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Abstract: Colorization for medical images helps make medical visualizations more engaging, pro-
vides better visualization in 3D reconstruction, acts as an image enhancement technique for tasks
such as segmentation, and makes it easier for non-specialists to perceive tissue changes and texture
details in medical images in diagnosis and teaching. However, colorization algorithms have been
hindered by limited semantic understanding. In addition, current colorization methods still rely
on paired data, which is often not available for specific fields such as medical imaging. To address
the texture detail of medical images and the scarcity of paired data, we propose a self-supervised
colorization framework based on CycleGAN(Cycle-Consistent Generative Adversarial Networks),
treating the colorization problem of medical images as a cross-modal domain transfer problem in
color space. The proposed framework focuses on global edge features and semantic information by
introducing edge-aware detectors, multi-modal discriminators, and a semantic feature fusion module.
Experimental results demonstrate that our method can generate high-quality color medical images.

Keywords: medical image colorization; CycleGAN; visualization

1. Introduction

Colorization has always been a popular topic in computer vision research [1] and
there have been many challenges in general colorization research to date. Human organ
and tissue images are often in grayscale, which creates a big challenge when applying
colorization methods using supervised learning with paired data. However, color images of
medical images can be better visualized [2,3] and can play a special role in aiding diagnosis
and treatment for both professionals and non-professionals. For instance, color Doppler
ultrasound measures blood flow velocity through the Doppler effect and displays it in
the image through colorization [4]. In addition, modern medicine often employs three-
dimensional reconstruction technology to observe human organs, and through colorization
and three-dimensional display, their appearance can be made more realistic and intuitive,
leading to better observation results [5].

Early image colorization algorithms have traditionally focused on modeling the cor-
respondence between grayscale and color [6,7]. In 2001, Reinhard et al. [8] proposed a
novel colorization concept based on the observation that channels in the CIELAB(L*a*b*
color model developed by The International Commission on Illumination) color space are
uncorrelated. They developed a set of color transfer formulas that can be applied to each
color component, yielding promising results. Alternatively, some researchers have explored
the diffusion of color from local to global regions. Horiuchi and Hirano [9] leveraged the
local Markov property of the image to minimize the color difference between neighboring
pixels and achieve colorization, while Musialski et al. [10] implemented a user-guided
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approach with colored sketches to minimize user interaction. However, these approaches
either heavily relied on user interaction or resulted in desaturated colorizations, limiting
their practicality and applicability [11].

In recent years, the development of deep learning has led to impressive performance in
colorization methods [12]. One of the pioneering approaches, Colorful Image Colorization,
was initially proposed by Cheng et al. [11] and treats colorization as a classification prob-
lem. Several studies [12–14] have employed GAN (generative adversarial network) [15]
for image colorization, which has produced impressive results but has not matched the
performance of the method proposed by Zhang et al. [11]. The Pix2pix model [12] based
on GAN has also achieved excellent performance in colorization tasks. To achieve the col-
orization of real-world objects, ColorGAN(Image Colorization with Generative Adversarial
Networks) [16] was introduced, which utilizes conditional GANs. While methods such as
Pix2Pix have shown promising results, they rely on paired datasets where inputs and labels
are paired one-to-one. Architectures like CycleGAN [17], DualGAN(Unsupervised Dual
Learning for Image-to-Image Translation) [18], and DiscoGAN(generative adversarial net-
works that learn to discover relations between different domains) [19] leverage two GANs
to map features from one set to another, which is beneficial for datasets with unpaired
images (a dataset with non-corresponding input and label data). Recently, Transformer
architecture has gained attention in the field of image colorization. Kumar et al. [20]
proposed a grayscale colorization network (Colorization Transformer), called Colorization
Transformer, based on Transformer blocks, which enables the matching of color informa-
tion to input grayscale images at low resolution. However, these methods have their own
limitations. Architectures like Transformer require a large amount of data and computing
resources, while self-supervised methods like CycleGAN are prone to producing artifacts
during colorization, which may result in the loss of structural information and contours.
Low-level semantic information such as contours and geometric shapes plays a crucial role
in the colorization process. Therefore, the use of extracted features to calculate non-local
similarity has become a popular method in recent years [21,22]. Ge et al. [23] have also
incorporated local detail perception with semantic segmentation to improve the quality of
colorization.

One of the few studies on colorizing medical images involved the use of transfer
functions to map intensity values to colors, as explored by Ljung et al. [24]. However, these
methods can be cumbersome and time-consuming, and often require manual intervention.
Khan et al. [5] addressed this issue by embedding color information in each pixel of the
subject image, resulting in the potential for better depiction of anatomical information
compared to traditional monochrome images. Another approach, used by Zeng et al. [25],
involved the use of VGG19 (Very Deep Convolutional NetWorks for Large-Scale Image
Recognition) [26] and adaptive target image retrieval to generate high-quality color medical
images. This method incorporated Y-loss and content-loss to maintain texture structure
and image color loss to maintain color invariance between the generated image and the
reference image. Li et al. [27] used an image colorization method based on Gabor filtering
and Welsh colorization to extract local spatial and frequency domain information from
grayscale images and render images with distinct texture features in the filtered images.
However, these methods are often dependent on the performance of retrieval algorithms
or the quality of reference images, and the resulting images can look more like pseudo-
colored images than the actual situation. Mathur et al. [28] used 2D style migration for
colorizing 3D medical images, demonstrating multi-modal body colorization using only
one 2D style image. This approach can be used to create better 3D visualizations without
the need for time-consuming transfer functions. Zhang et al. [2] proposed a fully automatic
spatial mask-guided colorization with a generative adversarial network framework for
medical image colorization. This method generates colorized images with fewer artifacts
by introducing spatial masks, which encourage the network to focus on the colorization of
foreground regions rather than the entire image. Although the above methods generate
anatomical-style images from MRI or grayscale images, they may lose a significant amount
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of information inherent in medical imaging. Additionally, some of these methods rely on
one-to-one paired datasets, such as MRI and anatomical colored images in [28], which
requires considerable manual screening work and carries the risk of misalignment.

Medical images are known for their low variation in tissue and high complexity in
texture, making them prone to color bleeding and loss of texture details during colorization.
Existing colorization methods for medical images often require paired data or manual
alignment between different modalities, which can result in unclear boundaries and a sin-
gle colorization effect. Our experiments demonstrate that current models cannot generate
high-quality colorized medical images. To address these challenges, we propose a novel
approach that treats medical image colorization as a cross-modal transfer problem in color
space. Our method constrains color generation with rich semantic and edge information
to eliminate the need for paired data and produce high-quality images. CycleGAN (The
Cycle Generative Adversarial Network) has emerged as a powerful tool for medical image
translation, and recent research has explored its potential for medical image augmentation
and unsupervised translation. Recently, some studies [29,30] have combined CycleGAN’s
advantages with the constraints of local structure and feature details to improve medical
image augmentation. Cycle GAN-based models are also widely applied to medical image
translation, with Armanious et al. [31] proposing a novel unsupervised translation frame-
work called Cycle-MedGAN. This framework utilizes a new non-adversarial cycle loss to
guide the framework in minimizing texture and perceptual differences in the translated
images. Other similar studies include [32–36]. Drawing inspiration from these works, we
propose a CycleGAN-based unsupervised medical image colorization framework that pays
attention to both low-level structural information and high-level semantic information. By
doing so, we aim to generate high-quality colorized medical images without the need for
paired data or manual alignment.

In this paper, we propose a pipeline based on CycleGAN [17] and ColorCycleGAN
(Single Image Colorization via Modified CycleGAN) [37] for the automatic coloring of MRI
images. Our approach formulates the colorization problem as a domain transfer task in
the color domain, transferring the colors from the source domain (cryo-anatomical images)
to the target domain (MRI images) while preserving the semantic colors of the source
domain and the structural information of the target domain. To achieve this, we pre-train a
segmentation network to fuse semantic features and introduce edge loss and multi-modal
discriminators to guide the model to generate rich texture details. Our approach does
not require paired image sets or manual alignment of images and can be trained using
cross-modal unpaired datasets. We use the Brain MRI dataset Brats2018 [38] with instance
segmentation annotations as the source domain data and a subset of The Human Project [39]
and The Korean Human Project [40]’s cryo-anatomical data as the target domain data. In
summary, this paper:

• Proposes a framework that can generate semantically colored images across modalities.
This method can train the colorization model with an unpaired dataset and generate
high-quality color images.

• Introduces an instance segmentation network branch in generating phase. The genera-
tor is guided to produce highly semantic and color-consistence images based on the
attention mechanism.

• Introduces the edge loss and multi-modal discriminator based on edge-aware detectors
which enables the generator to focus on the global edge information of the image,
preserve more edge detail textures, and prevent the color bleeding problem.

2. Methodology

Our method can bypass the design of the image color transfer optimization function
and directly generate realistic colorized images. It can be trained on cross-modal paired
datasets, thereby avoiding the considerable workload generated by matching one-to-one
datasets and automating the modal transformation operation during training CycleGAN,
thus reducing the need for manual operations. The principle of our method is illustrated
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in Figure 1. We employ a forward network G to transform the grayscale MR images into
anatomical images in RGB format and then use a backward network F to recover the input.

Figure 1. (a) illustrates the MR-to-anatomical synthesis cycle in color space. (b,c) primarily demon-
strate the forward synthesis from MR to anatomical and the backward synthesis from anatomical to
anatomical, with the inclusion of the edge and color object functions.

2.1. ColorMedGAN Architecture

Unlike traditional one-way GANs, CycleGAN is essentially two mirror-symmetric
GANs. Inspired by this work and colorCycleGAN, we propose a CycleGAN-based col-
orization framework for unpaired datasets. A summary of our network structure is shown
in Figure 2, in this method, the grayscale MR images as the source domain, and the RGB
anatomical images as the target domain are input into the framework. Then, the features of
the generator and the features captured by the segmentation network are weighted by the
attention module and then continue to be input into the generator, and finally output the
colorful MR images. In addition, this module also introduces an edge extraction module to
constrain the edge and structural information in the generation through an edge loss and
a multimodal discriminator. We aim to utilize cross-modal unpaired datasets to generate
realistic color medical images, transfer colorful semantic information to MR images, and
reduce the loss of structural and contour information in them.

Figure 2. Framework of the proposed method. It takes grayscale MR images as the source domain
and RGB anatomical images as the target domain, which are input into the framework. The generator
features and segmentation network features are weighted by an attention module, which is then fed
back into the generator, producing colorful MR images. Furthermore, the method includes an edge
extraction module to constrain the edge and structural information in the generation by means of an
edge loss and a multi-modal discriminator.

2.1.1. Backbone Network

The backbone network of the framework consists of three parts: generator G, discrimi-
nator D and semantic segmentation network S. The U-Net-like network structure [41] is
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adopted for both the semantic segmentation network S and generative network G, where
G takes in a one-dimensional grayscale image as input and generates a three-channel color
image, while S pertains to output a feature map with semantic information. S and G
are similarly chosen for the lightweight 6-layer encoder-decoder framework to fuse the
consistency between features. As a colorization network, the U-structured encoder allows
low-level information to pass through the network, and then the final RGB color image is
predicted by resizing the learned feature maps back to the same spatial size as the input
image deconvolution layer. Instance Normalization (IN) [42] is used in the network to
remove instance-specific information and simplify the gray features before concatenation,
resulting in high-quality generation performance.

For discriminator network D, we use a patch-level discriminator [43] to distinguish
between samples from the real dataset and generated ones, as the discriminator task is rela-
tively straightforward. The basic local features are encoded using two convolutional blocks
for classification. A convolutional block containing a feature transform layer and a convo-
lutional pixel-level regression layer is then used to obtain the classification response. The
weights of the generator and discriminator’s convolutional layers are spectrally normalized,
except for their respective last convolutional layer.

In the colorization process, semantic information is of great importance as it provides
valuable color guidance in combination with grayscale values to the colorization network.
Therefore, accurate semantic mapping is crucial for our colorization network. To maintain
consistency in fused feature representation, we use a semantic segmentation network
trained offline with a UNet network [41] similar to the colorization network. To balance
the trade-off between the layers of fused information and computational efficiency, in this
study, we extract feature layers (batch× 128× 128× 128) from each of the encoder and
decoder of the segmentation network to fuse with the generator, representing both shallow
and deep semantic representations.

2.1.2. Attention Guided Module

Inspired by [44], we introduce an attention-guided generator that leverages edge
semantic information to enhance the feature representation in the hierarchy. The attentional
fusion structure is depicted in Figure 3a. We explore two feature fusion approaches
(Figure 3) to transfer more efficient semantic information from the edge feature map Fe to
the image feature map Fi. One is to concatenate the edge features with the colorization
network features and input concat(Fe, Fi) to the encoder at the next layer; the other is to
use the attention-guided approach to input the edge features to the activation layer and
then multiply them per wise with the feature map from the generator. The latter approach
is experimentally proven to be superior as shown in Table 1. The edge feature map is first
processed by the sigmoid activation function to generate the corresponding attention map
Fa = σ(Fe). Then, we multiply the generated attention map with the corresponding image
feature map to obtain a refined map containing local structure and details, which is further
inputted into the next convolutional layer. The feature maps of the two fusion modes are
presented in Figure 4. The right figure shows that our attention mode outperforms the
concatenate mode as it preserves more information from the segmentation and reduces
noise. The generated images (comparison of Figure 5c and Figure 5d) also demonstrate the
superiority of the sigmoid mode

Fj
i = Sigmoid(Fj

e )× Fj
i (1)

where Fj
e denotes the feature map of the segmentation network, Fj

i denotes the feature map
of the generator.
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(a) (b)

Figure 3. Two modes of feature fusion: (a) element-wise multiplication and Sigmoid activation
function (b) channel-wise concatenate.

Figure 4. The feature map of two fusion modes. The left one presents the concatenate mode, the right
one presents the sigmoid mode.

(a) (b) (c) (d)

Figure 5. Comparison of the influence of semantic feature. (a) origin image; (b) without semantic
information; (c) with semantic information in concatenate mode; (d) with semantic information in
sigmoid mode.

Table 1. Comparison of Concatenate and Sigmoid mode.

Model SSMI ↑ PSNR ↑ FID ↓
Concat mode 0.896 33.325 94.59

Sigmoid mode 0.901 33.224 84.81
Bold fonts indicate better results.

Then, we perform another convolution operation on F0 to obtain a feature map F0 ∈
R(C + N + 3 + 3)× H ×W to enhance the representativeness of this feature. In addition,
F0 is identical to the original input F. This makes the module flexible and inserted into
other architectural structures without modifying other parts to refine the output. Finally,
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the feature map F0 is fed into the convolutional layer followed by the tanh() nonlinear
activation layer to obtain the final result, allowing the generator to converge faster. The
proposed semantic preservation module enhances the representational power of the model
by adaptively recalibrating the semantic class-dependent feature maps and is in a similar
spirit to style transfer and the recent works SENet (Squeeze-and-Excitation Networks) [45]
and EncNet (Context Encoding Network) [46]. An intuitive example of this module’s utility
is in generating small object classes, which are easily lost in the generated results due to the
loss of spatial resolution. Our scaling factor can emphasize small objects and help preserve
them.

2.2. Loss Function

This section can be divided into two parts. The first part discusses the loss function
used for color learning, while the second part focuses on the loss function that constrains
the structure and contour information. The scheme for both parts is shown in Figure 1b,c.

2.2.1. ColorCycleGAN Loss Function

Consistent with the definition of CycleGAN, we define the colorization task as two
sets of mapping directions: G : X → Y and F : Y → X, where X, Y represent the grayscale
and color domains. xN

i = 1 where xi ∈ X and yM
j = 1 where yj ∈ Y. The segmentation

feature is defined as Sx = S(X), Sy = S(Y). The data domain distribution is denoted as
x ∼ Pdata(x), y ∼ Pdata(y). In addition, there are two discriminators, Dx and Dy, in the
system, where Dx is used to distinguish the true X from the false X generated by F and
Dy is used to distinguish the true Y from the false Y generated by G. Therefore, the loss
function in this part can be defined as Equation (2).

LcycleGAN(G, F, Dx, Dy, S) = LGAN(G, S, Dy, X, Y)

+LGAN(F, S, Dx, Y, X)
(2)

where the first part denotes the loss functions of the forward synthesis, and the second part
denotes the loss functions of the backward synthesis.

For the image x in the X domain, the image generated after passing into G and then
put into F to generate the X domain image back should be consistent with the original
image, x → G(x) → F(G(x)), y in the same way. So we can define the consistency loss
function as Equation (3).

Lcyc(G, F) = Ex∼Pdata(x)[||F(G(x))− x||1]
+Ey∼Pdata(y)[||G(F(y))− y||1]

(3)

The consistency loss function is defined concerning the colorCycleGAN approach,
using perceptual losses as computational objects instead of pixel points, thus enabling the
style between X and Y to map, shown as Equation (4).

Lide(G, F) = Ey∼Pdata(y)[||VGGl(G(y))−VGGl(y)||1]
+Ex∼Pdata(x)[||VGGl(F(x))−VGGl(x)||1]

(4)

The gray loss function, for any RGB image, we can get the corresponding grayscale
images through the following Equation (5), also introduced by colorCycleGAN, keeps the
image structure invariant and slightly adjusts the generated image by calculating the loss
of gray intensity using Equation (5). We got Equation (6) finally. The first half indicates
that the image G(x) generated by grayscale MR is consistent with the gray intensity of
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the original image, and the second half indicates that the image F(y) generated by the
anatomical image is consistent with the gray intensity of the input image.

Gray(img) = 0.299r + 0.576g + 0.114b (5)

Lcol(G, F) = Ex∼Pdata(x)[||Gray(G(x))− x||1]
+Ey∼Pdata(y)[||F(y)− Gray(y)||1]

(6)

2.2.2. Edge Aware Loss Function

In addition to the aforementioned loss function, we also introduce an edge-aware loss
function. It enables the generator to emphasize the generation of image texture edges by
adding a feature extractor to the network, calculating the edges of the image using the
Laplace operator, and calculating the edge loss between the original and the generated
image, guiding the generator to generate an image with more prominent texture details in
global space.

∆ f =
∂2 f
∂x2 +

∂2 f
∂y2 (7)

The operator is expressed by the mathematical formula shown as Equation (7), where
x and y represent the horizontal and vertical coordinates on the Cartesian coordinate
system xOy. For the polar coordinate system, our equation will be as shown in Equation (8).
Furthermore, it is expressed on the pixel matrix as Equation (9), whose loss function is
shown as Equation (10).

∆ f =
1
r

∂

∂r
(r

∂ f
∂r

) +
1
r2

∂2 f
∂θ2 (8)

∇2 f (x, y) = f (x + 1, y) + f (x− 1, y)

+ f (x, y + 1) + f (x, y− 1)− 4 f (x, y)
(9)

Ledge,x = E[||Lap(X)− X||] (10)

where f in Equation (8) denotes the complex function of the real part r and imaginary part
θ; x and y in Equation (9) represent the horizontal and vertical coordinates.

2.2.3. Multi-Modality Discriminator

In addition to the training loss of the Laplace operator generator, we also incorporate
the effect of this operator on the discriminator into the adversarial training process. We
calculate the product of the feature map extracted by the Laplace operator after activation
with the original map and assign the image edge weights with attention focus before adding
them to the discriminator calculation. Equation (11) shows the calculation above.

LD = E[||D(σ(Lap(y))⊕ y)− D(σ(Lap(G(x)))⊕ G(x))||] (11)

where ⊕ denotes concatenate operation, σ denotes activation operation and Lap means the
edge detector.

2.2.4. Full Objective

Overall, the total loss function can be defined as in Equation (12), which we optimize
to Equation (13).
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Lcolor(G, F) = LcycleGAN(G, F, Dx, Dy)

+αLcyc(G, F) + βLide(G, F)

+γLcol(G, F) + θLedge(G, F, Dx, Dy)

(12)

G∗ = argmin
G,F,Dx ,Dy

LcolorCycleGAN(G, F, Dx, Dy)

F∗ = argmax
G,F,Dx ,Dy

LcolorCycleGAN(G, F, Dx, Dy)
(13)

where the scalars α, β, γ and θ are used to adjust the weights of the consistency loss and
regularization terms and Ledge is a typical L1 loss which represents sparse regularization,
making sparse features.

Therefore, we construct a color domain adaptive colorization method with edge
constraints, which tries to minimize the difference between the overall distribution of the
source domain and the target domain from the perspective of color and edge structure
information.

2.3. Experimental Setup

Datasets: Three publicly available datasets were used to train our framework. We
extracted a subset of the Visible Korean Human [40] and the Visible Human datasets [39]
as color reference images for the target image domain. The Oasis Dataset [38] was used
as the training data for the segmentation network and the source domain data for the
colorization network. The colorization network was trained on 1707 Visible Human cryo-
anatomical images and 50,094 MRI images, while the segmentation network was trained on
94,000 Oasis MRI images with their labels. Additionally, to prevent the image background
from interfering with the target colorization object in the training process, we remove the
background with the U2Net [47] pre-training segmentation model.

Metrics: To evaluate the performance of our framework, we used three calculated
values: SSMI (structural similarity), PSNR(Peak Signal-to-Noise Ratio), and FID (Fréchet
Inception Distance). Structural similarity is a full-reference image quality evaluation metric
that measures image similarity in terms of brightness, contrast, and structure. PSNR is
one of the most widely used objective image quality evaluation metrics. It is based on the
error between corresponding pixels, that is, error-sensitive image quality evaluation. The
three-channel color image generated in this experiment was converted to YCbCr format for
comparison with the grayscale image, and then only the PSNR of the Y component, i.e., the
luminance component, was calculated.

PSNR metric is commonly used to evaluate image quality, but it has limitations as it
does not consider the visual characteristics of the human eye. For example, the human eye
is more sensitive to contrast differences at lower spatial frequencies and more sensitive
to luminance contrast differences than chromaticity. Additionally, the perception of an
image by the human eye is affected by its surrounding neighboring regions. Therefore, the
evaluation results are often inconsistent with subjective human perception. In addition to
evaluating the peak signal-to-noise ratio and image structural similarity, mutual informa-
tion was introduced as an evaluation index of the image in this experiment. According to
the work presented in the paper [48], the similarity metric responds poorly to two graphics
with high noise and two medical images with different modalities.

Fréchet Inception Distance (FID) [49] is another metric used to evaluate the perfor-
mance and image quality of our method. We calculate it with the official implementation of
it with torch [50]. FID evaluates the similarity between two datasets of images and has been
shown to be closely related to the human judgment of visual quality. It is commonly used to
assess the quality of the samples generated by the network. FID is calculated by calculating
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the Fleischer distance between the two Gauses that fit into the Inception network feature
representation.

3. Experiment and Result

In the section, we will focus on addressing three key research questions that were
essential to achieving the goal of semantically coloring medical images:

• How to prevent color bleeding in the colorization stage?
• How to enrich the semantic information of color images?
• How to overcome the difference in modality during color migration?

To address the challenges of color bleeding, this paper introduces an edge loss func-
tion that can effectively constrain color bleeding during the colorization process. To
enrich the semantic information in color images, we incorporate semantic information
into the segmentation network to provide additional context for the colorization process.
Additionally, to overcome the differences in image modality, a multimodal identifier is
used to effectively align the source and target domains. To evaluate the effectiveness
of our proposed method, we will compare it with other mainstream image coloriza-
tion methods on publicly available datasets in the brain. The code is available online
at: https://github.com/csbbbv/ColorMedGAN, accessed on 29 January 2023.

3.1. Ablations Analysis

This study performs ablation of the following components: edge Loss, semantic feature
fusion, and the multi-modal discriminator. We conduct ablation experiments on these three
modules, respectively, and compare the generated images with the evaluation indicators to
explore the effect of each module on the generated images.

3.1.1. Effectiveness of Edge Loss

We conducted comparison experiments on two datasets, Oasis1 and Kaggle brain MR
datasets [51]. The Kaggle image data has lower resolution and worse texture details, and
texture loss is more severe when colorization on such data, with color overbleeding or edge
loss. By introducing edge loss, it is possible to constrain the edge information globally in
the image generation process. The experimental results in Figure 6 show that the edge
loss is more prominent for poor-quality data sets. From the results of not adding edge loss
constraints in the second column of Figure 6, the generated image outline color bleeding
is severe, and the structural information of the image is seriously lost. After adding edge
loss constraints (the third column of Figure 6), a clear image can be generated, and the
color itself retains semantic information. Table 2 lists the relevant metrics. The image
quality generated after introducing edge loss is better in each metric. The image has better
similarity and better results at the level of abstract perception. On the one hand, it can
prevent the color overflow phenomenon; on the other hand, adding the edge loss can guide
the colorization network to pay more attention to the edge information in the global scope
and generate higher-quality texture details in the shading process.

Table 2. Comparison of the influence of edge loss in ColorMedGAN.

Model SSMI ↑ PSNR ↑ FID ↓
w/o edge loss 0.745 20.735 112.15

w edge loss 0.757 21.010 110.32
Bold fonts indicate better results.

https://github.com/csbbbv/ColorMedGAN
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(a) (b) (c)

Figure 6. Comparison of the results with and without edge loss. (a) origin; (b) w/o edge loss; (c) w
edge loss.

3.1.2. Performance of Semantic Module

We trained the semantic segmentation network of brain MR offline with a U-Net-
like network with the same structure as the generator. Based on the consideration of
semantic information and computational resources for different layers of features, we did
feature fusion on the second and penultimate layers of 128× 128 feature maps, firstly, to
let the generator learn both shallow and deep semantic information, and secondly, to save
computational effort and speed up the generation. We also focus on comparing the effect of
different fusion methods. We compare the effect of two fusion methods: directly contacting
the feature map and doing attention-guided fusion by multiplying the speech information
map with the colorization feature map. The experiments as shown in Figure 5 and Table 3
indicate that the attention-guided fusion method is superior. From the comparison of
Figure 5b,d, it can be seen that the color of the results in Figure 5d is more semantic, and
the color contrast between different tissues is more vivid, which is reflected in the fact that
the colors of the same tissue are closer and the colors of different tissues are distinguishable.
At the same time, Table 3 also shows that the quality of the generated images is improved
in each evaluation metric with the addition of the segmentation module.

Table 3. Comparison of the influence of segmentation module in ColorMedGAN.

Model SSMI ↑ PSNR ↑ FID ↓
w/o segmentation module 0.757 21.010 105.23
w segmentation module 0.857 29.698 84.81

Bold fonts indicate better results.

3.1.3. The Multi-Modal Discriminator

This section investigates the performance of a multimodal discriminator designed to
learn from cross-modal color space information. We discuss different fusion methods, and
experiments in Figure 7 and Table 4 show that the multi-modal discriminator training effect
is improved after introducing edge feature maps. In different fusion methods, the image
quality generated via concatenation is superior, as demonstrated by Table 4 where modal:2
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is better. We hypothesize that the edge feature map contains shallow semantic information,
and the weight-attachment fusion method may lose some of this information. In contrast,
the concatenation fusion method retains all the original and additional edge features in
the input, enabling the convolution network to learn better. As illustrated in the detail
figure of Figure 7, after introducing the multimodal discriminator, the small-scale details
are generated more accurately and the texture details are preserved more completely.

(a) (b) (c)

Figure 7. The results and details of comparison of the influence of multi-modal discriminator.
(a) Origin; (b) Without; (c) With.

Table 4. Comparison of different multi-modal modes in ColorMedGAN. Multi modal:1 denotes
element-wise addition after element-wise multiplication and Sigmoid activation function; Multi
modal:2 denotes concatenate directly; Multi modal:3 denotes element-wise multiplication and Sig-
moid activation function.

Model SSMI ↑ PSNR ↑ FID ↓
Multi modal:1 0.885 33.40 223.14
Multi modal:2 0.884 35.95 102.84
Multi modal:3 0.871 28.34 215.95

w/o multi modal 0.875 28.01 156.72
Bold fonts indicate better results.

3.2. Comparisons with State-of-the-Art Networks

Colorization of medical images presents unique challenges due to the lack of paired
black-and-white and color data, making it difficult to use supervised learning methods.
Furthermore, current methods tend to suffer from color bleeding in medical images with
texture details, as shown in Figures 8 and 9. In particular, Figure 8 displays the results of
Zhang’s method [11], which exhibits color bleeding and semantic discontinuity. Moreover,
Figure 9 further shows the results of more advanced methods, all of which are affected by
unnatural phenomena such as color bleeding, loss of structure and contour information,
and discontinuity of color semantics.

(a) (b) (c) (d)

Figure 8. This is the result of Zhang’s method being replicated in our dataset. (a–d) are the results
of different slices of a patient’s data, and it can be seen that the colors between the slices are not
continuous and the colors lose their semantics.

In addition, due to the lack of semantic information for guiding the color of MRI
tissues, the color information in the image cannot reflect the relationship between tissues,
thus leading to color inconsistency between different slices of the same organ. In Figure 8a–d,
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depict different slices of an organ, and as a result, the same tissue regions in these slices
will have different colors. However, different regions may also have the same color. When
comparing the four images horizontally, it can be observed that the colors of the tissues
in different slices lack consistency. Such colorization is meaningless and fails to reflect the
relationship between tissues.

Origin Image ColorMedGAN ColorCycleGAN CycleGAN Zhang’s chromeGan

Figure 9. Results of different models.

We compared several unsupervised coloring models, which were also trained using
the unpaired dataset constructed by OASIS1 [38] and HUMAN2 [39]. We selected 1000 oa-
sis MR grayscale images and 610 images from 800 frozen anatomical images composed
of HUMAN2 and Korean human datasets [40] for training. As shown in Figure 9, due to
the small dataset and lack of intensity constraints, the result of Baseline CycleGAN [17] is
far from expectation, the structure of generated images is easily migrated to the modality
of frozen anatomical images, edges and contours are completely distorted, textures are
almost lost, and the generated images are meaningless; the result of colorCycleGAN [37]
shows that the model can ensure the consistency of intensity values, the structure of images
can be retained, but due to the lack of global edge constraints, the generated images are
obviously stained with colors, and the generated colors are semantically meaningless;
Zhang’s method [11] generates images with no semantic colors and serious color bleeding,
which cannot learn the semantics of structures in medical images; the method of Chroma-
GAN [52], a generative network is used to infer the chromaticity of a given grayscale image
conditioned to semantic clues, is similar to Zhang’s, and sometimes the color generation
will fail, resulting in poor quality of generated images;From the results obtained by our
method, it can be seen that the generated image is more semantically continuous, the
texture details and contour edges are better maintained, the color contrast between the
tissues is more realistic in the sense. By comparing the SSMI, PSNR and FID indices of the
generated images, as shown in Table 5, it can be seen that our method generates medical
images of higher quality in a self-supervised manner, and the three metrics all indicate that
the quality of our generated images is better.
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Table 5. Coparison of different models.

Model SSMI ↑ PSNR ↑ FID ↓

colorCycleGAN 0.69 19.86 163.65
CycleGAN 0.28 11.01 266.58

Zhang’s 0.89 32.45 104.72
ChromaGAN 0.89 27.48 125.65

Ours 0.90 33.22 84.81
Bold fonts indicate better results.

4. Discuss and Challenges

Our method provides a valuable reference for medical image colorization. By incor-
porating an edge-aware loss, our model is able to capture delicate texture information
while avoiding common issues such as ghosting and color bleeding, all without requiring
paired data. Additionally, our approach ensures a high degree of semantic continuity in the
generated color images, which can be particularly useful for recognizing tissue information
in organs. Even when generating images from large volumes of data piecemeal, our model
retains its ability to maintain color consistency due to its retention of semantic information
during training. The resulting high-quality color images provide valuable references for 3D
visualization rendering, particularly for non-specialists. While extending color consistency
to the 3D level may present a challenge due to limitations in computing power resources
and input resolution, our model’s scalability to 3D via the CycleGAN framework offers
significant promise for future work in this field.

5. Conclusions

The task of colorizing medical images is challenging due to the limited availability of
paired data. In this paper, our main contribution is to propose a self-supervised framework
that aims to generate high-quality color images that are semantically informative and
preserve texture details. We demonstrate how to construct a dataset with a colorization
architecture, remove the image background to eliminate the effect of the background on
the generated color and add a modal transformation module to the segmentation branch
on the symmetric architecture of CycleGAN to enable the branch to function in a loop. The
CycleGAN model shows good convergence and generalization on MR images and can map
the color space of cryosection onto the data domain of cross-modal MR images. Our results
demonstrate that our method generates high-fidelity and high-quality color images, despite
not relying on paired data. This framework provides a promising approach for colorizing
medical images and can facilitate the interpretation of medical images by non-specialists.
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