The Possibility of Using Waste Biomass from Selected Plants Cultivated for Industrial Purposes to Produce a Renewable and Sustainable Source of Energy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Object
2.2. Static Tests of Pellets
2.3. Physicochemical Analyses
2.4. Statistical Analysis
3. Results and Discussion
3.1. Measurement of Mechanical Properties
3.2. Measurement of Mechanical Properties during Storage
3.3. Results of Calorimetric and Thermogravimetric Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saleem, M. Possibility of utilizing agriculture biomass as a renewable and sustainable future energy source. Heliyon 2022, 8, e08905. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, N.; Hills, C.D.; Singh, R.S.; Atkinson, C.J. Biomass waste utilisation in low-carbon products: Harnessing a major potential resource. NPJ Clim. Atmos. Sci. 2019, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, N.; Ghosh, S.K.; Bannerjee, S.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew. Energy 2012, 37, 19–27. [Google Scholar] [CrossRef]
- Kumar, M.; Sundaram, S.; Gnansounou, E.; Larroche, C.; Thakur, I.S. Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review. Bioresour. Technol. 2018, 247, 1059–1068. [Google Scholar] [CrossRef] [PubMed]
- Baum, R.; Wajszczuk, K.; Pepliński, B.; Wawrzynowicz, J. Potential for agricultural biomass production for Energy purposes in Poland: A review. Contemp. Econ. 2013, 7, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Bogner, J.; Abdelrafie Ahmed, M.; Diaz, C.; Faaij, A.; Gao, Q.; Hashimoto, S.; Mareckova, K.; Pipatti, R.; Zhang, T. Waste Management, in Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; Available online: https://archive.ipcc.ch/publications_and_data/ar4/wg3/en/ch10.html (accessed on 3 January 2023).
- Bharthari, P.; Shrivastava, P.; Singh, P.; Ttiwari, A. Peanut shell as renewable energy source and their utility in production of ethanol. Int. J. Adv. Res. 2014, 2, 1–12. [Google Scholar]
- Bechis, S. Possible Impact of Pelletised Crop Residues Use as a Fuel for Cooking in Niger. Renewing Local Planning to Face Climate Change in the Tropics; Springer: Cham, Switzerland, 2017; pp. 311–322. [Google Scholar]
- Reddy, B.V.; Ramesh, S.; Kumar, A.A.; Wani, S.P.; Ortiz, R.; Ceballos, H.; Sreedevi, T.K. Bio-fuel crops research for energy security and rural development in developing countries. Bioen. Res. 2008, 1, 248–258. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.; Ahmad, B. Burning of crop residue and its potential for electricity generation. Pakistan Dev. Rev. 2014, 53, 275–293. Available online: https://www.jstor.org/stable/24398410 (accessed on 3 January 2023). [CrossRef] [Green Version]
- Acharya, N.; Nanda, P.; Panda, S.; Acharya, S. A comparative study of stability characteristics of mahua and jatropha biodiesel and their blends. J. King Saud Univ. Eng. Sci. 2019, 31, 184–190. [Google Scholar] [CrossRef]
- Pradhan, P.; Arora, A.; Mahajani, S.M. Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy Sustain. Develop. 2018, 43, 1–14. [Google Scholar] [CrossRef]
- Effendi, R.; Bangsawan, I.; Maryani, R.; Justianto, A. Development of wood pellets processing industry for renewable energy. IOP Conf. Ser. Earth Environ. Sci. 2020, 487, 012014. [Google Scholar] [CrossRef]
- Lanzerstorfer, C. Combustion of Miscanthus: Composition of the Ash by Particle Size. Energies 2019, 12, 178. [Google Scholar] [CrossRef] [Green Version]
- Pesonen, J.; Kuokkanen, T.; Rautio, P.; Lassi, U. Bioavailability of nutrients and harmful elements in ash fertilizers: Effect of granulation. Biomass Bioenergy 2017, 100, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Rathore, D.; Nizami, A.S.; Singh, A.; Pant, D. Key issues in estimating energy and greenhouse gas savings of biofuels: Challenges and perspectives. Biofu. Res. J. 2016, 3, 380–393. [Google Scholar] [CrossRef] [Green Version]
- Gorzelany, J.; Zardzewiały, M.; Murawski, P.; Matłok, N. Analysis of selected quality features of wood pellets. Agric. Eng. 2020, 24, 25–34. [Google Scholar] [CrossRef]
- Jezerska, L.; Zajonc, O.; Vyletelek, J.; Zegzulka, J. Mechanical material properties effect on Pelletization. Wood Res. 2016, 61, 307–320. Available online: http://www.woodresearch.sk/wr/201602/14.pdf (accessed on 3 January 2023).
- Grycova, B.; Klemencova, K.; Jezerska, L.; Zidek, M.; Lestinsky, P. Effect of torrefaction on pellet quality parameters. Biomass Convers. Biorefinery 2022, 1–9. [Google Scholar] [CrossRef]
- Serrano, C.; Monedero, E.; Lapuerta, M.; Portero, H. Effect of moisture content, particle size and pine additionon quality parameters of barley straw pellets. Fuel Process. Technol. 2011, 92, 699–706. [Google Scholar] [CrossRef]
- Harun, N.Y.; Afzal, M.T. Effect of Particle Size on Mechanical Properties of Pellets Made from Biomass Blends. Procedia Eng. 2016, 148, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Graham, S.; Eastwick, C.; Snape, C.; Quick, W. Mechanical degradation of biomass wood pellets during long term stockpile storage. Fuel Proc. Technol. 2017, 160, 143–151. [Google Scholar] [CrossRef]
- Deng, T.; Alzahrani, A.; Bradley, M. Influences of environmental humidity on physical properties and attrition of wood pellets. Fuel Process. Technol. 2019, 185, 126–138. [Google Scholar] [CrossRef]
- Chico-Santamarta, L.; Chaney, K.; Godwin, R.J.; White, D.R.; Humphries, A.C. Physical quality changes during the storage of canola (Brassica napus L.) straw pellets. Appl. Energy 2012, 95, 220–226. [Google Scholar] [CrossRef]
- Kymalainen, M.; Makela, M.R.; Hilden, K.; Kukkonen, J. Fungal colonisation and moisture uptake of torrefied wood, charcoal and thermally treated pellets during storage. Eur. J. Wood Wood Prod. 2015, 73, 709–717. [Google Scholar] [CrossRef]
- Maj, G.; Krzaczek, P.; Kuranc, A.; Piekarski, W. Energy properties of sunflower seed husk as industrial extrusion residue. Agric. Eng. 2017, 21, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Mirowski, T.; Mokrzycki, E.; Uliasz-Bocheńczyk, A. Energetyczne Wykorzystanie Biomasy; Wydawnictwo IGSMiE PAN: Kraków, Poland, 2018; p. 61. ISBN 978-83-62922-94-9. [Google Scholar]
- Indahsari, O.P.; Negoro, A.H. Contribution of Tobacco Waste for Agriculture. E3S Web Conf. 2020, 142, 04006. [Google Scholar] [CrossRef]
- Obidziński, S.; Puchlik, M.; Dołzyńska, M. Pelletization of Post-Harvest Tobacco Waste and Investigation of Flue Gas Emissions from Pellet Combustion. Energies 2020, 13, 6002. [Google Scholar] [CrossRef]
- Moreira, B.R.A.; Cruz, V.H.; Barbosa Júnior, M.R.; Meneses, M.D.; Lopes, P.R.M.; da Silva, R.P. Agro-residual biomass and disposable protective face mask: A merger for converting waste to plastic-fiber fuel via an integrative carbonization-pelletization framework. Biomass Convers. Biorefinery 2022, 15, 1–22. [Google Scholar] [CrossRef]
- Perea-Moreno, M.-A.; Manzano-Agugliaro, F.; Perea-Moreno, A.-J. Sustainable Energy Based on Sunflower Seed Husk Boiler for Residential Buildings. Sustainability 2018, 10, 3407. [Google Scholar] [CrossRef] [Green Version]
- Fusco, L.D.; Boucquey, A.; Blondeau, J.; Jeanmart, H.; Contino, F. Fouling propensity of high-phosphorus solid fuels: Predictive criteria and ash deposits characterisation of sunflower hulls with P/Ca-additives in a drop tube furnace. Fuel 2016, 170, 16–26. [Google Scholar] [CrossRef]
- Dhanavath, K.N.; Shah, K.; Bhargava, S.K.; Bankupalli, S.; Parthasarathy, R. Oxygen–steam gasification of karanja press seed cake: Fixed bed experiments, ASPEN Plus process model development and benchmarking with saw dust, rice husk and sunflower husk. J. Environ. Chem. Eng. 2018, 6, 3061–3069. [Google Scholar] [CrossRef]
- Acampora, A.; Civitarese, V.; Sperandio, G.; Rezaei, N. Qualitative Characterization of the Pellet Obtained from Hazelnut and Olive Tree Pruning. Energies 2021, 14, 4083. [Google Scholar] [CrossRef]
- Nussbaumer, T. Combustion and Co-combustion of Biomass: Fundamentals, Technologies, and Primary Measures for Emission Reduction. Energy Fuels 2003, 17, 1510–1521. [Google Scholar] [CrossRef]
- Kažimírová, V.; Opáth, R. Biomass combustion emissions. Res. Agric. Eng. 2016, 62, S61–S65. [Google Scholar] [CrossRef] [Green Version]
- Zając, G.; Szyszlak-Bargłowicz, J.; Słowik, T. Comparison and Assessment of Emission Factors for Toxic Exhaust Components During Combustion of Biomass Fuels. Rocz. Ochr. Sr. 2019, 21, 378–394. [Google Scholar]
- Ciupek, B.; Gołoś, K. Concentration of Nitrogen Oxides When Burning Wood Pellets of Various Origins. J. Ecol. Eng. 2020, 21, 229–233. [Google Scholar] [CrossRef]
- Ozgen, S.; Cernuschi, S.; Caserini, S. An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renew. Sustain. Energy Rev. 2021, 135, 110–113. [Google Scholar] [CrossRef]
- Juszczak, M. Concentration of carbon monoxide and nitrogen oxides from a 25 kW boiler supplied periodically. Chem. Process Eng. 2014, 35, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Kjällstrand, J.; Olsson, M. Chimney emissions from small-scale burning of pellets and fuelwood-examples referring to different combustion appliances. Biomass Bioenergy 2004, 27, 557–561. [Google Scholar] [CrossRef] [Green Version]
- Olsson, M.; Kjällstrand, J. Low emission from wood burning in an ecolabelled residential boiler. Atm. Env. 2006, 40, 1148–1158. [Google Scholar] [CrossRef] [Green Version]
- García, R.; Pizarro, C.; Lavín, A.G.; Bueno, J.L. Spanish biofuels heating value estimation. Part II: Proximate analysis data. Fuel 2014, 117, 1139–1147. [Google Scholar] [CrossRef]
- Krzyzaniak, M.; Stolarski, M.J.; Szczukowski, S.; Tworkowski, J. Thermophysical and chemical properties of biomass obtained from willow coppice cultivated in one- and three-year rotation cycles. J. Elem. 2014, 1, 161–175. [Google Scholar] [CrossRef]
- Liu, H.; Chaney, J.; Li, J.; Sun, C. Control of NOx emissions of a domestic/small-scale biomass pellet boiler by air staging. Fuel 2013, 103, 792–798. [Google Scholar] [CrossRef]
- Eskilsson, D.; Rönnbäck, M.; Samuelsson, J.; Tullin, C. Optimisation of efficiency and emissions in pellet burners. Biomass Bioenergy 2004, 27, 541–546. [Google Scholar] [CrossRef]
The Type of Pellets | Fmax [N] | W to Fmax (mJ) | Relative Deformation Ԑ |
---|---|---|---|
P1 | 601.53 a ± 258.85 | 147.13 a ± 65.65 | 0.18 a ± 0.08 |
P2 | 633.17 a ± 106.08 | 214.67 b ± 73.95 | 0.19 a ± 0.06 |
P3 | 784.45 a ± 161.15 | 317.49 a ± 80.77 | 0.05 a ± 0.02 |
P4 | 788.71 a ± 172.09 | 347.87 a ± 73.63 | 0.06 a ± 0.02 |
P5 | 1591.45 b ± 240.68 | 489.53 b ± 57.87 | 0.07 a ± 0.01 |
P6 | 1119.95 a ± 199.44 | 429.11 a ± 71.85 | 0.09 a ± 0.02 |
The Type of Pellets | F [N] | ||
---|---|---|---|
Time of Storage [days] | |||
30 | 60 | 90 | |
P1 | 621.43 a ± 141.12 | 645.47 a ± 135.45 | 656.13 a ± 112.96 |
P2 | 672.12 a ± 137.45 | 699.99 a ± 149.78 | 704.49 a ± 138.46 |
P3 | 805.34 a ± 199.45 | 845.64 a ± 112.12 | 852.89 a ± 121.14 |
P4 | 827.46 a ± 126.78 | 865.47 a ± 114.69 | 870.71 a ± 107.78 |
P5 | 1650.12 b ± 170.89 | 1680.52 b ± 101.89 | 1697.69 b ± 110.74 |
P6 | 1267.09 a ± 190.78 | 1285.36 a ± 110.14 | 1292.23 a ± 170.14 |
The Type of Pellets | Ash Content [%] | Volatile Compounds [%] | Calorific Value [MJ·kg−1] |
---|---|---|---|
P1 | 4.14 b ± 0.24 | 79.14 a ± 0.11 | 16.72 a ± 0.06 |
P2 | 3.52 a ± 0.11 | 78.35 a ± 0.26 | 16.35 a ± 0.04 |
P3 | 4.86 b ± 0.28 | 76.99 a ± 0.17 | 17.70 a ± 0.13 |
P4 | 2.92 a ± 0.19 | 78.06 b ± 0.19 | 17.30 a ± 0.12 |
P5 | 4.01 b ± 0.17 | 78.47 b ± 0.35 | 17.21 a ± 0.11 |
P6 | 3.03 a ± 0.07 | 76.54 a ± 0.38 | 17.53 a ± 0.17 |
The Type of Pellets | Nitrogen [%] | Carbon [%] | Hydrogen [%] |
---|---|---|---|
P1 | 1.70 b ± 0.04 | 44.25 a ± 0.11 | 6.46 a ± 0.16 |
P2 | 0.47 a ± 0.07 | 44.32 a ± 0.08 | 6.53 a ± 0.28 |
P3 | 1.62 b ± 0.05 | 45.21 a ± 0.10 | 6.02 a ± 0.18 |
P4 | 0.42 a ± 0.07 | 45.41 a ± 0.13 | 6.21 a ± 0.22 |
P5 | 0.99 b ± 0.24 | 46.37 a ± 0.19 | 5.90 a ± 0.14 |
P6 | 0.51 a ± 0.17 | 46.38 a ± 0.13 | 6.19 a ± 0.17 |
The Type of Pellets | CO [mg·m−3] | CO2 [%] | SO2 [mg·m−3] | NOx [mg·m−3] |
---|---|---|---|---|
P1 | 114.23 b ± 2.7 | 1.96 a ± 0.07 | 5.42 b ± 0.14 | 62.14 a ± 1.9 |
P2 | 90.12 a ± 3.3 | 1.72 a ± 0.09 | 2.02 a ± 0.15 | 129.45 b ± 2.9 |
P3 | 75.61 b ± 3.5 | 1.42 a ± 0.08 | 6.01 b ± 0.17 | 45.56 a ± 2.5 |
P4 | 59.81 a ± 2.2 | 1.22 a ± 0.10 | 1.88 a ± 0.11 | 78.94 b ± 1.6 |
P5 | 81.92 b ± 2.4 | 1.57 a ± 0.09 | 5.88 b ± 0.19 | 82.24 a ± 1.7 |
P6 | 66.90 a ± 1.9 | 1.39 a ± 0.09 | 1.94 a ± 0.16 | 121.21 b ± 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zardzewiały, M.; Bajcar, M.; Puchalski, C.; Gorzelany, J. The Possibility of Using Waste Biomass from Selected Plants Cultivated for Industrial Purposes to Produce a Renewable and Sustainable Source of Energy. Appl. Sci. 2023, 13, 3195. https://doi.org/10.3390/app13053195
Zardzewiały M, Bajcar M, Puchalski C, Gorzelany J. The Possibility of Using Waste Biomass from Selected Plants Cultivated for Industrial Purposes to Produce a Renewable and Sustainable Source of Energy. Applied Sciences. 2023; 13(5):3195. https://doi.org/10.3390/app13053195
Chicago/Turabian StyleZardzewiały, Miłosz, Marcin Bajcar, Czesław Puchalski, and Józef Gorzelany. 2023. "The Possibility of Using Waste Biomass from Selected Plants Cultivated for Industrial Purposes to Produce a Renewable and Sustainable Source of Energy" Applied Sciences 13, no. 5: 3195. https://doi.org/10.3390/app13053195
APA StyleZardzewiały, M., Bajcar, M., Puchalski, C., & Gorzelany, J. (2023). The Possibility of Using Waste Biomass from Selected Plants Cultivated for Industrial Purposes to Produce a Renewable and Sustainable Source of Energy. Applied Sciences, 13(5), 3195. https://doi.org/10.3390/app13053195