Numerical Study on Cooling Performance Characteristics of 22 kW Traction Inverter Using MHD Pump-Based Cooling System
Abstract
:1. Introduction
2. Numerical Method
2.1. Traction Inverter Cooling System
2.2. Meshing for Computational Domain
2.3. Governing Equations
2.4. Boundary Conditions and Solution Procedure
2.5. Data Reduction
3. Results and Discussion
3.1. Validation
3.2. Effect of Inlet Velocity
3.3. Effect of Electromagnetic Parameters
3.4. Effect of Ferrofluid Volume Fraction
4. Conclusions
- (a)
- The outlet velocity increases with an increase in inlet velocity for both water and ferrofluid cooling, whereas with an increase in voltage, the outlet velocity of ferrofluid increases and water remains constant. The maximum outlet velocities of 4.03 mm/s and 7.02 mm/s are evaluated for water and ferrofluid cooling, respectively, at an inlet velocity of 10 mm/s and voltage of 0.5 V.
- (b)
- The inverter maximum temperature decreases with an increase in inlet velocity for both water and ferrofluid cooling. Further reduction in inverter maximum temperature is noticed in ferrofluid cooling with an increase in voltage. The inverter maximum temperature ranges from 169.84 °C to 49.65 °C in the case of water cooling and 100.3 °C to 40.96 °C in the case of ferrofluid cooling for a change in inlet velocity from 2 mm/s to 10 mm/s and in voltage from 0.1 V to 0.5 V.
- (c)
- The Nusselt number improves with inlet velocity for water cooling and that with both inlet velocity and voltage for ferrofluid cooling. The MHD pump-based cooling system shows the improved cooling performance of traction inverters for ferrofluid cooling compared to water cooling. The maximum Nusselt numbers of 15.35 and 18.49 are evaluated for water cooling and ferrofluid cooling, respectively, at 10 mm/s inlet velocity and 0.5 V.
- (d)
- The cooling performance of ferrofluid cooling further increases with an increase in magnetic field intensity. The maximum outlet velocity of 12.08 mm/s, lowest inverter maximum temperature of 32 °C, and highest Nusselt number of 21.43 are evaluated at the highest magnetic field intensity of 0.4 T.
- (e)
- The increase in the ferrofluid volume fraction reflects significant improvement in cooling performance of traction inverters. The Nusselt number varies from 2.76 to 9.92 with an increase in ferrofluid volume fraction from 2% to 10%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
heat transfer area | |
magnetic field | |
specific heat of coolant | |
specific heat of the base fluid | |
specific heat of nanoparticles | |
hydraulic diameter | |
electrical field | |
driving force | |
current density | |
thermal conductivity of coolant | |
thermal conductivity of the base fluid | |
thermal conductivity of nanoparticles | |
thermal conductivity of solid domains | |
mass flow rate of coolant | |
pressure | |
heat flux | |
electrical conductivity | |
ambient temperature | |
local bulk mean coolant temperature | |
coolant inlet temperature | |
local wall temperature | |
coolant velocity | |
average velocity of coolant | |
velocity vector | |
volume fraction of nanoparticles | |
kinematic viscosity | |
thermal diffusivity | |
dynamic viscosity of base fluid | |
density of the base fluid | |
density of nanoparticles |
References
- Garud, K.S.; Lee, M.Y. Grey relational based Taguchi analysis on heat transfer performances of direct oil spray cooling system for electric vehicle driving motor. Int. J. Heat Mass Transf. 2023, 201, 123596. [Google Scholar] [CrossRef]
- Garud, K.S.; Hwang, S.G.; Han, J.W.; Lee, M.Y. Performance characteristics of the direct spray oil cooling system for a driving motor of an electric vehicle. Int. J. Heat Mass Transf. 2022, 196, 123228. [Google Scholar] [CrossRef]
- Poorfakhraei, A.; Narimani, M.; Emadi, A. A review of multilevel inverter topologies in electric vehicles: Current status and future trends. IEEE Open J. Power Electron. 2021, 2, 155–170. [Google Scholar] [CrossRef]
- Khoshvaght-Aliabadi, M.; Nozan, F. Water cooled corrugated minichannel heat sink for electronic devices: Effect of corrugation shape. Int. Commun. Heat Mass Transf. 2016, 76, 188–196. [Google Scholar] [CrossRef]
- Van Erp, R.; Kampitsis, G.; Matioli, E. Efficient microchannel cooling of multiple power devices with compact flow distribution for high power-density converters. IEEE Trans. Power Electron. 2019, 35, 7235–7245. [Google Scholar] [CrossRef]
- Bilgin, B.; Magne, P.; Malysz, P.; Yang, Y.; Pantelic, V.; Preindl, M.; Korobkine, A.; Emadi, A. Making the case for electrified transportation. IEEE Trans. Transp. Electrif. 2015, 1, 4–17. [Google Scholar] [CrossRef]
- Wei, S.; Jun, L.; Wei, S.; Xuegeng, G. Heat dissipating structure design of an inverter with direct-cooling IGBT module for EV. In Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China, 31 August–3 September 2014; pp. 1–4. [Google Scholar]
- Sakanova, A.; Tong, C.F.; Nawawi, A.; Simanjorang, R.; Tseng, K.J.; Gupta, A.K. Investigation on weight consideration of liquid coolant system for power electronics converter in future aircraft. Appl. Therm. Eng. 2016, 104, 603–615. [Google Scholar] [CrossRef]
- Nawawi, A.; Tong, C.F.; Yin, S.; Sakanova, A.; Liu, Y.; Liu, Y.; Gupta, A.K. Design and demonstration of high power density inverter for aircraft applications. IEEE Trans. Ind. Appl. 2016, 53, 1168–1176. [Google Scholar] [CrossRef]
- Karimi, D.; Behi, H.; Jaguemont, J.; El Baghdadi, M.; Van Mierlo, J.; Hegazy, O. Thermal concept design of MOSFET power modules in inverter subsystems for electric vehicles. In Proceedings of the 2019 9th International Conference on Power and Energy Systems (ICPES), Perth, Australia, 10–12 December 2019; pp. 1–6. [Google Scholar]
- Tran, D.D.; Chakraborty, S.; Van Melckebeke, A.; Vu, N.T.; Lan, Y.; El Baghdadi, M.; Hegazy, O. Multi-fidelity electro-thermal optimization of multiport converter employing SiC MOSFET and indirect liquid cooling. In Proceedings of the 2019 Fourteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte-Carlo, Morocco, 8–10 May 2019; pp. 1–7. [Google Scholar]
- Boteler, L.; Urciuoli, D.; Ovrebo, G.; Ibitayo, D.; Green, R. Thermal performance of a dual 1.2 kV, 400 a silicon-carbide MOSFET power module. In Proceedings of the 2010 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), Santa Clara, CA, USA, 21–25 February 2010; pp. 170–175. [Google Scholar]
- Liang, J.; Xu, H.; Yuan, Z.; Zhou, P. High Efficiency Liquid Cooling System of Power Electronic Converter. In Proceedings of the 2020 5th Asia Conference on Power and Electrical Engineering (ACPEE), Chengdu, China, 4–7 June 2020; pp. 1270–1275. [Google Scholar]
- Gould, K.; Cai, S.Q.; Neft, C.; Bhunia, A. Thermal management of silicon carbide power module for military hybrid vehicles. In Proceedings of the 2014 Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), San Jose, CA, USA, 9–13 March 2014; pp. 105–108. [Google Scholar]
- Cova, P.; Delmonte, N.; Chiozzi, D.; Portesine, M.; Vaccaro, F.; Mantegazza, E. Water cold plates for high power converters: A software tool for easy optimized design. Microelectron. Reliab. 2018, 88, 801–805. [Google Scholar] [CrossRef]
- Previati, G.; Mastinu, G.; Gobbi, M. Thermal Management of Electrified Vehicles—A Review. Energies 2022, 15(4), 1326. [Google Scholar] [CrossRef]
- Li, B.; Kuo, H.; Wang, X.; Chen, Y.; Wang, Y.; Gerada, D.; Yan, Y. Thermal management of electrified propulsion system for low-carbon vehicles. Automot. Innov. 2020, 3, 299–316. [Google Scholar] [CrossRef]
- Al-Habahbeh, O.M.; Al-Saqqa, M.; Safi, M.; Khater, T.A. Review of magnetohydrodynamic pump applications. Alex. Eng. J. 2016, 55, 1347–1358. [Google Scholar] [CrossRef] [Green Version]
- Derakhshan, S.; Rezaee, M.; Sarrafha, H. A molecular dynamics study of description models for shear viscosity in nanochannels: Mixtures and effect of temperature. Nanoscale Microscale Thermophys. Eng. 2015, 19, 206–220. [Google Scholar] [CrossRef]
- Derakhshan, S.; Adibi, I.; Sarrafha, H. Numerical study of electroosmotic micropump using Lattice Boltzmann method. Comput. Fluids 2015, 114, 232–241. [Google Scholar] [CrossRef]
- Zhao, G.; Jian, Y.; Chang, L.; Buren, M. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field. J. Magn. Magn. Mater. 2015, 387, 111–117. [Google Scholar] [CrossRef]
- Kiyasatfar, M.; Pourmahmoud, N.; Golzan, M.; Mirzaee, I. Investigation of thermal behavior and fluid motion in DC magnetohydrodynamic pumps. Thermal. Sci. 2014, 18 (Suppl. S2), 551–562. [Google Scholar] [CrossRef]
- Seo, J.H.; Lee, M.Y. Illuminance and heat transfer characteristics of high power LED cooling system with heat sink filled with ferrofluid. Appl. Therm. Eng. 2018, 143, 438–449. [Google Scholar] [CrossRef]
- Scherer, C.; Figueiredo Neto, A.M. Ferrofluids: Properties and applications. Braz. J. Phys. 2005, 35, 718–727. [Google Scholar] [CrossRef]
- Hwang, S.G.; Garud, K.S.; Seo, J.H.; Lee, M.Y. Heat Flow Characteristics of Ferrofluid in Magnetic Field Patterns for Electric Vehicle Power Electronics Cooling. Symmetry 2022, 14, 1063. [Google Scholar] [CrossRef]
- Khan, N.S.; Usman, A.H.; Sohail, A.; Hussanan, A.; Shah, Q.; Ullah, N.; Humphries, U.W. A framework for the magnetic dipole effect on the thixotropic nanofluid flow past a continuous curved stretched surface. Crystals 2021, 11, 645. [Google Scholar] [CrossRef]
- Khan, N.S.; Humphries, U.W.; Kumam, W.; Kumam, P.; Muhammad, T. Bioconvection Casson nanoliquid film sprayed on a stretching cylinder in the portfolio of homogeneous-heterogeneous chemical reactions. ZAMM-J. Appl. Math. Mech. Z. Für Angew. Math. Und Mech. 2022, 102, e202000222. [Google Scholar] [CrossRef]
- Miroshnichenko, I.V.; Sheremet, M.A.; Oztop, H.F.; Al-Salem, K. MHD natural convection in a partially open trapezoidal cavity filled with a nanofluid. Int. J. Mech. Sci. 2016, 119, 294–302. [Google Scholar] [CrossRef]
- Milani Shirvan, K.; Öztop, H.F.; Al-Salem, K. Mixed magnetohydrodynamic convection in a Cu-water-nanofluid-filled ventilated square cavity using the Taguchi method: A numerical investigation and optimization. Eur. Phys. J. Plus 2017, 132, 1–11. [Google Scholar] [CrossRef]
- Larimi, M.M.; Ghanaat, A.; Ramiar, A.; Ranjbar, A.A. Forced convection heat transfer in a channel under the influence of various non-uniform transverse magnetic field arrangements. Int. J. Mech. Sci. 2016, 118, 101–112. [Google Scholar] [CrossRef]
- Kolsi, L.; Alrashed, A.A.; Al-Salem, K.; Oztop, H.F.; Borjini, M.N. Control of natural convection via inclined plate of CNT-water nanofluid in an open sided cubical enclosure under magnetic field. Int. J. Heat Mass Transf. 2017, 111, 1007–1018. [Google Scholar] [CrossRef]
- Available online: http://www.mitsubishichips.com (accessed on 28 October 2022).
- Varma, K.K.; Kishore, P.S.; Prasad, P.D. Enhancement of heat transfer using Fe3O4/water nanofluid with varying cut-radius twisted tape inserts. Int. J. Appl. Eng. Res. 2017, 12, 7088–7095. [Google Scholar] [CrossRef]
- Banerjee, B. An evaluation of plastic flow stress models for the simulation of high-temperature and high-strain-rate deformation of metals. arXiv 2005, preprint. arXiv:cond-mat/0512466. [Google Scholar]
- Eisenberg, D.; Kauzmann, W. The Structure and Properties of Water; OUP Oxford: Oxford, UK, 2005. [Google Scholar]
- Khan, A.A.; Kim, K.Y. Evaluation of Various Channel Shapes of a Microchannel Heat Sink. Int. J. Air-Cond. Refrig. 2016, 24, 1650018. [Google Scholar] [CrossRef]
- Garud, K.S.; Lee, M.Y. Thermodynamic, environmental and economic analyses of photovoltaic/thermal-thermoelectric generator system using single and hybrid particle nanofluids. Energy 2022, 255, 124515. [Google Scholar] [CrossRef]
- Vajravelu, K.; Prasad, K.V.; Lee, J.; Lee, C.; Pop, I.; Van Gorder, R.A. Convective heat transfer in the flow of viscous Ag–water and Cu–water nanofluids over a stretching surface. Int. J. Therm. Sci. 2011, 50, 843–851. [Google Scholar] [CrossRef]
- Garud, K.S.; Lee, M.Y. Numerical Investigations on Heat Transfer Characteristics of Single Particle and Hybrid Nanofluids in Uniformly Heated Tube. Symmetry 2021, 13, 876. [Google Scholar] [CrossRef]
- Garud, K.S.; Kudriavskyi, Y.; Lee, M.S.; Kang, E.H.; Lee, M.Y. Numerical Study on Thermal and Flow Characteristics of Divergent Duct with Different Rib Shapes for Electric-Vehicle Cooling System. Symmetry 2022, 14, 1696. [Google Scholar] [CrossRef]
- Garud, K.S.; Seo, J.H.; Bang, Y.M.; Pyo, Y.D.; Cho, C.P.; Lee, M.Y.; Lee, D.Y. Energy, exergy, environmental sustainability and economic analyses for automotive thermoelectric generator system with various configurations. Energy 2022, 244, 122587. [Google Scholar] [CrossRef]
- Garud, K.S.; Seo, J.H.; Patil, M.S.; Bang, Y.M.; Pyo, Y.D.; Cho, C.P.; Lee, M.Y. Thermal–electrical–structural performances of hot heat exchanger with different internal fins of thermoelectric generator for low power generation application. J. Therm. Anal. Calorim. 2021, 143, 387–419. [Google Scholar] [CrossRef]
- Lemoff, A.V.; Lee, A.P. An AC magnetohydrodynamic micropump. Sens. Actuators B Chem. 2000, 63, 178–185. [Google Scholar] [CrossRef]
- Seo, J.H.; Patil, M.S.; Panchal, S.; Lee, M.Y. Numerical investigations on magnetohydrodynamic pump based microchannel cooling system for heat dissipating element. Symmetry 2020, 12, 1713. [Google Scholar] [CrossRef]
- Yousofvand, R.; Derakhshan, S.; Ghasemi, K.; Siavashi, M. MHD transverse mixed convection and entropy generation study of electromagnetic pump including a nanofluid using 3D LBM simulation. Int. J. Mech. Sci. 2017, 133, 73–90. [Google Scholar] [CrossRef]
Property | Fe3O4 | Water | Copper | Aluminum |
---|---|---|---|---|
Density, kg/m3 | 5180 | 998.2 | 8933 | 2700 |
Specific heat, J/kg∙°C | 670 | 4182 | 385 | 900 |
Thermal conductivity, W/m∙s | 80 | 0.6 | 400 | 238 |
Dynamic viscosity, Pa∙s | - | 0.001 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.-G.; Kudriavskyi, Y.; Garud, K.S.; Lee, M.-Y. Numerical Study on Cooling Performance Characteristics of 22 kW Traction Inverter Using MHD Pump-Based Cooling System. Appl. Sci. 2023, 13, 3189. https://doi.org/10.3390/app13053189
Hwang S-G, Kudriavskyi Y, Garud KS, Lee M-Y. Numerical Study on Cooling Performance Characteristics of 22 kW Traction Inverter Using MHD Pump-Based Cooling System. Applied Sciences. 2023; 13(5):3189. https://doi.org/10.3390/app13053189
Chicago/Turabian StyleHwang, Seong-Guk, Yurii Kudriavskyi, Kunal Sandip Garud, and Moo-Yeon Lee. 2023. "Numerical Study on Cooling Performance Characteristics of 22 kW Traction Inverter Using MHD Pump-Based Cooling System" Applied Sciences 13, no. 5: 3189. https://doi.org/10.3390/app13053189
APA StyleHwang, S. -G., Kudriavskyi, Y., Garud, K. S., & Lee, M. -Y. (2023). Numerical Study on Cooling Performance Characteristics of 22 kW Traction Inverter Using MHD Pump-Based Cooling System. Applied Sciences, 13(5), 3189. https://doi.org/10.3390/app13053189