Could Mini-Trampoline Training Be Considered as a New Strategy to Reduce Asymmetries?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants and Procedures
2.3. SuperJump® Training
2.4. Wobble Board Balance Test
2.5. Bilateral Asymmetry Index and Unilateral Asymmetry Index
2.6. Statistical Analysis
3. Results
4. Discussion
5. Practical Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bishop, C.; Read, P.; Lake, J.; Chavda, S.; Turner, A. Interlimb Asymmetries: Understanding How to Calculate Differences From Bilateral and Unilateral Tests. Strength Cond. J. 2018, 40, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Fort-Vanmeerhaeghe, A.; Bishop, C.; Buscà, B.; Aguilera-Castells, J.; Vicens-Bordas, J.; Gonzalo-Skok, O. Inter-Limb Asymmetries Are Associated with Decrements in Physical Performance in Youth Elite Team Sports Athletes. PLoS ONE 2020, 15, e0229440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, C.; Turner, A.; Read, P. Effects of Inter-Limb Asymmetries on Physical and Sports Performance: A Systematic Review. J. Sports Sci. 2018, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noé, F.; Baige, K.; Paillard, T. Can Compression Garments Reduce Inter-Limb Balance Asymmetries? Front. Hum. Neurosci. 2022, 16, 835784. [Google Scholar] [CrossRef] [PubMed]
- Promsri, A.; Haid, T.; Federolf, P. How Does Lower Limb Dominance Influence Postural Control Movements during Single Leg Stance? Hum. Mov. Sci. 2018, 58, 165–174. [Google Scholar] [CrossRef]
- Morishige, Y.; Harato, K.; Kobayashi, S.; Niki, Y.; Matsumoto, M.; Nakamura, M.; Nagura, T. Difference in Leg Asymmetry between Female Collegiate Athletes and Recreational Athletes during Drop Vertical Jump. J. Orthop. Surg. Res. 2019, 14, 424. [Google Scholar] [CrossRef]
- Maloney, S.J. The Relationship Between Asymmetry and Athletic Performance: A Critical Review. J. Strength Cond. Res. 2019, 33, 2579–2593. [Google Scholar] [CrossRef]
- Bishop, C.; Turner, A.; Read, P. Training Methods and Considerations for Practitioners to Reduce Interlimb Asymmetries. Strength Cond. J. 2018, 40, 40–46. [Google Scholar] [CrossRef]
- Fuchs, P.X.; Fusco, A.; Cortis, C.; Wagner, H. Effects of Differential Jump Training on Balance Performance in Female Volleyball Players. Appl. Sci. 2020, 10, 5921. [Google Scholar] [CrossRef]
- Hammami, R.; Duncan, M.J.; Nebigh, A.; Werfelli, H.; Rebai, H. The Effects of 6 Weeks Eccentric Training on Speed, Dynamic Balance, Muscle Strength, Power, and Lower Limb Asymmetry in Prepubescent Weightlifters. J. Strength Cond. Res. 2022, 36, 955–962. [Google Scholar] [CrossRef]
- Fuchs, P.X.; Fusco, A.; Bell, J.W.; von Duvillard, S.P.; Cortis, C.; Wagner, H. Effect of Differential Training on Female Volleyball Spike-Jump Technique and Performance. Int. J. Sports Physiol. Perform. 2020, 15, 1019–1025. [Google Scholar] [CrossRef]
- Atilgan, O.E. Effects of Trampoline Training on Jump, Leg Strength, Static and Dynamic Balance of Boys. Sci. Gymnast. J. 2013, 5, 15–25. [Google Scholar]
- Villalba, M.M.; Eltz, G.D.; Panhan, A.C.; Pacheco, M.M.; Fujita, R.A.; dos Santos Silva, N.R.; Cardozo, A.C.; Gonçalves, M. Effect of a Plyometric Training Session on the Ground vs on Mini-Trampoline on Balance and Jump Performance in Basketball Player. Sport Sci. Health 2022, 18, 97–105. [Google Scholar] [CrossRef]
- Heitkamp, H.-C.; Horstmann, T.; Mayer, F.; Weller, J.; Dickhuth, H.-H. Gain in Strength and Muscular Balance After Balance Training. Int. J. Sports Med. 2001, 22, 285–290. [Google Scholar] [CrossRef]
- Vasto, S.; Amato, A.; Proia, P.; Caldarella, R.; Cortis, C.; Baldassano, S. Dare to Jump: The Effect of the New High Impact Activity SuperJump on Bone Remodeling. A New Tool to Maintain Fitness during COVID-19 Home Confinement. Biol. Sport 2022, 39, 1011–1019. [Google Scholar] [CrossRef]
- Contrò, V.; Bianco, A.; Cooper, J.; Sacco, A.; Macchiarella, A.; Traina, M.; Proia, P. Effects of Different Circuit Training Protocols on Body Mass, Fat Mass and Blood Parameters in Overweight Adults. J. Biol. Res. Boll. Della Soc. Ital. Di Biol. Sper. 2017, 90, 6279. [Google Scholar] [CrossRef] [Green Version]
- Steidl-Müller, L.; Hildebrandt, C.; Müller, E.; Fink, C.; Raschner, C. Limb Symmetry Index in Competitive Alpine Ski Racers: Reference Values and Injury Risk Identification According to Age-Related Performance Levels. J. Sport Health Sci. 2018, 7, 405–415. [Google Scholar] [CrossRef]
- Mannocci, A.; Di Thiene, D.; Del Cimmuto, A.; Masala, D.; Boccia, A.; De Vito, E.; La Torre, G. International Physical Activity Questionnaire: Validation and Assessment in an Italian Sample. Ital. J. Public Health 2010, 7, 369–376. [Google Scholar]
- Iannaccone, A.; Fusco, A.; Jaime, S.J.; Baldassano, S.; Cooper, J.; Proia, P.; Cortis, C. Stay Home, Stay Active with SuperJump®: A Home-Based Activity to Prevent Sedentary Lifestyle during COVID-19 Outbreak. Sustainability 2020, 12, 10135. [Google Scholar] [CrossRef]
- Cortis, C.; Giancotti, G.; Rodio, A.; Bianco, A.; Fusco, A. Home Is the New Gym: Exergame as a Potential Tool to Maintain Adequate Fitness Levels Also during Quarantine. Hum. Mov. 2020, 21, 79–87. [Google Scholar] [CrossRef]
- Fusco, A.; Giancotti, G.F.; Fuchs, P.X.; Wagner, H.; Varalda, C.; Capranica, L.; Cortis, C. Dynamic Balance Evaluation: Reliability and Validity of a Computerized Wobble Board. J. Strength Cond. Res. 2020, 34, 1709–1715. [Google Scholar] [CrossRef] [PubMed]
- Fusco, A.; Giancotti, G.F.; Fuchs, P.X.; Wagner, H.; Varalda, C.; Cortis, C. Wobble Board Balance Assessment in Subjects with Chronic Ankle Instability. Gait Posture 2019, 68, 352–356. [Google Scholar] [CrossRef]
- Fusco, A.; Fuchs, P.X.; De Maio, M.; Wagner, H.; Cortis, C. A Novel Approach to Measuring Wobble Board Performance in Individuals with Chronic Ankle Instability. Heliyon 2020, 6, e04937. [Google Scholar] [CrossRef] [PubMed]
- De Maio, M.; Cortis, C.; Iannaccone, A.; da Silva, R.A.; Fusco, A. Association between Anthropometric Variables, Sex, and Visual Biofeedback in Dynamic Postural Control Assessed on a Computerized Wobble Board. Appl. Sci. 2021, 11, 8370. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sport. Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Arney, B.E.; Glover, R.; Fusco, A.; Cortis, C.; de Koning, J.J.; van Erp, T.; Jaime, S.; Mikat, R.P.; Porcari, J.P.; Foster, C. Comparison of Rating of Perceived Exertion Scales during Incremental and Interval Exercise. Kinesiology 2019, 51, 150–157. [Google Scholar] [CrossRef] [Green Version]
- Riebe, D.; Ehrman, J.; Liguori, G. ACSM’s Guidelines for Exercise Testing and Prescription; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2021. [Google Scholar]
- Komi, P.V.; Bosco, C. Utilization of Stored Elastic Energy in Leg Extensor Muscles by Men and Women. Med. Sci. Sports 1978, 10, 261–265. [Google Scholar]
- Gantchev, G.N.; Dimitrova, D.M. Anticipatory Postural Adjustments Associated with Arm Movements during Balancing on Unstable Support Surface. Int. J. Psychophysiol. 1996, 22, 117–122. [Google Scholar] [CrossRef]
- Asadi, A.; Saez de Villarreal, E.; Arazi, H. The Effects of Plyometric Type Neuromuscular Training on Postural Control Performance of Male Team Basketball Players. J. Strength Cond. Res. 2015, 29, 1870–1875. [Google Scholar] [CrossRef]
- Cherni, Y.; Jlid, M.C.; Mehrez, H.; Shephard, R.J.; Paillard, T.; Chelly, M.S.; Hermassi, S. Eight Weeks of Plyometric Training Improves Ability to Change Direction and Dynamic Postural Control in Female Basketball Players. Front. Physiol. 2019, 10, 726. [Google Scholar] [CrossRef] [Green Version]
- Jlid, M.C.; Racil, G.; Coquart, J.; Paillard, T.; Bisciotti, G.N.; Chamari, K. Multidirectional Plyometric Training: Very Efficient Way to Improve Vertical Jump Performance, Change of Direction Performance and Dynamic Postural Control in Young Soccer Players. Front. Physiol. 2019, 10, 1462. [Google Scholar] [CrossRef] [Green Version]
- Cabrejas, C.; Morales, J.; Solana-Tramunt, M.; Nieto-Guisado, A.; Badiola-Zabala, A.; Campos-Rius, J. Does 8 Weeks of Integrated Functional Core and Plyometric Training Improve Postural Control Performance in Young Rhythmic Gymnasts? Motor Control 2022, 26, 568–590. [Google Scholar] [CrossRef]
- Werfelli, H.; Hammami, R.; Selmi, M.A.; Selmi, W.; Gabrilo, G.; Clark, C.C.T.; Duncan, M.; Sekulic, D.; Granacher, U.; Rebai, H. Acute Effects of Different Plyometric and Strength Exercises on Balance Performance in Youth Weightlifters. Front. Physiol. 2021, 12, 716981. [Google Scholar] [CrossRef]
- Hammami, R.; Ben Ayed, K.; Abidi, M.; Werfelli, H.; Ajailia, A.; Selmi, W.; Negra, Y.; Duncan, M.; Rebai, H.; Granacher, U. Acute Effects of Maximal versus Submaximal Hurdle Jump Exercises on Measures of Balance, Reactive Strength, Vertical Jump Performance and Leg Stiffness in Youth Volleyball Players. Front. Physiol. 2022, 13, 2633. [Google Scholar] [CrossRef]
- Topcu, H.; Arabaci, R. Acute Effect of Different Warm Up Protocols on Athlete’S Performance. Eur. J. Phys. Educ. Sport Sci. 2017, 8, 35–50. [Google Scholar] [CrossRef]
- Rhouni, N.; Dabbs, N.C.; Gillum, T.; Coburn, J.W. Acute Effect of Mini-Trampoline Jumping on Vertical Jump and Balance Performance. Int. J. Kinesiol. Sport. Sci. 2019, 7, 1. [Google Scholar] [CrossRef]
- Hopper, D.M.; Grisbrook, T.L.; Newnham, P.J.; Edwards, D.J. The Effects of Vestibular Stimulation and Fatigue on Postural Control in Classical Ballet Dancers. J. Danc. Med. Sci. 2014, 18, 67–73. [Google Scholar] [CrossRef]
- Wang, I.-L.; Li, Y.-G.; Su, Y.; Yao, S.; Zhang, K.-K.; Chen, C.-H.; Wang, S.-Y. The Effect of Repetitive Drop Jumps among Different Heights on Bilateral Asymmetry of Countermovement Jumps. Symmetry 2022, 14, 190. [Google Scholar] [CrossRef]
- Bishop, C. Interlimb Asymmetries: Are Thresholds a Usable Concept? Strength Cond. J. 2021, 43, 32–36. [Google Scholar] [CrossRef]
- Bishop, C.; Lake, J.; Loturco, I.; Papadopoulos, K.; Turner, A.; Read, P. Interlimb Asymmetries: The Need for an Individual Approach to Data Analysis. J. Strength Cond. Res. 2021, 35, 695–701. [Google Scholar] [CrossRef]
- Šarabon, N.; Smajla, D.; Maffiuletti, N.A.; Bishop, C. Strength, Jumping and Change of Direction Speed Asymmetries in Soccer, Basketball and Tennis Players. Symmetry 2020, 12, 1664. [Google Scholar] [CrossRef]
- Wang, G.; Mikami, E.; Chiu, L.-L.; De Perini, A.; Deason, M.; Fuku, N.; Miyachi, M.; Kaneoka, K.; Murakami, H.; Tanaka, M.; et al. Association Analysis of ACE and ACTN3 in Elite Caucasian and East Asian Swimmers. Med. Sci. Sport. Exerc. 2013, 45, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Pereira, L.A.; Reis, V.P.; Read, P.; Turner, A.N.; Loturco, I. Comparing the Magnitude and Direction of Asymmetry during the Squat, Countermovement and Drop Jump Tests in Elite Youth Female Soccer Players. J. Sports Sci. 2020, 38, 1296–1303. [Google Scholar] [CrossRef] [PubMed]
SJG | CON | |||||
---|---|---|---|---|---|---|
Female | Male | Total | Female | Male | Total | |
N | 10 | 10 | 20 | 6 | 11 | 17 |
Age (years) | 24.1 ± 0.9 | 27.1 ± 2.8 | 25.6 ± 2.6 | 23.2 ± 1.6 | 23.5 ± 1.8 | 23.4 ± 1.7 |
Body height (m) | 1.6 ± 0.1 | 1.7 ± 0.1 | 1.7 ± 0.1 | 1.6 ± 0.1 | 1.8 ± 0.1 | 1.7 ± 0.1 |
Body weight (kg) | 57.2 ± 6.9 | 72.4 ± 11.4 | 64.8 ± 12.0 | 53.5 ± 7.8 | 72.7 ± 8.3 | 65.9 ± 12.3 |
BMI (kg·m−2) | 22.5 ± 2.3 | 24.3 ± 2.7 | 23.5 ± 2.6 | 20.9 ± 2.8 | 23.6 ± 2.7 | 22.6 ± 2.9 |
SJG (N = 20) | CON (N = 17) | |||
---|---|---|---|---|
PRE | POST | PRE | POST | |
Dominant leg (s) | 18.5 ± 6.4 | 22.2 ± 6.8 * | 15.5 ± 7.1 | 16.3 ± 6.8 |
Non-Dominant leg (s) | 18.0 ± 8.3 | 20.5 ± 5.9 | 15.5 ± 5.3 | 18.7 ± 6.1 |
BA Index (%) | 6.11 ± 36.43 | 3.39 ± 13.57 | −2.50 ± 26.47 | −7.93 ± 21.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Maio, M.; Di Rocco, F.; Papale, O.; Festino, E.; Fusco, A.; Cortis, C. Could Mini-Trampoline Training Be Considered as a New Strategy to Reduce Asymmetries? Appl. Sci. 2023, 13, 3193. https://doi.org/10.3390/app13053193
De Maio M, Di Rocco F, Papale O, Festino E, Fusco A, Cortis C. Could Mini-Trampoline Training Be Considered as a New Strategy to Reduce Asymmetries? Applied Sciences. 2023; 13(5):3193. https://doi.org/10.3390/app13053193
Chicago/Turabian StyleDe Maio, Marianna, Francesca Di Rocco, Olga Papale, Emanuel Festino, Andrea Fusco, and Cristina Cortis. 2023. "Could Mini-Trampoline Training Be Considered as a New Strategy to Reduce Asymmetries?" Applied Sciences 13, no. 5: 3193. https://doi.org/10.3390/app13053193
APA StyleDe Maio, M., Di Rocco, F., Papale, O., Festino, E., Fusco, A., & Cortis, C. (2023). Could Mini-Trampoline Training Be Considered as a New Strategy to Reduce Asymmetries? Applied Sciences, 13(5), 3193. https://doi.org/10.3390/app13053193