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Abstract: This study proposes the use of an experimental design approach in GSO, and a systematic
approach to deal with the hyperparameter settings of GSOs and to provide stable algorithmic
performance of GSOs through the experimental design approach. To address these two issues, this
study explores the combination of hyperparameters that can improve the performance of GSOs using
a uniform design. In addition, the Taguchi method and optimal operations were used to derive
an excellent combination of parameters that would provide the best value and robustness of the
function to provide a stable performance of GSO. The validity of the performance of the proposed
method was tested using ten benchmark functions, including three unimodal, three multimodal,
and four restricted multimodal functions. The results were compared with the t-distribution test in
addition to the mean and standard deviation to analyze their validity. The results of the t-distribution
test showed that the p-values obtained for both UD-GSO and R-GSO were less than 0.05, indicating
significant differences compared with GSO for both unimodal and multimodal functions. Two
restricted multimodal functions are not significantly different, while the other two are below 0.05,
indicating significant differences. This shows that the performance obtained using UD-GSO and
R-GSO is more effective than the original GSO. UD-GSO and R-GSO provide better and more robust
results than GSO. The main contributions of this paper are as follows: (i) This study proposes a
uniform design approach to overcome the difficulties of setting hyperparameters in GSO. (ii) This
study proposes a Taguchi method and optimal operation to provide a robust calculation for GSO.
(iii) The method applied in this study provides systematic parameter design to solve GSO parameter
setting and robust result obtaining.

Keywords: group search optimization; Taguchi method; uniform design

1. Introduction

Rapid progress in the performance of various computer hardware components has
substantially increased the overall computing power available to researchers. As a result of
the increasing capability to analyze massive amounts of data and their relationships, many
new artificial intelligence models have recently emerged. The capability to construct useful
mathematical models of real-world problems has accelerated scientific progress in recent
decades by enabling researchers to perform experimental simulations rapidly, repeatedly,
and at a low cost. However, a continuing challenge for researchers performing simulations
is finding the optimal set of experimental parameters. Methods commonly used to solve the
parameter optimization problem can be classified into three types: enumeration methods,
numerical methods, and random search methods [1]. Of the enumeration methods, the
most common is grid search, which divides the search space into levels and searches each
level individually. Although a grid search can find the best solution for the entire domain,
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its limitation is its high consumption of computing resources. Therefore, enumeration meth-
ods are the least attractive methods for solving problems involving a very large search space.
The second type of method used to solve parameter optimization problems, numerical
methods, use the mathematical derivative method to find the extremum in the search space.
For example, the backward propagation method used in artificial neural networks is based
on the gradient descent method [2] used to find the best parameters. A major disadvantage
of numerical methods, however, is that in a discontinuous and non-smooth search space,
the ease of optimizing the local solution tends to cause premature convergence. Therefore,
numerical methods are best suited for solving optimization problems in which the target
values are smooth and precise. The third type of parameter optimization method is the
random search method, which is widely used today. Random search methods simulate the
behavior of living organisms by establishing a mathematical model or function and then
performing a random number search in the search space to find the best solution in the
entire domain. Akyol and Alatas summarized common random search methods, including
biology-based, swarm-based, physics-based, social-based, music-based, chemistry-based,
sports-based, mathematics-based, and hybrid methods [3]. Among these methods, popular
methods include biology-based methods, such as genetic algorithm (GA) [4] and immune
algorithm (IA) [5], and swarm-based methods, such as ant colony optimization (ACO) [6],
particle swarm optimizer algorithm (PSO) [7], group search optimization (GSO) [8], and
whale optimization algorithm (WOA) [9]. These methods have been applied to health-
care [10,11], antenna design [12,13], power planning [14,15], water resource [16,17], the
semiconductor industry [18,19], etc.

The swarm intelligence optimizer (SIO) method [20] is an algorithm that imitates the
behavior of biological groups. This concept is based on cooperation among many intelligent
individuals to present living beings’ behavior. The method predicts outcomes by mimicking
the behaviors of intelligent individuals in biological groups observed in nature. That is,
the SIO performs optimization through a process of constructing and updating a random
search algorithm based on the behavior of gregarious creatures in nature. In this process,
the updated position of an individual in the search space is analogous to an individual
animal, and the fitness value of the benchmark function is analogous to the survivability of
an individual animal in nature. If the fitness value of an individual can be increased, the
survivability of the individual can be increased. That is, a better solution can be discovered.
Because of its dynamic search characteristics, which mimic the adaptation of animals to their
natural environment, and its convenient practical application, SIO is used to solve many
practical problems in various fields, including scheduling problems [21,22], benchmark
function problems [23], industrial applications [24–26], and vehicle fuel efficiency [27]. The
typical and high-profile SIOs include PSO, GSO, and others.

In nature, many animal species are gregarious, such as humans, birds, ants, bees,
etc. Information sharing is a common phenomenon observed in the social behavior of
gregarious animals. For example, most actions of an individual in a group of gregarious
animals are made not only after relevant information is shared among individuals in the
group but also after relevant information links are shared among individuals in the group.
Currently, the two most widely discussed theoretical frameworks of group sharing are
information share and producer–scrounger (PS) [28]. The GSO algorithm used in this
paper is the SIO algorithm proposed by He et al. [8]. The SIO algorithm is inspired by
gregarious behavior observed in animals. To design the updated formula, the proposed
GSO algorithm simulates the foraging behavior of animals in nature. Specifically, the
GSO introduces a food search mechanism for use in updating the formula. Additionally,
the GSO applies a PS model of animals in the foraging process for use in developing
search strategies. Despite the many successful applications of GSO reported so far, its
shortcoming is its search performance. Specifically, GSO has low accuracy and tends to
become trapped in the local optima. As a result, GSO has poor robustness. Abualigah [29]
organized the improved GSO methods proposed from 2009 to 2018. Beauchamp and
Giraldeau [30] used a quasi-oppositional GSO to transfer the search space. Basu [31] used
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an adaptive GSO to improve various mechanisms of the producer, scrounger, and ranger.
Daryani et al. [26] used a three-dimensional GSO to re-design the distribution of producers,
scroungers, and rangers; Abualigah and Diabat [25] took a chaotic binary GSO to integrate
chaotic maps with the binary GSO algorithm; using a modified GSO [32] to generate
a decomposition strategy for the multi-objective optimization problem. Teimourzadeh
et al. [33] augmented and ranked the producers if the improvement was not good after ten
iterations. The other members were considered followers and divided into four groups to
follow different producers to expand the search range. Teimourzadeh and Mohammadi-
Ivatloo [34] proposed 3D-GSO which integrate continuous, binary, and integer search
spaces to improve the performance. Xi et al. [35] proposed an improved boundary search
strategy in GSO to heating pipeline system.

Despite the reported performance improvements obtained by these improved meth-
ods and strategies, their limitations include problems in coordinating exploration and
development operations. Additionally, their search results for the optimal combination of
parameters often fall into partiality. That is, further study is needed to address issues such
as extremum and poor robustness of results. The process of finding the best combination
of parameters involves experimentation and the verification of results. Currently, the
most commonly used method is the trial-and-error method [36], which is a non-systematic
method that may not necessarily find the best combination of parameters. Thus, this paper
uses a uniform design (UD) [37] method that prioritizes uniform dispersion at the expense
of orderliness and comparability. Therefore, UD reduces the number of experiments re-
quired to obtain valuable data and to find the best parameter combination. Although UD is
well established as an effective systematic experimental design method, this study applied
the regional search characteristics of Taguchi method to further improve the robustness of
UD results [38,39]. That is, the UD-GSO proposed in this study solves both the problem of
parameter optimization and the problem of poor robustness of results.

This paper is organized as follows: The related work considered in this study is
briefly described in Section 2. Section 3 briefly discusses the proposed method. Section 4
presents and discusses the experimental and simulation results. Finally, Section 5 concludes
the study.

2. Related Work

This section briefly describes the methods applied in this paper, including the GSO [8,40],
the Taguchi method [38], and UD [37,41–43].

2.1. GSO

The GSO algorithm mainly simulates visual search mechanisms in a group of animals,
e.g., the regional replication strategy and global search of sparrows. Assumedly sparrows
are an example [40] to constitute an SIO algorithm. In the GSO algorithm, each individual
in the group is called a member. The concept assumes that a group of members is searching
for the location that contains the most food in the search space, i.e., the global solution.
Initially, all members of the group are randomly scattered throughout the entire search
space, but no members of the group know the best solution. Then, the members who are
located in a good foraging area are used as producers and most of the members located
in the good foraging area search for a better foraging area according to the PS model.
To avoid being guided to the optimal local solution by most of the members, a small
number of members are used to conduct random searches in the entire search space and
to evaluate whether there is a better foraging area than the current producer, thereby
guiding members to find the global solution in the search space. In an N-dimension
search space, the ith member in the position of the kth iteration is denoted xk

i ∈ RN . The
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angle is denoted ϕk
i =

(
ϕk

i1, · · · , ϕk
i(N−1)

)
∈ RN−1, and the search direction is defined as

Dk
i

(
ϕk

i

)
=
(

dk
i1, · · · , dk

)
∈ RN , where ϕk

i can converted to dk
i by Equations (1)–(3) [44]:

dk
i1 = ∏N−1

q=1 cos
(

ϕk
iq

)
(1)

dk
ij = sin

(
ϕk

i(j−1)

)
∏N−1

q=1 cos
(

ϕk
iq

)
, j = 2, . . . , N − 1 (2)

dk = sin
(

ϕk
i(N−1)

)
(3)

In each iteration, the member located at the position with the best fitness value is
called the producer, which is denoted Xp. According to a fixed ratio, the other members
are distributed randomly to scroungers and rangers. Generally, 80% of members are
scroungers, and the remaining 20% are rangers [45,46]. Scroungers and rangers are, denoted
Xs and Xr, respectively. Figure 1 shows that, based on the current location, the producer
randomly selects three angles to scan, and the three new positions can be obtained by
Equations (4)–(6):

1. Zero direction:

Xpz = Xk
p + r1lmaxDk

p

(
ϕk
)

(4)

2. Right-half side:

Xpr = Xk
p + r1lmaxDk

p

(
ϕk + r2θmax/2

)
(5)

3. Left-half side:

Xpl = Xk
p + r1lmaxDk

p

(
ϕk − r2θmax/2

)
(6)

where θmax and lmax are the maximum pursuit angle and the maximum pursuit
distance of the producer, respectively; θmax and lmax ∈ R1; θmax is calculated from π/a2

where a = round
(√

n + 1
)
; lmax is calculated from

√
∑n

i=1(UBi − LBi)
2, where UBi and LBi

are the upper and lower bounds of the ith dimension, respectively; r1 is a random variable
of normal distribution between −1 and 1, and r1 ∈ R1; and r2 denotes a random variable
uniformly distributed between 0 and 1, and r2 ∈ Rn−1.
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Figure 1. The pursuit angle of the producer.

If the above search strategy finds a fitness value better than the current one, it replaces
the current position of the producer as the best individual position. Otherwise, it remains
at the current position and the following strategy uses the following Equation (7) to update
its pursuit angle:

ϕk+1 = ϕk + r2αmax (7)

where αmax is the maximum rotation angle of the producer, r2 is a random variable of
uniform distribution between 0 and 1, and r2 ∈ Rn−1.

If the above strategy does not obtain a position with a better fitness value after a
iterations, the pursuit angle is kept at the current angle ϕk+a = ϕk.
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In GSO, scroungers move closer to the producer. In the kth iteration, the search strategy
of the ith scrounger is to update its position according to Equation (8) [46]:

Xk+1
si = Xk

si + r3 ◦
(

Xk
p − Xk

si

)
(8)

where r3 is a random variable of uniform distribution between 0 and 1 and r3 ∈ Rn; ◦ is the
Hadamard product.

From their current position, rangers perform a random search of the search space to
conduct the exploitation as shown in Equation (9):

Xk+1
r = Xk

r + liDk
i

(
ϕk+1

)
(9)

where li is the distance of the ith ranger according to a · r1 · 1max.
Figure 2 shows the flowchart of GSO algorithm. Initial members are generated during

initialization and divided into producer, scroungers, and rangers based on fitness val-
ues. After a producer is created, its position is updated according to Equations (4)–(7).
Scroungers are then updated according to Equation (8). Finally, rangers are updated ac-
cording to Equation (9). If the stop condition is met, GSO stops and releases the solution.
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2.2. UD

The UD method first proposed by Wang and Fang [37] is a widely used experimental
design method for investigating multiple factors and levels [41–43]. The UD, which is
based on Quasi-Monte Carlo method, is implemented by low discrepancy sequence and
integral. The UD method sacrifices orderliness and comparability in order to maximize the
uniformity of dispersion needed to reduce limitations on the usage of factors and levels. In
UD, a uniform layout is the experimental design arrangement tool. The Un(qs) represents
the uniform layout, where U is the uniform layout, n is the number of experiments, q is
the number of levels for factors, and s is the number of factors. The steps of establishing a
uniform layout are as follows:
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1. Set the number of experiments nexp, and select a number h, where 1 is the greatest
common divisor of n and h;

2. Design the jth column in the uniform layout according to Equation (10):

uij = ihj
[
mod nexp

]
u1j = aU

j

ui+1,j =

{
uij + aU

j , uij + aU
j ≤ nexp

uij + aU
j − nexp, uij + aU

j > nexp
i = 1, . . . , nexp − 1

(10)

where uij is the element in the uniform layout, i.e., level, i and j means the ith row and
jth column, respectively.

Table 1 is a U11(1110) uniform layout. Each column can place a factor in this table, and
each row represents an experimental combination. The content of this table is the range
of the level reference factor. For practical application and satisfaction of factors, columns
can be selected partially. According to Wang and Fang [37], an even uniform layout can
be obtained by an odd uniform layout by removing the last combination, e.g., U10(1010),
shown as Table 2, can be obtained from U11(1110) by removing the 11th combination
(row). However, to ensure the characteristic of uniform distribution in the uniform layout,
every uniform layout has a usage table. Table 3 is the usage table for the U11 and U10
uniform layouts.

Table 1. U11(1110) uniform layout.

No.
Columns

1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 1 3 5 7 9
3 3 6 9 1 4 7 10 2 5 8
4 4 8 1 5 9 2 6 10 3 7
5 5 10 4 9 3 8 2 7 1 6
6 6 1 7 2 8 3 9 4 10 5
7 7 3 10 6 2 9 5 1 8 4
8 8 5 2 10 7 4 1 9 6 3
9 9 7 5 3 1 10 8 6 4 2

10 10 9 8 7 6 5 4 3 2 1
11 11 11 11 11 11 11 11 11 11 11

Table 2. U10(1010) uniform layout.

No.
Columns

1 2 3 4 5 6 7 8 9 10

1 1 2 3 4 5 6 7 8 9 10
2 2 4 6 8 10 1 3 5 7 9
3 3 6 9 1 4 7 10 2 5 8
4 4 8 1 5 9 2 6 10 3 7
5 5 10 4 9 3 8 2 7 1 6
6 6 1 7 2 8 3 9 4 10 5
7 7 3 10 6 2 9 5 1 8 4
8 8 5 2 10 7 4 1 9 6 3
9 9 7 5 3 1 10 8 6 4 2

10 10 9 8 7 6 5 4 3 2 1
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Table 3. A usage table of the U11 and U10 uniform layouts.

The Number of Factors Columns Need to Be Selected

2 1 7
3 1 5 7
4 1 2 5 7
5 1 2 3 5 7
6 1 2 3 5 7 8

2.3. Taguchi Method

The Taguchi method proposed by Taguchi [38] is a statistics-based experimental
design method widely used to solve practical design issues, including parameter design,
system design, and tolerance design [39]. Compared with the vast amount of experiments
required for factorial experiments, the orthogonality of the Taguchi method substantially
reduces experimental costs and simplifies data analysis. Taguchi method uses three static
characteristics for evaluation indicators: the smaller-the-better characteristic, the nominal-
the-best characteristic, and the larger-the-better characteristic. In this study, the Taguchi
method is used to enhance the regional search capability of the GSO algorithm, and the
smaller-the-better characteristic is used to analyze the factor response.

The Taguchi method uses an La(bc) orthogonal table to arrange experiments, where a is
the number of experiments, b is the number of levels for each factor, and c is the maximum
of factors. Table 4 is an L8(27) orthogonal table.

Table 4. A usage table of the U11 uniform layout.

No.
Factors

Result SNR
A B C D E F G

1 1 1 1 1 1 1 1 y11 y12 y13 η1
2 1 1 1 2 2 2 2 y21 y12 y23 η2
3 1 2 2 1 1 2 2 y31 y32 y33 η3
4 1 2 2 2 2 1 1 y41 y42 y43 η4
5 2 1 2 1 2 1 2 y51 y52 y53 η5
6 2 1 2 2 1 2 1 y61 y62 y63 η6
7 2 2 1 1 2 2 1 y71 y72 y73 η7
8 2 2 1 2 1 1 2 y81 y82 y83 η8

After the orthogonal table required for Taguchi method is established, the factor
response table is established based on the SNR (signal-to-noise ratio, η) observed after the
experiment [47] as shown in Equation (11):

ηi = −10log (11)

where yit is the tth result of the ith experimental combination.
Table 5 is an example of the response table. The experimenter can determine whether a

factor performs well and at which levels by comparing the response values at different levels.

Table 5. A response table from the L8(27) orthogonal table.

Terms
Factors

A B C D E F G

Level 1 ηA1 ηB1 ηC1 ηD1 ηE1 ηF1 ηG1
Level 2 ηA2 ηB2 ηC2 ηD2 ηE2 ηF2 ηG2
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Here, factor A is taken as an example to illustrate how to calculate the response value
of each level.

ηA1 = (η1 + η2 + η3 + η4)/4 (12)

ηA2 = (η5 + η6 + η7 + η8)/4 (13)

Equations (12) and (13) can be used to evaluate the performance of each factor at
different levels. First, η and the level of each factor should be collected and then averaged.
The best factor level can then be obtained from the response table.

3. Proposed Method

This section briefly describes the methods applied in this paper. One method proposed
elsewhere is using UD to search for the factor combination of the GSO algorithm. The
robust-GSO (RGSO) method proposed here integrates the Taguchi method in the GSO
algorithm to determine the best fitness value.

3.1. GSO Parameter Optimization by UD Method

The first step of the GSO algorithm is setting the percentage of ranger Xr, the initial
angle ϕ0, the maximum pursuit angle of producer θmax, the maximum rotation angle of
producer αmax, and the maximum pursuit distance of producer lmax. Since these five param-
eters have the most important roles in GSO performance, an efficient and accurate search for
the best parameter combinations is critical. Conventional parameter optimization methods
have major limitations, i.e., the trial-and-error experimental method is not systematic, and
the full-factorial experimental method has a heavy calculation burden. Therefore, this
paper selects a systematic and efficient method, the UD method, to search for the best
parameter combination in terms of enhancing the adaptive diversity of the GSO algorithm.
The recommended settings are as follows [8]:

• The percentage of ranger Xr is [0%, 100%];
• The initial angle ϕ0 is [π/8, π];
• The maximum pursuit angle of producer θmax is [π/2a2, 4π/a2];
• The maximum rotation angle of producer αmax is [θmax/8, θmax];
• The maximum pursuit distance of producer lmax is [lmax/8, 4lmax].

The range of each parameter is then used to establish the uniform layout required to
search for the best parameter combination for the GSO algorithm. Figure 3 is a flowchart
of optimal parameters for the GSO algorithm when the uniform layout is selected. The
detailed explanation is as follows. First, the ranges of the parameters are divided into levels
according to the recommended parameter settings. Based on the number of parameters and
the usage table, U10(105) uniform layout can be obtained, as shown in Table 6. The levels
were put into U10(105) uniform layout, and Table 7 can be obtained. Next, the parameter
combination from Table 7 was taken into GSO orderly to set the parameters and GSO was
performed to evaluate the benchmark functions until all experimental combinations of the
U10(105) uniform layout are run at least once. Finally, the best combination is obtained.
The best combination can make producers and rangers update to a better position and
scrounges can follow them.
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uniform layout.

Table 6. A U10(105) uniform layout.

No. 1 2 3 5 7

1 1 2 3 5 7
2 2 4 6 10 3
3 3 6 9 4 10
4 4 8 1 9 6
5 5 10 4 3 2
6 6 1 7 8 9
7 7 3 10 2 5
8 8 5 2 7 1
9 9 7 5 1 8
10 10 9 8 6 4

Table 7. The U10(105) uniform layout for the GSO algorithm.

No. Xr θmax αmax lmax ϕ0

1 10% π/(a2) × 0.4 θmax/3 3 π/7
2 20% π/(a2) × 0.8 θmax/6 8 π/3
3 30% π/(a2) × 1.2 θmax/9 2 π/10
4 40% π/(a2) × 1.6 θmax/1 7 π/6
5 50% π/(a2) × 2 θmax/4 1 π/2
6 60% π/(a2) × 0.2 θmax/7 6 π/9
7 70% π/(a2) × 0.6 θmax/10 0.5 π/5
8 80% π/a2 θmax/2 5 π/1
9 90% π/(a2) × 1.4 θmax/5 0.25 π/8

10 100% π/(a2) × 1.8 θmax/8 4 π/4
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3.2. Robust-GSO Algorithm

The GSO algorithm uses the rangers to exploit the search results. The PS mechanism
of the GSO algorithm then compares the fitness values of the producers and selects the
producer that has the best fitness for exploring the solution.

Other individuals in the group are then moved close to the position of the individual
with the best fitness value. If only a producer is selected for use in leading scroungers
for positioning scroungers close to the best position, the local minimum would be easy
to receive. Therefore, this paper proposes a multi-producer mechanism that improves
the algorithmic capability of the GSO by integrating Taguchi method in the search for the
best individual. Given the robust results obtained by integrating the Taguchi method, the
proposed method is referred to as the robust-GSO algorithm (R-GSO).

The R-GSO first provides a flexible number of producers Xp. In each iteration the best
and the second-best members (Xp1 and Xp2, respectively) are selected as the producers.
To ensure diversity, one of the remaining producers is randomly selected to be the third
producer, Xp3. The three producers, Xp1, Xp2, and Xp3, are then used to set the levels of
variables when implementing Taguchi method. Thus, three crossover types are selected:
Xp1 and Xp2 as the first and second levels, Xp1 and Xp3 as the first and second levels, and
Xp2 and Xp3 as the first and second levels. Additionally, an Lm(2m−1) orthogonal table is
selected. After the Taguchi method is performed, three new producers, Xnp1, Xnp2, and
Xnp3, can be obtained, and then the one with the best performance among them is the
optimal producer, Xop.

For example, each producer has five dimensions, i.e., Xp1 = (X1
p1, X2

p1, X3
p1, X4

p1, X5
p1),

Xp2 = (X1
p2, X2

p2, X3
p2, X4

p2, X5
p2), and Xp3 = (X1

p3, X2
p3, X3

p3, X4
p3, X5

p3). Table 8 shows an orthog-
onal table L8(27), and this table can satisfy the dimension, so it is used to determine the
new producers. For illustration, Xp1 and Xp2 are adopted as the first and second levels,
respectively. Because the dimension is five, the first five columns were selected for the
crossover operation, and then each variable was put into the orthogonal table. Thus, Table 9
can be obtained. Table 9 shows the layout from Xp1 and Xp2 as the first and second levels,
respectively. Based on the response table, a new producer, Xnp1, is obtainable. The Xnp2
and Xmp3 can also be obtained by applying this rule. The tunable parameters should be one
more for matching this architecture. Thus, Table 10 shows that a U10(106) uniform layout
must be selected to fit six parameters. Figure 4 is a flowchart of the R-GSO.

Table 8. Example of L8(27) orthogonal table.

No. 1 2 3 4 5 7 8

1 1 1 1 1 1 1 1
2 1 1 1 2 2 2 2
3 1 2 2 1 1 2 2
4 1 2 2 2 2 1 1
5 2 1 2 1 2 1 2
6 2 1 2 2 1 2 1
7 2 2 1 1 2 2 1
8 2 2 1 2 1 1 2

Table 9. Example of crossover performed using L8(27) for Xp1 and Xp2 with 5 dimensions.

No. 1 2 3 4 5

1 X1
p1 X2

p1 X3
p1 X4

p1 X5
p1

2 X1
p1 X2

p1 X3
p1 X4

p2 X5
p2

3 X1
p1 X2

p2 X3
p2 X4

p1 X5
p1

4 X1
p1 X2

p2 X3
p2 X4

p2 X5
p2

5 X1
p2 X2

p1 X3
p2 X4

p1 X5
p2

6 X1
p2 X2

p1 X3
p2 X4

p2 X5
p1
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Table 9. Cont.

No. 1 2 3 4 5

7 X1
p2 X2

p2 X3
p1 X4

p1 X5
p2

8 X1
p2 X2

p2 X3
p1 X4

p2 X5
p1

Table 10. The U10(106) uniform layout with the tunable factors of R-GSO.

No. Xp Xr θmax αmax lmax ϕ0

1 1 20% π/(a2) × 0.6 θmax/5 5 π/8
2 2 40% π/(a2) × 1.2 θmax/10 1 π/5
3 3 60% π/(a2) × 1.8 θmax/4 8 π/2
4 4 80% π/(a2) × 0.2 θmax/9 4 π/10
5 5 100% π/(a2) × 0.8 θmax/3 0.5 π/7
6 6 10% π/(a2) × 1.4 θmax/8 7 π/4
7 7 30% π/(a2) × 2 θmax/2 3 π/1
8 8 50% π/(a2) × 0.4 θmax/7 0.25 π/9
9 9 70% π/a2 θmax/1 6 π/6

10 10 90% π/(a2) × 1.6 θmax/6 2 π/3
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4. Experimental Results

In this study, the ten benchmark functions in Table 11 were used to evaluate the
strengths and weaknesses of the proposed UD-GSO and R-GSO in comparison with the
original GSO [8], where f 1–f 3 are unimodal functions, f 4–f 6 are multimodal functions,
and f 7–f 10 are limited multimodal functions. For this evaluation, the iteration counts
were set to 3000 for f 1, f 2, f 3, f 4, and f 6; 5000 for f 5 and f 8; 150 for f 7; and 200 for f 9
and f 10. The number of f 1–f 10 groups was set to 48. Each benchmark function was
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evaluated in 30 independent experiments, and the mean and standard deviation were used
as benchmarks for performance evaluation. Mean values that approximated target (f target)
values and small standard deviations were interpreted as indicators of good performance.

Table 11. Benchmark functions used in this study.

Functions n s f target

f1(x) =
n
∑

i=1
x2

i
30 [−100, 100] 0

f2(x) = maxi{|xi |, 1 ≤ i ≤ n} 30 [−100, 100] 0

f3(x) =
n−1
∑

i=1
(100

(
xi+1 − x2

i
)2

+ (xi − 1))
2 30 [−30, 30] 0

f4(x) = −
n
∑

i=1

(
xisin

(√
|xi |
))

30 [−500, 500] −12,569.5

f5(x) =
n
∑

i=1

(
x2

i − 10cos(2πxi) + 10
)2 30 [−5.12, 5.12] 0

f6(x) = π
n

{
10sin2

(
πy f6

1

)
+ ∑n−1

i=1

(
y f6

i − 1
)

2
[
1 + 10sin2

(
πy f6

i + 1
)]

+
(

y f6
n − 1

)2
}
+

∑n
i=1 u f6 (xi , 10, 100, 4)

y f6
i = 1 + 1

4 (xi + 1), u f6
(

xi, a f6 , k, m
)
=


k
(

xi− a f6
)m

, x > a f6

0, x ∈
[
−a f6 , a f6

]
k
(
−xi− a f6

)m
, x ← a f6

30 [−50, 50] 0

f7(x) =

[
1

500 +
25
∑

j=1

1

j+∑2
i=1

(
xi−a

f7
ij

)6

]−1
2 [−65.536, 65.536] 1

f8(x) =
11
∑

i=1

a f8
i −

x1

((
b

f8
i

)2
+b

f8
i x2

)
(

b
f8
i

)2
+b

f8
i x3+x4

2
4 [−5, 5] 0.0003075

f9(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]
×[

30 + (2x1 + 1− 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] 2 [−2, 2] 3

f10(x) = −
5
∑

i=1

[(
x− a f10

i

)(
x− a f10

i

)T
+ c f10

i

]−1
4 [0, 10] −10

The experimental results indicated that when parameters were set to preset values,
the UD-GSO and R-GSO usually outperformed GSO. Tables 12–14 show the results from
benchmark functions obtained for the GSO, UD-GSO, and R-GSO. Each combination was
executed in 30 independent trials, and the combination with the best performance was
selected. Because the characteristics of each function are inconsistent, the best combination
of parameters needs to be selected based on the experimental layout from UD.

Table 12. Results comparison among GSO [8], UD-GSO, and R-GSO in unimodal functions.

Benchmark Function Target He et al. [8] UD-GSO R-GSO

f 1

Minimum

0

1.4436 × 10−7 1.9555 × 10−18 4.6597 × 10−14

Mean 1.2757 × 10−6 1.2741 × 10−13 7.1195 × 10−11

S.D. 1.7324 × 10−6 4.0520 × 10−13 1.5407 × 10−11

t-test
p-value N/A 3.6553 × 10−4 3.6557 × 10−4

f 2

Minimum

0

0.1631 0.1372 0.1845
Mean 0.3016 0.4594 0.3524
S.D. 0.0835 0.1898 0.0730
t-test

p-value N/A 1.1263 × 10−4 0.0289

f 3

Minimum

0

9.2178 1.1797 6.9507
Mean 66.4847 44.3206 19.1942
S.D. 39.8562 30.9214 30.6621
t-test

p-value N/A 0.0482 2.0700 × 10−4
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Table 13. Results comparison among GSO [8], UD-GSO, and R-GSO in multimodal functions.

Benchmark Function Target He et al. [8] UD-GSO R-GSO

f 4

Minimum

−12,569.5

−12,569.4866 −12,569.4866 −12,569.4866
Mean −11,299.2395 −12,569.4858 −12,569.4866
S.D. 1090.4528 0.0013 0.0002
t-test

p-value N/A 5.6422 × 10−7 5.6421 × 10−7

f 5

Minimum

0

5.9397 8.3805 × 10−16 2.2971 × 10−16

Mean 16.2189 1.5842 1.1219
S.D. 9.9765 1.3657 1.1252
t-test

p-value N/A 6.1909 × 10−9 3.4610 × 10−9

f 6

Minimum

0

6.8523 × 10−10 1.1490 × 10−19 1.1218 × 10−16

Mean 6.8426 × 10−8 1.1963 × 10−14 1.3433 × 10−13

S.D. 1.1370 × 10−7 6.4158 × 10−14 3.0473 × 10−13

t-test
p-value N/A 0.0026 0.0026

Table 14. Results comparison among GSO [8], UD-GSO, and R-GSO in restricted multimodal functions.

Benchmark Function Target He et al. [8] UD-GSO R-GSO

f 7

Minimum

1

0.9980 0.9980 0.9980
Mean 0.9980 0.9980 0.9980
S.D. 3.6299 × 10−16 3.1266 × 10−16 2.6562 × 10−16

t-test
p-value N/A NaN NaN

f 8

Minimum

3.075 × 10−4

3.0749 × 10−4 3.0749 × 10−4 3.0749 × 10−4

Mean 5.9644 × 10−4 3.4302 × 10−4 3.1272 × 10−4

S.D. 4.8922 × 10−4 1.9042 × 10−4 7.6724 × 10−6

t-test
p-value N/A 0.0164 0.0036

f 9

Minimum

3

3 3 3
Mean 3 3 3
S.D. 5.3564 × 10−15 1.4060 × 10−14 1.0981 × 10−14

t-test
p-value N/A NaN NaN

f 10

Minimum

−10

−10.1532 −10.1519 −10.1530
Mean −6.5572 −7.7473 −8.1125
S.D. 3.3262 2.7845 2.6089
t-test

p-value N/A 0.1346 0.0428

4.1. Results of Unimodal Functions

In this study, the GSO, UD-GSO, and R-GSO were first performed using the unimodal
functions. Table 12 shows the minimum, mean, and standard deviation (S.D.) of each
function. In addition, Table 12 also shows the significant differences between UD-GSO vs.
GSO and R-GSO vs. GSO, represented by the p-value from the t-distribution test. From
Table 12, for the f 1 function, the best parameter combination for UD-GSO was the ninth
combination in Table 7, with a minimum of 1.9555 × 10−18, a mean of 1.2741 × 10−15,
and an S.D. of 4.0520 × 10−13. The best parameter combination for R-GSO was the fourth
one in Table 10, with a minimum of 4.6597 × 10−14, a mean of 7.1195 × 10−11, and an
S.D. of 1.5407 × 10−11. The p-values from the t-distribution test are 3.6553 × 10−4 and
3.6557 × 10−4 for UD-GSO vs. GSO and R-GSO vs. GSO, respectively. For the f 2, the best
parameter combination for UD-GSO was the ninth combination in Table 7, with a minimum
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of 0.1372, a mean of 0.4594, and an S.D. of 0.1898. The best parameter combination for
R-GSO was the eighth one in Table 10, with a minimum of 0.1845, a mean of 0.3524, and an
S.D. of 0.0730. The p-values from the t-distribution test are 1.1263× 10−4 and 0.0289 for UD-
GSO vs. GSO and R-GSO vs. GSO, respectively. For the f 3, the best parameter combination
for UD-GSO was the ninth combination in Table 7, with a minimum of 1.1797, a mean of
44.3206, and an S.D. of 30.9214. The best parameter combination for R-GSO was the fourth
one in Table 10, with a minimum of 6.9507, a mean of 19.1942, and an S.D. of 30.6621. The
p-values from the t-distribution test are 0.0482 and 2.0700 × 10−4 for UD-GSO vs. GSO
and R-GSO vs. GSO, respectively. From the above results, it can be seen that there is a
significant difference between UD-GSO and R-GSO in terms of the p-value of t-distribution;
in terms of mean, UD-GSO and R-GSO are smaller than GSO, but in f 1, UD-GSO has
a better performance than R-GSO. Although the minimum in f 1, f 2, and f 3 obtained by
UD-GSO is smaller than R-GSO, R-GSO has a more robust performance than UD-GSO in f 2
and f 3 based on S.D. Additionally, because each function’s characteristics are inconsistent,
the best combinations of parameters must be selected based on the uniform layout.

4.2. Results of Multimodal Functions

Next, this paper evaluated the performance of the GSO, UD-GSO, and R-GSO using
multimodal functions. Table 13 also shows each function’s minimum, mean, and S.D. and
the p-value from the t-distribution test between UD-GSO vs. GSO and R-GSO vs. GSO.
From Table 13, for the f 4 function, the best parameter combination for UD-GSO was the
seventh combination in Table 7, with a minimum of −12,569.4866, a mean of −12,569.4858,
and an S.D. of 0.0013. The best parameter combination for R-GSO was the eighth in Table 10,
with a minimum of −12,569.4866, a mean of −12,569.4866, and an S.D. of 0.0002. The p-
values from the t-distribution test are 5.6422 × 10−7 and 5.6421 × 10−7 for UD-GSO vs.
GSO and R-GSO vs. GSO, respectively. For the f 5, the best parameter combination for
UD-GSO was the ninth combination in Table 7, with a minimum of 8.3805 × 10−16, a mean
of 1.5842, and an S.D. of 1.3657. The best parameter combination for R-GSO was the eighth
one in Table 10, with a minimum of 2.2971 × 10−16, a mean of 1.1219, and an S.D. of 1.1252.
The p-values from the t-distribution test are 6.1909 × 10−9 and 3.4610 × 10−9 for UD-GSO
vs. GSO and R-GSO vs. GSO, respectively. For the f 6, the best parameter combination
for UD-GSO was the ninth combination in Table 7, with a minimum of 1.1490 × 10−19, a
mean of 1.1963 × 10−14, and an S.D. of 6.4158 × 10−14. The best parameter combination
for R-GSO was the fourth one in Table 10, with a minimum of 1.1218 × 10−16, a mean of
1.3433 × 10−13, and an S.D. of 3.0473 × 10−13. The p-values from the t-distribution test
are both 0.0026 for UD-GSO vs. GSO and R-GSO vs. GSO. The results show a significant
difference between UD-GSO and R-GSO in terms of the p-value of t-distribution; in terms
of performance in mean and standard deviation, the performance of UD-GSO and R-GSO
is better than GSO. Compared with UD-GSO, R-GSO has a better mean and S.D. in f 4 and
f 5, but in f 6 the mean and S.D. obtained by UD-GSO are better than R-GSO. Because each
function’s characteristics are inconsistent, the best parameter combinations were selected
by the uniform layout.

4.3. Results of Restricted Unimodal Functions

Last, this paper takes the restricted unimodal functions for the performance evaluation
of the GSO, UD-GSO, and R-GSO. Table 14 also shows each function’s minimum, mean,
and S.D. and the p-value from the t-distribution test between UD-GSO vs. GSO and R-GSO
vs. GSO. From Table 14, for the f 7 function, the best parameter combination for UD-GSO
was the eighth combination in Table 7 (minimum of 0.9980; mean of 0.9980; and S.D. of
0.0013) and for R-GSO was the ninth one in Table 10 (minimum of 0.9980; mean of 0.9980;
and S.D. of 0.0002). The p-values from the t-distribution test are NaN for UD-GSO vs.
GSO and R-GSO vs. GSO because the evaluation values are close. For the f 8, the best
parameter combination for UD-GSO was the fifth combination in Table 7 (minimum of
3.0749 × 10−4; mean of 3.4302 × 10−4; and S.D. of 1.9042 × 10−4) and for R-GSO was the
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eighth one in Table 10 (minimum of 3.0749 × 10−4; mean of 3.6912 × 10−4; and S.D. of
2.3457 × 10−4). The p-values from the t-distribution test are 0.0164 and 0.0389 for UD-GSO
vs. GSO and R-GSO vs. GSO, respectively. For the f 9, the best parameter combination for
UD-GSO was the eighth combination in Table 7 (minimum of 3; mean of 3; and S.D. of
1.4060 × 10−14) and for R-GSO was the tenth one in Table 10 (minimum of 3; mean of 3;
and S.D. of 1.0981 × 10−14). The p-values from the t-distribution test are NaN for UD-GSO
vs. GSO and R-GSO vs. GSO because the evaluation values are close. For the f 10, the best
parameter combination for UD-GSO was the third combination in Table 7 (minimum of
−10.1519; mean of −7.7473; and S.D. of 2.7845) and for R-GSO was the seventh one in
Table 10 (minimum of −10.1530; mean of −8.1125; and S.D., 2.6089). The p-values from
the t-distribution test are 0.1346 and 0.0428 for UD-GSO vs. GSO and R-GSO vs. GSO,
respectively. The results show a significant difference between UD-GSO and R-GSO in
terms of the p-value of t-distribution in f 8 and f 10; in terms of mean performance, both
UD-GSO and R-GSO are smaller than GSO in f 8 and f 10, and UD-GSO and R-GSO have
the same mean to GSO in f 7 and f 9; in addition, in terms of standard deviation, R-GSO
performs better than UD-GSO in f 7 to f 10. The best combinations of parameters were
selected by the uniform layout because each function’s characteristics are inconsistent.

5. Conclusions

This paper describes how the experimental design method was used to optimize the
performance of the GSO algorithm. Comparisons of benchmark functions confirmed that
the proposed UD-GSO and R-GSO indeed improved performance in comparison with
the original GSO proposed by He et al. [8]. Specifically, the proposed GSO algorithm
improves solution quality and robustness in comparison with the original GSO. Experi-
mental performance comparisons also confirmed that compared with the original GSO the
proposed UD-GSO and R-GSO provide superior calculation results in terms of robustness
and convergence based on experimental results, as shown in Tables 12–14. Notably, how-
ever, UD-GSO outperforms R-GSO in terms of computing time. Therefore, future studies
can investigate whether further optimization of the parameter settings of the algorithm
improve performance. If a fine resolution is a need, it is necessary to increase the number
of experiments to explore the hyperparameters. Due to the characteristic of the Taguchi
method, the number of experiments using an orthogonal array increases as the dimension
increases in geometric progression, so it is not recommended to use R-GSO in a higher
dimension. Notably, however, the relative importance of computational cost is expected
to decrease as technological advances yield further increases in computing power. The
desired target value achieves the effect of improving the overall performance. Therefore,
the key performance metric will continue to be the effectiveness of the algorithm in terms
of its capability to find the target value required for improvement in overall performance.
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