
for the experiments using the PI-ViT-T/16, PI-ViT-B/16, PI-ViT-S/16, and PI-ViT-S/32
architectures, the improved models (after the inclusion of concatenated average pool and
max pool layers) always perform better than the corresponding baseline models. In the case
of PI-ViT-B/32 based architecture, the improved model performs better than the baseline
model until epoch 7. After that, the baseline model performs better than the improved
model. However, in the majority of the cases, the improved model yields better accuracy
than the baseline model.
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As illustrated in Figure 7a, the accuracy increases rapidly in a linear fashion up to
3 epochs for the different models with an accuracy from 60 to 80% and then stabilizes
around 80 to 90% from epoch 8 to 10. An appreciable improvement is observed in the
proposed ViT architecture (ViT-T/16) in the CV Score, which is 96.196 as compared to
the original ViT architecture, which is 94.821. From Figure 7b, we observe that in the
first two epochs, a steep increase in accuracy is observed and later it flattens for the next
eight epochs. There was no significant difference noted in the original ViT architecture as
compared with ViT-B/16, though there was an improvement when compared in the ViT
model trained based on train-val-test. From Figure 7c, we can observe that the accuracy
increases steeply up to three epochs, and then linearly through epoch 7, and flattens later.
There is no significant difference found in the ViT original and the ViT-S/16 architecture,
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though it is significant when compared in the ViT model trained based on train-val-test. We
can contemplate from Figure 7d, emphasizing ViT-B/32, that as compared with the other
models, there is not a steep increase in the accuracy with the number of epochs; instead, it is
more or less piecewise linear for the first eight epochs and then flattens. It can be seen from
Figure 7e that the proposed architecture (ViT-S/32) performs better as compared with the
other two models for all ten epochs. There is a piecewise linear increase for seven epochs
and later it is constant.

Table 2 depicts the accuracy of the five ViT models for person identification under
different constraints. It can be noted that the proposed model has achieved higher accuracy
than the approaches presented in [33]. For this comparison, we have performed the train-
val-test split, which results in (6025-1152-3075) images.

Table 2. Person identification based on different models.

Experiments on
the UBIPr Dataset Models

CV Score (Accuracy)–ViT Models Earlier Results

Original Improved Train-Val-Test Train-Val-Test
(6025-1152-3075)K-Fold (5) K-Fold (5) 6025-1152-3075

Person
Identification (PI)

ViT-T/16 94.821 96.196 92.580

93.83 [33]

ViT-B/16 98.186 98.147 96.000

ViT-S/16 94.645 96.079 92.650

ViT-B/32 94.625 93.381 85.630

ViT-S/32 91.641 93.494 87.840

4.2. Experiments for Gender Classification

A separate classifier with two classes has been implemented through ViT for gender
classification. Hence, we divided the dataset into two classes male and female. The baseline
structure was trained with a 5-fold cross-validation strategy, obtaining the maximum
accuracy of 99.04%. We further experimented to improve this result by modifying the
original ViT architecture. The training was iterated again, obtaining the results with a
maximum accuracy of 99.13%, which is indicated in Figure 8b. All experimental results
pertaining to five ViT models for gender classification are depicted in Figure 8. It may be
noted that for the experiments using the GC-ViT-B/16, GC-ViT-S/16, GC-ViT-B/32, and GC-
ViT-S/32 architectures, the improved models (after inclusion of the concatenated average
pool and max pool layers) perform better than the corresponding baseline models at epoch
10. In the case of the GC-ViT-T/16 based architecture, the improved model performs better
than the baseline model until epoch 9. After that, the baseline model performs better than
the improved model. However, in the majority of the cases, the improved model yields
better accuracy than the baseline model at the end of the last epoch.

From Figure 8a, we observe that there is some randomness in the values of accuracy for
the train-val-test model, but there is a steep increase in the proposed architecture (ViT-T/16)
in the first two epochs, and later it flattens with little variation. It is also seen that there
is an improvement in the overall accuracy after 10 epochs for all the techniques. From
Figure 8b, we see that after the first three epochs, the accuracy falls in the range of 96 to
98%. Though after seven epochs, there has been a dip observed for the model based on
the original ViT architecture (ViT-B/16), but it also stabilizes with more than 98% accuracy
later. In Figure 8c, it can be seen that the proposed architecture (ViT-S/16) showed a lot of
variations in the accuracy as compared with the other techniques, though the final accuracy
after 10 epochs was 98.664. The accuracy does not flatten for different epochs, which can
also be observed in that fashion due to the scale on the Y axis. From Figure 8d, we can see
that there is a steady increase in the accuracy up to 5 epochs, and then is close to flattening
through the next five epochs. For the original ViT architecture (ViT-B/32), though, a large
dip can be observed after seven epochs. From Figure 8e, we can observe that there is an
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increase in the accuracy in a linear fashion for the first three epochs, and later for all the
remaining models. However, the values are not varying much, with a steady rise after ten
epochs for the ViT-S/32-based models.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 16 
 

 

 
 

(a) (b) 

  
(c) (d) 

 
(e) 

Figure 8. (a)—GC-ViT-T/16, (b)—GC-ViT-B/16, (c)—GC-ViT-S/16, (d)—GC-ViT-B/32, (e)—GC-ViT-
S/32. 

From Figure 8a, we observe that there is some randomness in the values of accuracy 
for the train-val-test model, but there is a steep increase in the proposed architecture (ViT-
T/16) in the first two epochs, and later it flattens with little variation. It is also seen that 
there is an improvement in the overall accuracy after 10 epochs for all the techniques. 
From Figure 8b, we see that after the first three epochs, the accuracy falls in the range of 
96 to 98%. Though after seven epochs, there has been a dip observed for the model based 
on the original ViT architecture (ViT-B/16), but it also stabilizes with more than 98% accu-
racy later. In Figure 8c, it can be seen that the proposed architecture (ViT-S/16) showed a 
lot of variations in the accuracy as compared with the other techniques, though the final 
accuracy after 10 epochs was 98.664. The accuracy does not flatten for different epochs, 
which can also be observed in that fashion due to the scale on the Y axis. From Figure 8d, 
we can see that there is a steady increase in the accuracy up to 5 epochs, and then is close 

Figure 8. (a)—GC-ViT-T/16, (b)—GC-ViT-B/16, (c)—GC-ViT-S/16, (d)—GC-ViT-B/32, (e)—GC-ViT-S/32.

Table 3 depicts the results for gender classification. Compared to person identification,
we have obtained a better accuracy in gender classification with the ViT architectures. It
can be noted that the proposed model has achieved higher accuracy than the approach
presented in [33]. For this comparison, we have performed the train-val-test split, which
results in (6025-1152-3075) images.
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Table 3. Gender Classification based on different models.

Experiments on
the UBIPr Dataset Models

CV Score (Accuracy)-ViT Models Earlier Results

Original Improved Train-Val-Test Train-Val-Test
(6025-1152-3075)K-Fold (5) K-Fold (5) 6025-1152-3075

Gender
Classification

(GC)

ViT-T/16 98.605 98.430 97.820

95.00 [33]

ViT-B/16 99.040 99.132 98.530

ViT-S/16 98.440 98.664 98.170

ViT-B/32 97.580 97.464 96.170

ViT-S/32 97.776 97.386 96.580

5. Discussion

The main goal was to showcase the performance of ViT architectures compared to
the results obtained earlier with CNN-based models. Our observation from the graphical
results is shown in Figure 7. A significant improvement was seen in the accuracy plot,
with an increase in the number of epochs for the ViT architectures for the small, tiny, and
base models. The maximum accuracy for person identification was found for the ViT base
model with 16 patches at 98.186 based on the K-fold technique with K = 5. As seen in
Table 3, from the accuracy of the proposed architecture, we can see that there is a significant
improvement in the accuracy from the earlier work from 95.0 to 99.132. There was a
significant improvement in almost all the other models. An appreciable improvement in
the proposed architecture to identify gender from the dataset was observed for the ViT
base model from 99.040 to 99.132 based on the K-fold technique with k = 5. There was a
similar improvement that can be seen across other models, too. To benchmark our results,
we tried to compare our results with earlier published work by authors in this domain. We
did a split of 6025-1152-3075 for the number of images into training, validation, and testing.
It was seen that the occlusion of the eyes due to hair and the closing of the eyes were a few
reasons for the degradation of the system’s performance.

6. Conclusions

New systems are required in order to identify people with face masks. In biometrics,
the methods frequently used, like fingerprint and face recognition technologies, needed
an upgrade since a significant portion of the face is covered by the mask. Our proposed
solution addresses this issue by utilizing the latest innovations in deep learning, initially
applied in NLP, which is also helpful in computer vision. ViT has been shown to give better
performance accuracy. In our experiment, the best model was the ViT base model with
16 patches, which provided an accuracy of 98.186, based on the K-fold technique, with K
= 5. It has been seen that with smaller patches, there is an improvement in accuracy. In
the future, we plan to develop a hybrid technique to address the critical issues of person
identification and gender classification.
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