ColorMedGAN: A Semantic Colorization Framework for Medical Images
Abstract
:1. Introduction
- Proposes a framework that can generate semantically colored images across modalities. This method can train the colorization model with an unpaired dataset and generate high-quality color images.
- Introduces an instance segmentation network branch in generating phase. The generator is guided to produce highly semantic and color-consistence images based on the attention mechanism.
- Introduces the edge loss and multi-modal discriminator based on edge-aware detectors which enables the generator to focus on the global edge information of the image, preserve more edge detail textures, and prevent the color bleeding problem.
2. Methodology
2.1. ColorMedGAN Architecture
2.1.1. Backbone Network
2.1.2. Attention Guided Module
2.2. Loss Function
2.2.1. ColorCycleGAN Loss Function
2.2.2. Edge Aware Loss Function
2.2.3. Multi-Modality Discriminator
2.2.4. Full Objective
2.3. Experimental Setup
3. Experiment and Result
- How to prevent color bleeding in the colorization stage?
- How to enrich the semantic information of color images?
- How to overcome the difference in modality during color migration?
3.1. Ablations Analysis
3.1.1. Effectiveness of Edge Loss
3.1.2. Performance of Semantic Module
3.1.3. The Multi-Modal Discriminator
3.2. Comparisons with State-of-the-Art Networks
4. Discuss and Challenges
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.Y.; Zhang, J.Q.; Zhao, Y.Y.; Rosin, P.L.; Lai, Y.K.; Gao, L. A review of image and video colorization: From analogies to deep learning. Vis. Inform. 2022, 6, 51–68. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Shin, B.S. Robust Medical Image Colorization with Spatial Mask-Guided Generative Adversarial Network. Bioengineering 2022, 9, 721. [Google Scholar] [CrossRef]
- Viana, M.S.; Morandin Junior, O.; Contreras, R.C. An improved local search genetic algorithm with a new mapped adaptive operator applied to pseudo-coloring problem. Symmetry 2020, 12, 1684. [Google Scholar] [CrossRef]
- Williamson, T.H.; Harris, A. Color Doppler ultrasound imaging of theeye and orbit. Surv. Ophthalmol. 1996, 40, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.U.G.; Gotoh, Y.; Nida, N. Medical image colorization for better visualization and segmentation. In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, Edinburgh, UK, 11–13 July 2017; pp. 571–580. [Google Scholar]
- Luo, W.; Lu, Z.; Wang, X.; Xu, Y.Q.; Ben-Ezra, M.; Tang, X.; Brown, M.S. Synthesizing oil painting surface geometry from a single photograph. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 885–892. [Google Scholar]
- Geirhos, R.; Rubisch, P.; Michaelis, C.; Bethge, M.; Wichmann, F.A.; Brendel, W. ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv 2018, arXiv:1811.12231. [Google Scholar]
- Reinhard, E.; Adhikhmin, M.; Gooch, B.; Shirley, P. Color transfer between images. IEEE Comput. Graph. Appl. 2001, 21, 34–41. [Google Scholar] [CrossRef]
- Horiuchi, T.; Hirano, S. Colorization algorithm for grayscale image by propagating seed pixels. In Proceedings of the 2003 International Conference on Image Processing (Cat. No. 03CH37429), Barcelona, Spain, 14–18 September 2003; Volume 1. [Google Scholar]
- Musialski, P.; Cui, M.; Ye, J.; Razdan, A.; Wonka, P. A framework for interactive image color editing. Vis. Comput. 2013, 29, 1173–1186. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Isola, P.; Efros, A.A. Colorful image colorization. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 649–666. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7291–7299. [Google Scholar]
- Frans, K. Outline colorization through tandem adversarial networks. arXiv 2017, arXiv:1704.08834. [Google Scholar]
- Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Nazeri, K.; Ng, E.; Ebrahimi, M. Image colorization using generative adversarial networks. In Proceedings of the International Conference on Articulated Motion and Deformable Objects, Palma de Mallorca, Spain, 12–13 July 2018; pp. 85–94. [Google Scholar]
- Zhang, C.L.; Wu, J. Improving CNN linear layers with power mean non-linearity. Pattern Recognit. 2019, 89, 12–21. [Google Scholar] [CrossRef]
- Yi, Z.; Zhang, H.; Tan, P.; Gong, M. Dualgan: Unsupervised dual learning for image-to-image translation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2849–2857. [Google Scholar]
- Kim, T.; Cha, M.; Kim, H.; Lee, J.K.; Kim, J. Learning to discover cross-domain relations with generative adversarial networks. In Proceedings of the International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; pp. 1857–1865. [Google Scholar]
- Kumar, M.; Weissenborn, D.; Kalchbrenner, N. Colorization transformer. arXiv 2021, arXiv:2102.04432. [Google Scholar]
- Shi, M.; Zhang, J.Q.; Chen, S.Y.; Gao, L.; Lai, Y.; Zhang, F.L. Reference-based deep line art video colorization. IEEE Trans. Vis. Comput. Graph. 2022, 20, 1. [Google Scholar]
- Siyao, L.; Zhao, S.; Yu, W.; Sun, W.; Metaxas, D.; Loy, C.C.; Liu, Z. Deep animation video interpolation in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 6587–6595. [Google Scholar]
- Ge, C.; Sun, H.; Song, Y.Z.; Ma, Z.; Liao, J. Exploring local detail perception for scene sketch semantic segmentation. IEEE Trans. Image Process. 2022, 31, 1447–1461. [Google Scholar] [CrossRef]
- Ljung, P.; Krüger, J.; Groller, E.; Hadwiger, M.; Hansen, C.D.; Ynnerman, A. State of the art in transfer functions for direct volume rendering. Comput. Graph. Forum 2016, 35, 669–691. [Google Scholar] [CrossRef]
- Zeng, X.; Tong, S.; Lu, Y.; Xu, L.; Huang, Z. Adaptive medical image deep color perception algorithm. IEEE Access 2020, 8, 56559–56571. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Li, H.A.; Fan, J.; Yu, K.; Qi, X.; Wen, Z.; Hua, Q.; Zhang, M.; Zheng, Q. Medical image coloring based on gabor filtering for internet of medical things. IEEE Access 2020, 8, 104016–104025. [Google Scholar] [CrossRef]
- Mathur, A.N.; Khattar, A.; Sharma, O. 2D to 3D Medical Image Colorization. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikola, HI, USA, 19–25 June 2021; pp. 2847–2856. [Google Scholar]
- Hammami, M.; Friboulet, D.; Kéchichian, R. Cycle GAN-based data augmentation for multi-organ detection in CT images via YOLO. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 25–28 October 2020; pp. 390–393. [Google Scholar]
- Ma, Y.; Liu, Y.; Cheng, J.; Zheng, Y.; Ghahremani, M.; Chen, H.; Liu, J.; Zhao, Y. Cycle structure and illumination constrained GAN for medical image enhancement. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2020: 23rd International Conference, Lima, Peru, 4–8 October 2020; pp. 667–677. [Google Scholar]
- Armanious, K.; Jiang, C.; Abdulatif, S.; Küstner, T.; Gatidis, S.; Yang, B. Unsupervised medical image translation using cycle-MedGAN. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruña, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar]
- Cohen, J.P.; Luck, M.; Honari, S. Distribution matching losses can hallucinate features in medical image translation. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2018: 21st International Conference, Granada, Spain, 16–20 September 2018; pp. 529–536. [Google Scholar]
- Kong, L.; Lian, C.; Huang, D.; Hu, Y.; Zhou, Q. Breaking the dilemma of medical image-to-image translation. Adv. Neural Inf. Process. Syst. 2021, 34, 1964–1978. [Google Scholar]
- Cao, B.; Zhang, H.; Wang, N.; Gao, X.; Shen, D. Auto-GAN: Self-supervised collaborative learning for medical image synthesis. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 10486–10493. [Google Scholar]
- Yao, S.; Tan, J.; Chen, Y.; Gu, Y. A weighted feature transfer gan for medical image synthesis. Mach. Vis. Appl. 2021, 32, 22. [Google Scholar] [CrossRef]
- Sun, L.; Wang, J.; Huang, Y.; Ding, X.; Greenspan, H.; Paisley, J. An adversarial learning approach to medical image synthesis for lesion detection. IEEE J. Biomed. Health Inform. 2020, 24, 2303–2314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Y.; Jiang, A.; Liu, C.; Wang, M. Single image colorization via modified CycleGAN. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 3247–3251. [Google Scholar]
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med Imaging 2015, 34, 1993–2024. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, V.M.; Whitlock, D.G. The Visible Human Dataset: The anatomical platform for human simulation. Anat. Rec. Off. Publ. Am. Assoc. Anat. 1998, 253, 49–57. [Google Scholar] [CrossRef]
- Park, J.S.; Chung, M.S.; Hwang, S.B.; Shin, B.S.; Park, H.S. Visible Korean Human: Its techniques and applications. Clin. Anat. Off. J. Am. Assoc. Clin. Anat. Br. Assoc. Clin. Anat. 2006, 19, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Instance normalization: The missing ingredient for fast stylization. arXiv 2016, arXiv:1607.08022. [Google Scholar]
- Li, C.; Wand, M. Precomputed real-time texture synthesis with markovian generative adversarial networks. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; pp. 702–716. [Google Scholar]
- Tang, H.; Qi, X.; Xu, D.; Torr, P.H.; Sebe, N. Edge guided GANs with semantic preserving for semantic image synthesis. arXiv 2020, arXiv:2003.13898. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Zhang, H.; Dana, K.; Shi, J.; Zhang, Z.; Wang, X.; Tyagi, A.; Agrawal, A. Context encoding for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7151–7160. [Google Scholar]
- Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jagersand, M. U2-Net: Going deeper with nested U-structure for salient object detection. Pattern Recognit. 2020, 106, 107404. [Google Scholar] [CrossRef]
- Wells III, W.M.; Viola, P.; Atsumi, H.; Nakajima, S.; Kikinis, R. Multi-modal volume registration by maximization of mutual information. Med Image Anal. 1996, 1, 35–51. [Google Scholar] [CrossRef]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Adv. Neural Inf. Process. Syst. 2017, 30, 25–34. [Google Scholar]
- Seitzer, M. Pytorch-Fid: FID Score for PyTorch; Version 0.2.1. 2020. Available online: https://github.com/mseitzer/pytorch-fid (accessed on 15 June 2021).
- Nickparvar, M. Brain Tumor MRI Dataset. 2021. Available online: https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection (accessed on 20 August 2021).
- Vitoria, P.; Raad, L.; Ballester, C. Chromagan: Adversarial picture colorization with semantic class distribution. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 1–5 March 2020; pp. 2445–2454. [Google Scholar]
Model | SSMI ↑ | PSNR ↑ | FID ↓ |
---|---|---|---|
Concat mode | 0.896 | 33.325 | 94.59 |
Sigmoid mode | 0.901 | 33.224 | 84.81 |
Model | SSMI ↑ | PSNR ↑ | FID ↓ |
---|---|---|---|
w/o edge loss | 0.745 | 20.735 | 112.15 |
w edge loss | 0.757 | 21.010 | 110.32 |
Model | SSMI ↑ | PSNR ↑ | FID ↓ |
---|---|---|---|
w/o segmentation module | 0.757 | 21.010 | 105.23 |
w segmentation module | 0.857 | 29.698 | 84.81 |
Model | SSMI ↑ | PSNR ↑ | FID ↓ |
---|---|---|---|
Multi modal:1 | 0.885 | 33.40 | 223.14 |
Multi modal:2 | 0.884 | 35.95 | 102.84 |
Multi modal:3 | 0.871 | 28.34 | 215.95 |
w/o multi modal | 0.875 | 28.01 | 156.72 |
Model | SSMI ↑ | PSNR ↑ | FID ↓ |
---|---|---|---|
colorCycleGAN | 0.69 | 19.86 | 163.65 |
CycleGAN | 0.28 | 11.01 | 266.58 |
Zhang’s | 0.89 | 32.45 | 104.72 |
ChromaGAN | 0.89 | 27.48 | 125.65 |
Ours | 0.90 | 33.22 | 84.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Xiao, N.; Shi, X.; Yang, Y.; Tan, H.; Tian, J.; Quan, Y. ColorMedGAN: A Semantic Colorization Framework for Medical Images. Appl. Sci. 2023, 13, 3168. https://doi.org/10.3390/app13053168
Chen S, Xiao N, Shi X, Yang Y, Tan H, Tian J, Quan Y. ColorMedGAN: A Semantic Colorization Framework for Medical Images. Applied Sciences. 2023; 13(5):3168. https://doi.org/10.3390/app13053168
Chicago/Turabian StyleChen, Shaobo, Ning Xiao, Xinlai Shi, Yuer Yang, Huaning Tan, Jiajuan Tian, and Yujuan Quan. 2023. "ColorMedGAN: A Semantic Colorization Framework for Medical Images" Applied Sciences 13, no. 5: 3168. https://doi.org/10.3390/app13053168
APA StyleChen, S., Xiao, N., Shi, X., Yang, Y., Tan, H., Tian, J., & Quan, Y. (2023). ColorMedGAN: A Semantic Colorization Framework for Medical Images. Applied Sciences, 13(5), 3168. https://doi.org/10.3390/app13053168