
Citation: Abd Elaziz, M.; Chelloug,

S.; Alduailij, M.; Al-qaness, M.A.A.

Boosted Reptile Search Algorithm for

Engineering and Optimization

Problems. Appl. Sci. 2023, 13, 3206.

https://doi.org/10.3390/app13053206

Academic Editors: Dimitris Mourtzis

and Jose Machado

Received: 30 January 2023

Revised: 21 February 2023

Accepted: 26 February 2023

Published: 2 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Boosted Reptile Search Algorithm for Engineering and
Optimization Problems
Mohamed Abd Elaziz 1,2,3,4,5,* , Samia Chelloug 6,* , Mai Alduailij 7,* and Mohammed A. A. Al-qaness 8

1 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
2 Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates
3 Department of Artificial Intelligence Science and Engineering, Galala University, Suze 435611, Egypt
4 Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon
5 Faculty of Information Technology, Middle East University, Amman 11831, Jordan
6 Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint

Abdulrahman University, Riyadh 11671, Saudi Arabia
7 Department of Computer Science, College of Computer and Information Sciences, Princess Nourah bint

Abdulrahman University, Riyadh 11671, Saudi Arabia
8 College of Physics and Electronic Information Engineering, Zhejiang Normal University, Jinhua 321004, China
* Correspondence: abd_el_aziz_m@yahoo.com (M.A.E.); sachelloug@pnu.edu.sa (S.C.);

maalduailij@pnu.edu.sa (M.A.)

Abstract: Recently, various metaheuristic (MH) optimization algorithms have been presented and
applied to solve complex engineering and optimization problems. One main category of MH
algorithms is the naturally inspired swarm intelligence (SI) algorithms. SI methods have shown
great performance on different problems. However, individual MH and SI methods face some
shortcomings, such as trapping at local optima. To solve this issue, hybrid SI methods can perform
better than individual ones. In this study, we developed a boosted version of the reptile search
algorithm (RSA) to be employed for different complex problems, such as intrusion detection systems
(IDSs) in cloud–IoT environments, as well as different optimization and engineering problems.
This modification was performed by employing the operators of the red fox algorithm (RFO) and
triangular mutation operator (TMO). The aim of using the RFO was to boost the exploration of the
RSA, whereas the TMO was used for enhancing the exploitation stage of the RSA. To assess the
developed approach, called RSRFT, a set of six constrained engineering benchmarks was used. The
experimental results illustrated the ability of RSRFT to find the solution to those tested engineering
problems. In addition, it outperformed the other well-known optimization techniques that have been
used to handle these problems.

Keywords: intrusion detection systems; reptile search algorithm; red fox algorithm; triangular
mutation operator; engineering problems

1. Introduction

In daily life, optimization is everywhere. Optimization is used widely in many fields,
including system management, technical design, economics, and various engineering
problems [1,2]. To optimize something means to make sure one or more goals of a particular
situation are as ideal as possible. The goal of the optimization process is to investigate
potential solutions and find the optimal one. Occasionally, many constraints are applied to
solutions, making optimization more difficult [3].

In recent decades, the effectiveness of metaheuristic (MH) techniques in solving
complicated problems with high dimensionality, multimodality, and non-differentiability
has been proven by different studies in different applications [4–6]. As a result, the use
of these algorithms has increased significantly, and there is a growing trend to suggest
efficient upgrades and new metaheuristic algorithms. These algorithms primarily gain

Appl. Sci. 2023, 13, 3206. https://doi.org/10.3390/app13053206 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13053206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7682-6269
https://orcid.org/0000-0002-9711-0235
https://orcid.org/0000-0002-6956-7641
https://doi.org/10.3390/app13053206
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13053206?type=check_update&version=1

Appl. Sci. 2023, 13, 3206 2 of 24

their inspiration from natural phenomena, physics laws, animals’ and birds’ behaviors,
and so on. Earlier, some efficient optimization algorithms were developed, such as the
genetic algorithm (GA) [7], artificial bee colony (ABC) [8], particle swarm optimization
(PSO) [9], and the firefly algorithm [10]. Recently, there have been many newly developed
metaheuristic optimization algorithms based on different inspirations, for example the
sine–cosine algorithm (SCA) [11], the multi-verse optimizer (MVO) [12], Harris hawks
optimization (HHO) [13], the marine predator algorithm [14], the Aquila optimizer [15],
the arithmetic optimization algorithm [16], the Reptile search algorithm (RSA) [17], and
many other optimization techniques.

Although those algorithms have shown good performance in different optimization
and engineering algorithms, in some cases, they face critical limitations and shortcomings.
According to the well-known no free lunch theorem, no one method has the ability of
solving all problems. To this end, in recent years, researchers have used the hybridization
concept to develop hybrid metaheuristic optimization algorithms to address different
engineering and optimization issues.

For example, Houssein et al. [3] applied an improved equilibrium optimizer (EO)
using a technique called the self-adaptive EO algorithm. They used four search tech-
niques to enhance the search process of the EO optimization method. This method was
employed to address different optimization engineering problems, and it showed bet-
ter results compared to the original EO. Bo et al. [18] applied several search techniques,
namely opposition-based learning and greedy search, to boost the chimp optimization
algorithm (ChOA) search mechanism. The developed ChOA was employed to solve differ-
ent constrained engineering problems and recorded significant outcomes. Shen et al. [19]
introduced an enhanced whale optimization algorithm (WOA) to handle engineering
design problems and global optimization issues. They used a technique called multi-
population evolution to improve the original WOA. A modified SCA was developed by
Yang et al. [20]. They suggested a multi-mechanism acting SCA method to overcome the
drawbacks of the original SCA. This modified version of the SCA was utilized to address
constrained engineering optimization problems. An improved SSA optimization technique
was developed by Hong et al. [21] to solve engineering problems, using a new strategy
called producer centralization. Furthermore, in [22], a modified improved moth–flame
optimizer was suggested using two search mechanisms, namely Gaussian mutation and
chaotic grouping. This modified method was evaluated with complex engineering and
optimization problems. An enhanced FA was suggested by Peng et al. [23] to solve complex
engineering optimization problems. They applied three search techniques to enhance the
traditional FA. Zhang et al. [24] presented a modified AOA to be employed in various
numerical and engineering optimization applications based on two techniques, called
random high-speed jumping and multi-leader wandering around search strategy. Hybrid
optimization algorithms have also been adopted in other research areas, such as a hybrid of
AO and the seagull optimization algorithm for wind power forecasting [25] and a hybrid of
AO with the SMA and SSO to predict CO2 trapping in deep saline [26,27]. Another hybrid
optimization method was developed by [28] using DE and the Cuckoo Search algorithm to
optimize the ship pipe route. Moreover, a hybrid method of HHO and DE was suggested
by Zhong et al. to solve the flight trajectory prediction problem [29].

In recent years, MH optimization techniques also have been investigated to address
the problems of intrusion detection systems. Many optimization algorithms have been
suggested as feature selection methods to improve the quality solutions of the IDS, such as
PSO [30], the GA [31], AO [32], HHO [33], and many other approaches [1,2].

Paper Contribution

Inspired by the successful applications of the hybrid concept to overcome the draw-
backs of the individual optimization algorithms, in this study, we present a new version
of the reptile search algorithm using two techniques, namely the red fox optimization
algorithm and the mutation operators. The RSA [17] is a recently developed optimization

Appl. Sci. 2023, 13, 3206 3 of 24

method emulating crocodiles’ hunting behaviors in nature. It has been adopted in various
applications since it has high performance, such as in [34–36]. The red fox optimization
algorithm [37] is also a nature-inspired technique based on the hunting behavior of the red
fox. It has also been adopted in solving some optimization problems [38–40].

The main modification was performed using RFO to enhance the ability of the RSA to
explore the search domain. Additionally, the triangular mutation operator (TMO) was ap-
plied to improve the exploitation of the RSA. This competition between the operators of the
RSA, TMO, and RFO led to enhancing the rate of convergence toward the optimal solution.

In short, we can represent the contributions of this study as the following points:

1. We propose a boosted version of the reptile search algorithm (RSA), called RSRFT,
to address IDS problems in IoT and cloud environments, as well as complex and
multidimensional engineering problems

2. We employed the operators of the red fox optimization and triangular mutation
operator to boost the performance of the RSA.

3. We applied the RSRFT technique to solve different and complex engineering problems.
We conducted a set of comparisons with other efficient techniques to verify the quality
of RSRFT.

The rest of this study is organizes as follows: In Section 2, detailed background
descriptions of the applied algorithms are presented. Section 3 introduces the descriptions
of the RSRFT approach. In Section 4, we assess the quality of the modified RSA method
using different datasets and with extensive comparisons to other methods, and in Section 5,
we present the conclusion of this paper.

2. Background
2.1. The Reptile Search Algorithm

The conventional RSA, which simulates actual crocodile behavior, is presented in this
section. This was accomplished using two steps: the local and global search stages.

2.1.1. Exploration Search

Following [17], the process of splitting the maximum number of generations into
four parts will trigger the RSA to switch from the exploration to the exploitation stage.
Moreover, the RSA exploration phase investigates the search domains using two primary
search techniques in pursuit of a more reliable agent. There are two requirements for
this search component. If the long walking plan is not adjusted by t ≤ T

4 , the agents are
modified by t ≤ 2 T

4 and t > T
4 . Equation (1) can be utilized to update the positions for the

exploration stage:

xij(t + 1) =

{
Bestj(t)×−ηij(t)× β− Rij(t)× rand, t ≤ T

4
Bestj(t)× x(r1,j) × ES(t)× rand, t ≤ 2 T

4 and t > T
4

(1)

where Bestj stands for the best solution at dimension j. x(r1,j) denotes the value of a
randomly selected solution at dimension j. rand represents a random value, and β = 0.1 as
in [17]. T represents the total number of generations. N and ηij are the number of solutions
and the hunting operator. The definition of ηij is given as

ηij = Bestj(t)× Pij, (2)

Rij =
Bestj(t)− x(r2,j)

Bestj(t) + ε
, (3)

ES(t) = 2× r3 ×
(

1− 1
T

)
, (4)

Appl. Sci. 2023, 13, 3206 4 of 24

In Equation (4), ε refers to a small value. r3 ∈ [−1, 1] is a random integer value, while
Pij is defined as

Pij = α +
xij −M(xi)

Bestj(t)× (UB(j) − LB(j)) + ε
, (5)

In Equation (5), UB(j) and LB(j) represent the boundaries of the search domain, and
α = 0.1 [17]. M(xi) denotes the mean value of X, and it is given as

M(xi) =
1
n

n

∑
j=1

xij, (6)

2.1.2. Exploitation Search

Using the hunting coordination plan, t ≤ 3 T
4 and t > 2 T

4 adopt the agents in this stage.
In contrast, if t ≤ T and t > 3 T

4 , the hunting cooperation plan is carried out. Equation (7)
provides the updated value using the exploitation process.

xij(t + 1) =
{

Bestj(t)× Pij(t)× rand, t ≤ 3 T
4 and t > 2 T

4
Bestj(t)− ηij(t)× ε− Rij(t)× rand, t ≤ T and t > 3 T

4
(7)

2.2. Red Fox Algorithm

This optimizer begins by figuring out the parameters’ values and then creating the
population of N foxes according to Equation (8):

Xij = LBj + r×
(
UBj − LBj

)
, i = 1, . . . , N, j = 1, . . . , D, r ∈ [0, 1] (8)

where LBj and UBj indicate the boundaries of the search space, while D represents the
dimension of Xij foxes. Thereafter, the objective value of Xi is evaluated then allocating the
best solution Xb. The next process is to update Xir using the following formula:

Xir=Xi+asign(Xb−Xi) (9)

In Equation (9), a∈[0,dib] stands for a scaling hyperparameter chosen randomly,
whereas dib is defined as

dib=
√
||Xi−Xb|| (10)

In case Xir has a fitness value better than its previous value, then we replace Xi with
Xir. Otherwise, we preserved the Xi value. The observation radius r is then adjusted by
applying the formula Equation (11) in the case of the fox not being seen:

r =

{
a sin(φ0)

φ0
i f φ0 6= 0

θ otherwise
(11)

In Equation (11), θ ∈ [0, 1] is a random value that is applied to control adverse weather
conditions such as fog, rain, etc. After that, X is updated based on the following formula:

xnew
0 = ar.cos(φ1) + xact

0
xnew

1 = ar.sin(φ1) + ar.cos(φ2) + xact
1

xnew
2 = ar.sin(φ1) + ar.sin(φ2) + ar.cos(φ3) + xact

2
...

xnew
n−1 = ar.sin(φ1) + ar.sin(φ2) + · · ·+ ar.sin(φn−1) + xact

n−1

(12)

where φi ∈ [0, 2π], i = 1, 2, . . . , n− 1 and each angular value represents a randomized one
for each point.

Appl. Sci. 2023, 13, 3206 5 of 24

This set of equations simulates a fox’s actions after it spots a target and tries to attack it.
Then, the fitness value of Xi is assessed and then sorted based on the values. Hunters may
kill the worst solution, while Equation (13) is employed to update the X solution.

X=

{
nomadic agent if > 0.5
Reproduction of the alpha couple otherwise

(13)

where in the first branch of Equation (13); the new solutions wander outside the environ-
ment in search of a new space to repopulate their herd as nomadic agents. Outside of the
habitat and within the search zone, the solution is chosen randomly. The center of the
habitat (CH) is calculated as

CH=
Xb+Xβ

2
(14)

In Equation (14), Xb and Xβ denote the first- and second-best solutions, respectively.
In addition, in the second case of Equation (13), the following formula is used to

update X.

X=
Xb+Xβ

2
(15)

2.3. Triangular Mutation Operator

The mutation technique utilizes a integration vector, which is constructed using three
randomly selected vectors along with three distinct vectors that have been selected during
the competition (the best, worst, and better). This combination vector is then utilized to
create the new mutant vector.

Vi(t + 1) = M1 × (Xb(t)− Xbr(t)) + M2 × (Xb(t)− Xw(t)) + M3 × (Xbr(t)− Xw(t)) + Xc(t) (16)

In Equation (16), M1, M2, and M3 refer to the mutation factors that are related to xi and
they are produced according to the uniform distribution. In addition, three tournaments
are given as Xw(t), Xbr(t), Xb(t). In addition, Xc(t) is the combination vector triangle at
iteration t and formulated as:

Xc = w1 × Xb + w2 × Xbr + w3 × Xw, wi > 0,
3

∑
i=1

wi = 1 (17)

where wi is a real weight and wi is formulated as wi = pi/ ∑3
i=1 pi.

Moreover, the mutation is used to balance the exploitation propensity with the ex-
ploration capacity, with the primary mutation favoring the exploration phase. As a result,
utilizing the presented mutation is twice as likely to succeed as using the fundamental prin-
ciples. The differential evolution (DE) method is the foundation of the advanced mutation
technique. Thus, using the fundamental mutation approach DE/rand/1/bin, the following
new combination is created:

If rand ≤ (2/3)), then

Vi(t + 1) = M1 × (Xb(t)− Xbr(t)) + M2 × (Xb(t)− Xw(t)) + M3 × (Xbr(t)− Xw(t)) + Xc(t) (18)

Else:
Vi(t + 1) = Xr1(t) + F× (Xr1(t)− Xr3(t)) (19)

In Equation (18), F is a random value at [(−1, 0) ∪ (0, 1)] and rand ∈ [0, 1] a ran-
dom value.

3. Proposed RSRFT Method

Within this section, we introduce the stages of the developed technique, which depends
on modifying the performance of the RSA using TMO and RFO as given in Figure 1. The
main objective of RFO is to facilitate the identification of a feasible solution within the

Appl. Sci. 2023, 13, 3206 6 of 24

feasible area, while TMO is applied to promote harmony between the exploitation and
exploration. The initial population of RSRFT is constructed inside the search space’s
confines. The best solution is then selected from the current population after the fitness
function for each solution has been evaluated. The solutions are updated using the RSA,
RFO, and TMO operators. The RFO technique will then be used to update a collection of
individuals that have reached a local standstill. Until the terminal condition is satisfied,
the updating of the population is conducted again. The next subsections offer a detailed
explanation of the developed RSRFT approach.

Figure 1. Developed RSRFT approach.

3.1. Initial Phase

The RSRFT creates the N agent starting populations (Xi) as

Xi = rand(1, D)× (UB− LB) + LB, i = 1, . . . , N (20)

In Equation (20), rand ∈ [0, 1] stands for a random vector with dimension D. N is the
number of solutions.

3.2. Updating Phase

The current X is updated by using either the operators of the RSA, RFO, or TMO. This
can be conducted through a set of steps. The first step is to calculate the fitness value for Xi.

Appl. Sci. 2023, 13, 3206 7 of 24

The smallest fitness value and its related solution are then identified. Then, according to
the probability of the fitness value, either the operators of the RSA or RFO and TMO are
used to update X. This probability is computed as

Pri =
Fiti

∑N
i=1 Fiti

(21)

Then, the updating is performed using the following formula:

Xi(t + 1) =
{

XRSA
i i f Pri > rpr

XRT
i Otherwise

, (22)

where rpr is computed as

rpr = min(Pr) + (max(Pr)−min(Pr))× rand (23)

In addition, the value of XRT
i is computed as

Xi(t + 1) =
{

XTMO
i i f rand > 0.5

XRFO
i Otherwise

, (24)

XTMO
i =

{
Use Equation (18) to update Xi i f rand > 0.5
Use Equation (19) to update Xi Otherwise

, (25)

while the values of XRFO
i and XRSA

i refer to the updated value of Xi using the operators of
RFO and the RSA, respectively.

3.3. Terminal Phase

The stopping conditionsare examined during this phase, and in case they are satisfied,
the steps of updating are halted and Xb is returned. Otherwise, a new updating step is
carried out.

The main steps of the proposed RSRFT are given in Algorithm 1.

Algorithm 1 The RSRFT method.

1: Initialize the parameters as N solutions.
2: Construct initial set of X solutions using Equation (20).
3: repeat
4: Evaluate the fitness value of Xi, and find Xb.
5: Compute Pri and rpr using Equations (21) and (23), respectively.
6: for i = 1 : N do
7: if Pri > rpr then
8: Use the RSA to update Xi as in Equations (1)–(7).
9: else

10: if rand > 0.5 then Update Xi using the operators of RFO as in
Equations (8)–(15).

11: else
12: Use TMO to update Xi as in Equation (25).
13: end if
14: end if
15: end for
16: t = t + 1.
17: until Stopping conditions met
18: Return best solution Xb.

Appl. Sci. 2023, 13, 3206 8 of 24

4. Experimental Results and Discussion

In this study, the performance of RSRFT was evaluated through two experimental
series, which included engineering problems and improve the security in the IoT environ-
ment. The experiments illustrated in this section were conducted using MATLAB R2020b
installed on machine configured with a 2.40 GHz Intel Core i5 CPU, 4.00 GB RAM, and a
Windows 10 operating system.

4.1. Series of Analysis 1: Engineering Problems

The evaluation of the developed RSRFT to solve the constraint optimization engineer-
ing problem is presented in this section. Six engineering optimization problems—the design
of welded beams, the design of tension/compression springs, and the design optimization
challenge for pressure vessels—were the focus of this experiment. The next subsections
address the problem definition and results.

4.1.1. Welded Beam Design Problem

Determining the welding beam’s settings that lower the fabrication costs are the major
goal of solving welded beam design (WBD) problem (Figure 2). These parameters are the
bar’s height (t), the length of an attached portion (l), the weld’s thickness (h), and the bar’s
thickness (b).

The definition of WBD is formulated as

Consider ~u = [u1 u2 u3 u4] = [h l t b],

Minimize f (~u) = 1.10471u2
1u2 + 0.04811u3u4(14.0 + u2),

Subject to g1(~u) = τ(~u)− τmax 6 0,

g2(~u) = δ(~u)− δmax 6 0,

g3(~u) = σ(~u)− σmax 6 0,

g4(~u) = P− Pc(~u) 6 0,

g5(~u) = u1 − u4 6 0,

g6(~u) = 1.10471u2
1 + 0.04811u3u4(14.0 + u2)− 5.0 6 0,

g7(~u) = 0.125− u1 6 0

Variables′ range 0.1 6 u1 6 2,

0.1 6 u2 6 10,

0.1 6 u3 6 10,

0.1 6 u4 6 2

where τ(~u) =
√
(τ′)2 + 2τ

′
τ
′′ u2

2R
+ (τ′′)2,

τ
′
=

p√
2u1u2

, τ
′′
=

MR
J

,

M = P(L +
u2
2
),

R =

√
u2

2
4

+ (
u1 + u3

2
)2,

J = 2
{√

2u1u2

[
u2

2
4 + (u1+u3

2)2
]}

,

σ(~u) =
6PL
u4u2

3
, δ(~u) =

6PL3

Eu2
3u4

Pc(~u) =
4.013E
√

u2
3u6

4
36

L2 (1− u3
2L

√
E

4G
),

P = 6000 lb, L = 14 in., δmax = 0.25 in.,

E = 30× 16 psi, G = 12× 106 psi,

τmax = 13600 psi, σmax = 30000 psi

(26)

Appl. Sci. 2023, 13, 3206 9 of 24

RSRFT was compared to several optimization techniques, such as the whale opti-
mization algorithm (WOA) [41], MVO [12], evolutionary particle swarm optimization
(CPSO) [42], LSHcEpS [43], co-evolutionary differential evolution (CSCA) [44], the simplex
method (SIMPLEX) [45], Davidon–Fletcher–Powell (DAVID) [45], the gravitational search
algorithm (GSA) [46], the GA [47], harmony search (HS) [48], and LSHADE_SPACMA (we
renamed it as LSHSPCM) [49]. The developed RSRFT was conducted for 25 independent
runs with tmax = 500 and N = 25.

Table 1 contains the results of RSRFT and the compared optimization techniques. The
RSRFT technique had the lowest cost (as given in the column Optimal Objective), followed
by LSHSPCM, while SIMPLEX had the highest cost. As a result, the design parameters
obtained by RSRFT were more suitable for WBD.

𝐿

𝑙

ℎ

𝑏

𝑡

Figure 2. Structure of the WBD problem.

Table 1. The value of the estimated parameters using RSRFT and other methods for solving the
WBD problem.

Algorithm H L t b Optimal
Objective

RSRFT 0.20572 3.4704 9.0370 0.2057 1.72489
RFO 0.21846 3.51024 8.87254 0.22491 1.86612

LSHSPCM 0.2057 3.4705 9.0366 0.2057 1.7249
RSA 0.14468 3.514 8.9251 0.21162 1.6726

LSHcEpS 0.2038 3.5148 9.0486 0.2057 1.7294
OBLGOA [50] 0.205769 3.471135 9.032728 0.2059072 1.7257

RO [51] 0.203687 3.528467 9.004233 0.207241 1.735344
HS [48] 0.2442 6.2231 8.2915 0.2443 2.3807

DAVID [45] 0.2434 6.2552 8.2915 0.2444 2.3841
SIMPLEX [45] 0.2792 5.6256 7.7512 0.2796 2.5307

CPSO [42] 0.202369 3.544214 9.04821 0.205723 1.72802
MVO [12] 0.205463 3.473193 9.044502 0.205695 1.72645
GA [47] 0.205986 3.471328 9.020224 0.20648 1.728226

GSA [46] 0.182129 3.856979 10 0.202376 1.87995
CSCA [44] 0.203137 3.542998 9.033498 0.206179 1.733461
WOA [41] 0.205396 3.484293 9.037426 0.206276 1.730499

4.1.2. Tension/Compression Spring Design Problem

Within this section, we evaluated the performance of RSRFT to allocate the parameters
that are used to minimize spring weight during tension/compression spring design (TCSD),
which is defined in Figure 3. Those parameters include the wire diameter (d), the mean coil
diameter (D), and the number of active coils (N) of a spring. The formulation of TCSD is
illustrated as

Appl. Sci. 2023, 13, 3206 10 of 24

Consider ~u = [u1 u2 u3] = [d D N],

Minimize f (~u) = (u3 + 2)u2u2
1,

Subject to g1(~u) = 1−
u3

2u3

71785u4
1
6 0,

g2(~u) =
4u2

2 − u1u2

12566(u2u3
1 − u4

1)
+

1
5108u2

1
6 0,

g3(~u) = 1− 140.45u1

u2
2u3

6 0,

g4(~u) =
u1 + u2

1.5
− 1 6 0,

Variables′ range 0.05 6 u1 6 2

0.25 6 u2 6 1.30

2.00 6 u3 6 15

(27)

𝑑

𝐷

Figure 3. Design of the TCSD problem.

In this experiment, RSRFT was compared with other approaches that have been used
to solve the TCSD problem, for example CPSO [42], MVO [12], the GA [52], the GSA [41],
the evolution strategy (ES) [53], the Ray–Saini method [54], the WOA [41], the CSCA [44],
the method proposed by Belegundu and Arora [55], LSHSPCM, and LSHcEpS. The results
of the comparison between RSRFT and the others are given in Table 2. The RSRFT offered
superior outcomes over the other methods.

Table 2. The value of the estimated parameters using RSRFT and others to solve the TCSD problem.

Algorithm d D N Optimal
Objective

RSRFT 0.05147146 0.3515050 11.6013141 0.01266617
RFO 0.052667011 0.3806680 10.0213925 0.0126934

RSA [17] 0.057814 0.58478 4.0167 0.01176
LSHSPCM 0.0535 0.4010 9.0962 0.012721349
LSHcEpS 0.0517 0.3567 11.2876 0.01266523

OBLGOA [50] 0.0530178 0.38953229 9.6001616 0.01270136
Belegundu-Arora method [55] 0.0500 0.3177 14.026 0.012730

GA [52] 0.05148 0.351661 11.632201 0.01270478
WOA [41] 0.051207 0.345215 12.004032 0.0126763
CPSO [42] 0.051728 0.357644 11.244543 0.0126747

ES [53] 0.051643 0.35536 11.397926 0.012698
MVO [12] 0.05251 0.37602 10.33513 0.012790
GSA[41] 0.050276 0.323680 13.525410 0.0127022

Ray–Saini method [54] 0.321532 0.050417 13.979915 0.013060

Appl. Sci. 2023, 13, 3206 11 of 24

4.1.3. Pressure Vessel Design Problem

This section presents the performance of developed RSRFT to solve another engi-
neering problem, named the pressure vessel design (PVD) problem (see Figure 4), by
determining the parameters that lead to minimizing the cost of the pressure cylinder. Those
parameters are the thickness of the head Th, the length of the cylindrical section of the
vessel L, the thickness Ts, and the inner radius R. The mathematical representation of PVD
is given as

Consider ~u = [u1 u2 u3 u4] = [Ts Th R L],

Minimize 0.6224u1u3u4 + 1.7781u2u2
3

+ 3.1661u2
1u4 + 19.84u2

1u3,

Subject to g1(~u) = −u1 + 0.0193u3 6 0,

g2(~u) = −u2 + 0.00954u3 6 0,

g3(~u) = −πu2
3u4 −

4
3

πu3
3 + 1296000 6 0,

g4(~u) = u4 − 240 6 0,

Variables′ range 0 6 u1 6 99,

0 6 u2 6 99,

10 6 u3 6 200,

10 6 u4 6 200

(28)

The outcomes of the comparisons are listed in Table 3. Those approaches are HPSO [56],
ACO [57], the ES [53], the GA [52], PSO-DE [58], the GSA [41], CDE [44], and LSH-
SPCM [49]. From these results, we noticed that RSRFT was able to reach the minimum
objective value (as given in the column Optimal Objective), which outperformed the other
compared techniques.

Table 3. The value of the estimated parameters using RSRFT and other approaches to solve the
PVD problem.

Estimated Values for Parameters

Method Th Ts R L Optimal
Objective

RSRFT 0.81612257 0.403409949 42.2861349 174.325078 5953.4364
RFO 0.81425 0.44521 42.20231 176.62145 6113.3195
RSA 0.8400693 0.4189594 43.38117 161.5556 6034.7591

LSHSPCM 0.9808 0.5251 50.1435 99.5532 6654.8902747
OBLGOA [50] 0.81622 0.40350 42.291138 174.811191 5966.67160
PSO-DE [58] 0.8125 0.4375 42.098446 176.6366 6059.71433
HPSO [56] 0.8125 0.4375 42.0984 176.6366 6059.7143
ACO [57] 0.8125 0.4375 42.098353 176.637751 6059.7258
CDE [44] 0.8125 0.4375 42.098411 176.63769 6059.734
ES [53] 0.8125 0.4375 42.098087 176.640518 6059.7456
GA [52] 0.8125 0.4375 42.097398 176.65405 6059.94634

GSA [41] 1.125 0.625 55.9886598 84.4542025 8538.8359

Appl. Sci. 2023, 13, 3206 12 of 24

𝑇ℎ

𝐿

Figure 4. Schematic of the PVD problem.

4.1.4. Three-Bar Truss Design Problem Design

The major aim of Three-Bar Truss Design (TBTD) is to minimize the weight of the
structure [59,60]. Figure 5 illustrates the geometry structure of TBTD, in which cross-
sectional areas stand in for the design variables. The cross-section with A1(=x1) and
A2(=x2) must be found according to [59] because of the system’s symmetry. Below is a
diagram that represents the TBTD problem mathematically.

Figure 5. The three-bar truss design problem.

Consider f (x) = (2
√

2x1 + x2)× l

Minimize f (~u) = (u3 + 2)u2u2
1,

Subject to g1(x) =
√

x1x1 + x2√
2x2

1 + 2x1x2
P− σ ≤ 0,

g2(x) =
x2√

2x2
1 + 2x1x2

P− σ ≤ 0,

g3(x) =
1√

2x2 + x1
P− σ ≤ 0

g4(~u) =
u1 + u2

1.5
− 1 6 0,

Variables′ range l = 100 cm, P = 2 kN/cm2, σ = 2 kN/cm2,

(0 ≤ x1, x2 ≤ 1,)

(29)

RSRFT was used to allocate the design variables. Furthermore, we compared RSRFT
to other methods used to address the TBTD problem, which are shown in Table 4. Since
RSRFT obtained the smallest weight (as given under Optimal Weight), it is clear from

Appl. Sci. 2023, 13, 3206 13 of 24

the findings in this table that it offered the best solution. However, the outcomes of the
traditional RSA were better than the competitive algorithms, including RSRFT.

Table 4. The value of the estimated parameters using RSRFT to solve the 3-bar truss design problem.

Algorithm
Estimated Values for Parameters

Optimal Weight
x1 x2

RSRFT 0.78875052 0.4080351 263.89584
RFO 0.75356 0.55373 268.51195

RSA [17] 0.78873 0.40805 263.8928
DEDS [61] 0.78867513 0.40824828 263.89584
SSA [62] 0.78866541 0.408275784 263.89584

MBA [63] 0.7885650 0.4085597 263.89585
PSO-DE [58] 0.7886751 0.4082482 263.89584

Ray and Saini [54] 0.795 0.395 264.3
CS [64] 0.78867 0.40902 263.9716

AAA [65] 0.7887354 0.408078 263.895880
GOA [66] 0.78889755557 0.40761957011 263.89588149

4.1.5. Speed Reducer Problem

In order for an airplane’s propeller and engine to rotate at an efficient speed, a gearbox
between them is needed (see Figure 6 [67]). The optimization strategy employed to address
the speed reducer problem is intended for minimizing the design’s weight while still
meeting the requirements for the bending stress of the gear teeth, surface stress, transverse
shaft deflections, and stresses in the shafts. The best value for each of the seven design
factors must be established to solve this problem.

Figure 6. The speed reducer problem.

These variables are the face width (x1), the module of the teeth (x2), the number of
teeth on the pinion (x3), the lengths of the first and second shafts between the bearings (x4
and x5, respectively), the first shaft’s diameter (x6 and x7, respectively), and the module
of the teeth (x2). Given that it contains more limitations than other issues, the speed
reducer problem is defined as having a high degree of complexity. Below is a diagram that
represents this issue mathematically.

Appl. Sci. 2023, 13, 3206 14 of 24

Assume f (x) = 0.7854x1x2
2(3.3333x2

3 + 14.9334x3 − 43.0934)−
1.508x1(x2

6 + x2
7) + 7.4777x3

6 + x3
7 + 0.7854x4x2

6 + x5x2
7

Minimize f (~u) = (u3 + 2)u2u2
1,

Subject to g(1) =
27

x1x2
2x3
− 1 ≤ 0,

g(2) =
397.5

x1x2
2x2

3
− 1 ≤ 0,

g(3) =
1.93x3

4
x2x3x4

6
− 1 ≤ 0,

g(4) =
1.93x3

5

x2x3x4
7
− 1 ≤ 0,

g(5) =
1

110x3
6

√
(

745x4

x2x3
)2 + 16.9× 106 − 1 ≤ 0,

g(6) =
1

85x3
7

√
(

745x5

x2x3
)2 + 157.5× 106 − 1 ≤ 0,

g(7) =
x2x3

40
− 1 ≤ 0,

g(8) =
5x2

x1
− 1 ≤ 0,

g(9) = (x1/12x2)− 1 ≤ 0,

g(10) =
1.5x6 + 1.9

x4
− 1 ≤ 0,

g(11) =
1.1x7 + 1.9

x5
− 1 ≤ 0

Variables′ range (0.7 ≤ x2 ≤ 0.8), (2.6 ≤ x1 ≤ 3.6), (17 ≤ x3 ≤ 28), (7.3 ≤ x4 ≤ 8.3),

(2.9 ≤ x6 ≤ 3.9), (7.3 ≤ x5 ≤ 8.3), (5 ≤ x7 ≤ 5.5)

(30)

Table 5 provides the comparative findings between RSRFT and the other MH ap-
proaches that have been given in the literature. It is clear that RSRFT surpassed the majority
of the techniques that were examined (as given under Optimal Weight), and it was gen-
erally assigned the third rank. CS and SBSM were assigned the first and second ranks,
respectively [64,68]. Since all three algorithms almost had the same ideal weight, there was
little difference between them.

Table 5. The value of the estimated parameters using RSRFT to solve the speed reducer design
problem.

Method
Estimated Values for Parameters

Optimal Weight
x1 x2 x3 x4 x5 x6 x7

RSRFT 3.5000055 0.7 17 7.305888 8.004689 3.3502353 5.2868060 3000.97899
RFO 3.500001 0.7 17.00002 7.314497 8.0294718 3.350253 5.2867662 3001.5811

RSA [17] 3.50279 0.7 17 7.30812 7.74715 3.35067 5.28675 2996.5157
GA [69] 3.510253 0.7 17 8.35 7.8 3.362201 5.287723 3067.561

GSA [46] 3.600000 0.7 17 8.3 7.8 3.369658 5.289224 3051.120
HS [70] 3.520124 0.7 17 8.37 7.8 3.366970 5.288719 3029.002

Appl. Sci. 2023, 13, 3206 15 of 24

Table 5. Cont.

Method
Estimated Values for Parameters

Optimal Weight
x1 x2 x3 x4 x5 x6 x7

SES [71] 3.506163 0.700831 17 7.460181 7.962143 3.362900 5.308949 3025.005127
MDA [72] 3.5 0.7 17 7.3 7.670396 3.542421 5.245814 3019.583365
SBSM [68] 3.506122 0.700006 17 7.549126 7.859330 3.365576 5.289773 3008.08
SCA [11] 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563
CS [64] 3.5015 0.7000 17 7.6050 7.8181 3.3520 5.2875 3000.9810

PSO [73] 3.5001 0.7000 17.0002 7.5177 7.7832 3.3508 5.2867 3145.922
FA [74] 3.507495 0.7001 17 7.719674 8.080854 3.351512 5.287051 3010.137492

hHHO-SCA [75] 3.506119 0.7 17 7.3 7.99141 3.452569 5.286749 3029.873076

4.1.6. Multiple Disc Clutch Brake Problem

Finding the values of five design factors to reduce the mass of an MDCB is the primary
goal of research into the multiple disc clutch brake (MDCB) problem, which was cited
in [63]. The design parameters are shown in Figure 7 as the inner radius x1, outer radius x2,
disc thickness x3, actuation force x4, and number of friction surfaces x5. Below is a diagram
that represents this issue mathematically.

Figure 7. The multiple disc clutch brake problem.

Appl. Sci. 2023, 13, 3206 16 of 24

Assume f (x) = Π(r2
o − r2

i)t(Z + 1)ρ

1.508x1(x2
6 + x2

7) + 7.4777x3
6 + x3

7 + 0.7854x4x2
6 + x5x2

7

Minimize f (~u) = (u3 + 2)u2u2
1,

Subject to g1(x) = lmax − (Z + 1)(t + δ) ≥ 0, g2(x) = ro − ri − ∆r ≥ 0

g3(x) = Pmax νsr max − Prz νsr ≥ 0 g4(x) = Pmax− Prz > 0,

g5(x) = νsr max − νsr ≥ 0, g6 = Tmax − T ≥ 0

g7(x) = Mh − sMs ≥ 0, g8(x) = T ≥ 0

where Mh =
2
3

µFZ
r3

o − r2
i

r2
o − r3

i
, Prz =

F
Π(r2

o − r2
i)

, νrz =
2Π(r3

o − r3
i)

90(r2
o − r2

i)
, T =

Iz Π n
30(Mh + M f)

∆r = 20 mm, Iz = 55 kgmm2, Pmax = 1 MPa, Fmax = 1000 N,

νsr max = 10 m/s, lmax = 30 mm, ri min = 60,

Tmax = 15 s, µ = 0.5, s = 1.5, Ms = 40 Nm, M f = 3 Nm, n = 250 rpm,

Fmax = 1000, Zmin = 2, Zmax = 9, ri max = 80, ro min = 90,

ro max = 110, tmin = 1.5, tmax = 3, Fmin = 600

(31)

Table 6 lists the outcomes of RSRFT and other MH approaches collected from the
literature. From this table, it is clear that RSRFT obtained the ideal cost (0.31176) (as given
under Optimal Weight), which was then followed by CMVO, MFO, MVO, and the WCA,
which had the same efficiency.

Table 6. The value of the estimated parameters using RSRFT to solve the multiple disc clutch
brake problem.

Method
Estimated Values for Parameters Optimal

Weightx1 x2 x3 x4 x5

RSRFT 69.003908 89.003914 1 789.52330 2.965888 0.307109
RFO 72 93 762 2 1 0.25359

RSA [17] 70.0347 90.0349 1.0000 801.7285 2.9740 0.31176
TLBO [76] 70 90 1 810 3 0.313656611

NSGA-II [77] 70 90 1.5 1000 3 0.470400
WCA [78] 70 90 1 910 3 0.313656
MVO [79] 70 90 1 910 3 0.313656

CMVO [79] 70 90 1 910 3 0.313656
MFO [80] 70 90 1 910 3 0.313656

4.2. Series of Analysis 2: RSRFT for Security in the IoT

Within this section, we evaluated the applicability of RSRFT to improve the detection
of IDSs in the IoT environment [81]. In general, the problem definition of IDSs in the Internet
of Things (IoT) is the need to detect and prevent unauthorized access, data breaches, and
malicious activities in IoT devices and networks. With the rapid growth of the IoT, there
has been an increase in the number and complexity of connected devices, which has also
led to an increase in the number of potential attack vectors and vulnerabilities. As a result,
there is a growing need for effective IDSs that can identify and respond to these threats in
real-time [82].

The challenge of developing IDSs for the IoT is the complexity of the networks and the
diversity of the devices. The systems need to be designed to detect and respond to a wide
range of attack types, including malware, denial-of-service attacks, and insider threats.
Furthermore, the systems need to be able to identify anomalous behaviors and patterns
that may indicate an attack, while also avoiding false positives [83].

Appl. Sci. 2023, 13, 3206 17 of 24

To address this problem, we present an alternative technique to detect the intrusions
in the IoT. In this experiment, RSRFT was used as a feature selection technique to enhance
the process of selecting the important features of the collected data in the IoT environment.
This can be achieved through by the Boolean version of RSRFT by converting the real value
of each solution into a binary value.

The proposed RSRFT starts by generating the value of the initial population. This can
be defined as

X = LB + rand× (UB− LB) (32)

where UB and LB are the upper and lower boundaries, respectively. In this experiment,
the values of UB = 1 and LB = 0, while rand ∈ [0, 1]. This step is followed by obtaining
the binary of Xi using the following formula:

BXi =

{
1 i f Xi > 0.5
0 otherwise

(33)

The next process is to assess the quality of the selected features, which correspond to
the ones in Xi, using the following formula.

Fiti = η × γi + (1− η)× (
|BXi|

D
) (34)

where γi denotes the classification error of the KNN classifier, whereas the term (|BXi |
D)

refers to the ratio of features selected using Xi. The value of η ∈ [0, 1] is applied as the
weight of the two terms of Equation (34).

Thereafter, according to the fitness values, we determined the best of them and their
corresponding solution Xb. Then, we used this solution and the operators of RSRFT that
are discussed in Sections 3.2 and 3.3 to update X. The next step after reaching the stop
conditions is to compute the efficiency of Xb using the testing set of IoT data.

In the following sections, we introduce the datasets used in this experiment to assess
RSRFT as an FS method. The comparison was conducted with moth–flame optimization
(MFO) [60], the bat (BAT) algorithm [84], transient search optimization (TSO) [83], and the
RSA. The parameter of each approach was assigned based on the original implementation.

4.2.1. Dataset Description

The proposed algorithm was assessed using the KDDCup-99, NSL-KDD, BoT-IoT, and
CICIDS-2017 datasets. The KDD-99 dataset, created by the Defense Advanced Research
Project Agency (DARPA) in 1988, contains network traffic data. Another kind of dataset,
called NSL-KDD, was also used, which is a derived dataset with no duplicate network
traffic records and grouped into four types: Probe, U2R, R2L, and DoS, in addition to
normal data. The CICIDS-2017 dataset [85] was obtained from 25 clients at the Canadian
Institute for Cybersecurity (CIC) using the CICFlowMeter tool to simulate realistic network
traffic obtained using protocols such as HTTP,SSH, HTTPS, FTP, and email. Additionally,
the Bot-IoT dataset [86] includes 3.5 million records produced from different IoT devices
and features botnet attacks.The description of all of these datasets is given in Table 7.

4.2.2. Evaluation Criteria and Experimental Setup

In this study, various performance and evaluation criteria were applied to evaluate the
effectiveness of RSRFT, including the average accuracy (AVAcc), the average recall (AVSens),
and the average precision (AVPrec):

• AVAcc: This stands for the rate of the correct detection of intrusions in the IoT environ-
ment. AVAcc can be formulated as

AVAcc =
1

Nr

Nr

∑
k=1

Acck
Best, AccBest =

TP + TN
TP + FN + FP + TN

(35)

Appl. Sci. 2023, 13, 3206 18 of 24

where Nr = 25 is the total number of runs. FN, TN, TP, and FP refer to false negative,
true negative, true positive, and false positive, respectively.

• AVSens: This can also be referred to as the true positive rate, and it describes the
percentage of correctly predicted positive intrusions. AVSens is computed as

AVSens =
1

Nr

Nr

∑
k=1

Sensk
Best, SensBest =

TP
TP + FN

(36)

• AVPrec: This describes the ratio of true detections among all correct detection samples,
and it is formulated as

AVPrec =
1

Nr

Nr

∑
k=1

Preck
Best, PrecBest =

TP
FP + TP

(37)

Table 7. Description of the datasets.

Target Class
KDDCup-99 NSL-KDD

Target Class
Bot-IoT

Target Class
CICIDS-2017

Train Test Train Test Train Test Train Test

Normal 97,278 60,593 67,343 9710 Normal 370 107 Benign 727,397 163,572
DoS 391,458 229,853 45,927 7458 DoS 1,320,148 385,309 DDoS 112,901 25,388

Probe 4107 4166 11,656 2422 DDoS 1,541,315 330,112 FTP-Patator
SSH-Patator

6997
5201

1574
1169

R2L 1126 16,189 995 2887 Reconnaissance 72,919 18,163 PortScan
Brute Force

140,043
1329

31,492
299

U2R 52 228 52 67 Theft 65 14 SQL Injection
XSS

19
575

4
129

4.2.3. Results and Discussion

The performance of the enhanced RSA based on TMO and RFO as the feature selection
technique to improve the detection of IDSs in the IoT environment is discussed in this
section. Table 8 shows the average results of the developed RSRFT to improve the detection
of IDSs in the IoT environment using the training and testing sets. From these results, it can
be noticed that RSRFT had a high ability to improve the detection of the IDSs in terms of
accuracy. In addition, it can be observed that the behavior of RFO alone was the worst one
among the tested algorithms using the training and testing sets. According to the results
of the precision, recall, and F1-measure, it can be noticed that the developed algorithm
was the first-ranked algorithm. This indicated that the ability of the developed RSRFT was
better than exploring and exploiting the search space.

Figures 8 and 9 show the average accuracy, precision, F1-measure, and recall using the
training and testing sets, respectively. From these figures, we can see that the average of
each measure (i.e., accuracy, precision, F1-measure, and recall) of RSRFT was better than
that of the other methods using the training and testing sets. This was followed by the RSA,
which provided better results than the other methods.

Moreover, we used the Friedman test as a non-parametric test to assess if there was
a significant difference between the developed RSRFT and the others. Table 9 shows the
mean rank obtained using each approach over the training and testing sets and among the
performance measures. From these results, it can be noticed that the developed RSRFT had
the highest mean rank, and the difference between it and the others was significant since
the p-value was less than 0.05, except for the precision value using the training set.

From the previous results of the two experimental series, it can be observed that the
developed RSRFT had high efficiency to determine the solution of different engineering
problems, whereas we noticed the high ability of RSRFT to enhance the process of im-
proving the detection of IDSs in the IoT environment by reducing the number of selected
features. This resulted from boosting the operators of the RSA, RFO, and TMO to improve
the rate of convergence towards the optimal solution. However, there are some limitations

Appl. Sci. 2023, 13, 3206 19 of 24

in RSRFT, for example the initial population can influence the performance of the developed
method. In addition, the diversity of the solutions needs more improvement.

Table 8. Results of RSRFT for improving the detection of IDSs in the IoT environment.

Train Test

Accuracy Precision F1-Measure Recall Accuracy Precision F1-Measure Recall

K
D

D
99

RSRFT 99.946 99.483 99.943 99.923 93.615 92.649 90.380 93.495
RFO 92.275 92.414 97.304 93.126 84.375 82.501 87.351 85.225
BAT 98.007 94.847 97.337 98.247 90.347 89.134 90.093 90.587
TSO 95.439 91.027 97.437 94.919 87.536 80.791 87.479 87.016
MFO 96.073 97.631 98.371 97.123 88.175 87.763 88.420 89.225
RSA 99.910 99.909 99.906 99.910 92.040 89.684 89.985 92.040

N
SL

-K
D

D

RSRFT 99.382 99.545 99.548 99.301 76.407 82.371 72.731 77.107
RFO 91.947 92.080 96.968 92.797 67.951 71.131 68.907 68.801
BAT 97.669 94.501 96.989 97.909 73.671 73.501 68.905 73.911
TSO 95.078 90.657 97.067 94.558 71.330 71.298 69.697 70.810
MFO 95.745 97.297 98.035 96.795 71.626 76.122 69.844 72.676
RSA 99.201 99.158 99.148 99.201 76.107 82.171 71.731 76.107

BI
oT

RSRFT 99.568 99.568 99.568 99.568 99.512 99.420 99.080 99.064
RFO 99.472 99.472 99.472 99.472 98.956 98.957 99.005 98.964
BAT 99.475 99.475 99.474 99.475 99.019 98.987 99.012 99.021
TSO 99.460 99.459 99.459 99.460 98.986 98.941 99.005 98.981
MFO 99.480 99.480 99.480 99.480 98.998 99.013 99.020 99.009
RSA 98.829 98.829 98.829 98.829 99.020 99.098 99.070 99.038

C
IC

20
17

RSRFT 99.941 99.920 99.918 99.931 99.931 99.947 99.983 99.931
RFO 99.690 99.490 99.450 99.690 99.430 99.240 99.190 99.430
BAT 99.490 99.630 99.440 99.640 99.230 99.360 99.180 99.380
TSO 99.680 99.750 99.680 99.710 99.420 99.480 99.420 99.450
MFO 99.360 99.370 99.480 99.430 99.100 99.120 99.220 99.170
RSA 99.911 99.910 99.889 99.911 99.911 99.907 99.888 99.911

Figure 8. Performance measures of RSRFT using the training set.

Appl. Sci. 2023, 13, 3206 20 of 24

Figure 9. Performance measures of RSRFT using the testing set.

Table 9. The mean rank using the Friedman test.

p-Value RSRFT RFO BAT TSO MFO RSA

Tr
ai

ni
ng

Accuracy 0.046 6 2.25 3.5 2.25 3 4
Precision 0.0543 5.75 2.25 3.25 2 3.5 4.25

F1-Measure 0.0208 6 1.75 2.25 3 4 4
Recall 0.0435 6 2 3.5 2.5 3 4

Te
st

in
g Accuracy 0.0064 6 1.75 3.5 2.25 2.5 5

Precision 0.0064 6 1.75 3.25 2 3 5
F1-Measure 0.0101 6 1.625 2.5 2.625 3.5 4.75

Recall 0.0054 6 1.5 3.5 2.5 2.5 5

5. Conclusions

In this paper, the use of an enhanced version of the reptile search algorithm (RSA) to
solve engineering problems was shown to be a highly effective approach. By combining
the strengths of the RSA with those of the red fox algorithm (RFO) and triangular mutation
operator (TMO), this modification was able to effectively explore a wider range of possible
solutions and find improved solutions more quickly. The results of this study demonstrated
the effectiveness of the developed approach, named RSRFT, in solving a variety of engineer-
ing problems and showed that this algorithm can provide reliable and accurate solutions in
a variety of contexts. Overall, the use of RSRFT represents a promising advancement in the
field of engineering and has the potential to greatly improve the design and optimization
of various systems and technologies. In the second experiment series, we evaluated RSRFT
as a feature selection method to improve the classification of intrusion detection systems
(IDSs) in the IoT and cloud environments. Four IDS datasets were utilized to test the
performance of RSRFT, namely, KDD99, NSL-KDD, BIoT, and CIC2017. The results also
confirmed the superiority of RSRFT.

In future works, the presented RSRFT can be extended to other areas, including task
scheduling in cloud and fog environments, medical applications, agriculture, and others.
Additionally, it may be tested on multi-objective optimization problems and solar cell
parameter estimation.

Appl. Sci. 2023, 13, 3206 21 of 24

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research project was funded by the Deanship of Scientific Research, Princess Nourah
bint Abdulrahman University, through the Program of Research Project Funding After Publication,
grant No (43- PRFA-P-24).

Data Availability Statement: All of the datasets are public, as we described in the main texts.

Acknowledgments: This research project was funded by the Deanship of Scientific Research, Princess
Nourah bint Abdulrahman University, through the Program of Research Project Funding After
Publication, grant No (43- PRFA-P-24).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Acronyms
IDS Intrusion detection system
IoT Internet of Things
MH Metaheuristic
RFO Red fox algorithm
RSA Reptile search algorithm
TMO Triangular mutation operator
Variables
Xc Combination vector triangle
ηij Hunting operator
Bestj Best solution
M(xi) Mean value of X
N Number of solutions
t Iteration
X Population
x(r1,j) Value of randomly selected solution

References
1. Sarkar, A.; Guchhait, R.; Sarkar, B. Application of the artificial neural network with multithreading within an inventory model

under uncertainty and inflation. Int. J. Fuzzy Syst. 2022, 24, 2318–2332. [CrossRef]
2. Sarkar, B.; Takeyeva, D.; Guchhait, R.; Sarkar, M. Optimized radio-frequency identification system for different warehouse shapes.

Knowl.-Based Syst. 2022, 258, 109811. [CrossRef]
3. Houssein, E.H.; Çelik, E.; Mahdy, M.A.; Ghoniem, R.M. Self-adaptive Equilibrium Optimizer for solving global, combinatorial,

engineering, and Multi-Objective problems. Expert Syst. Appl. 2022, 195, 116552. [CrossRef]
4. Abualigah, L.; Ewees, A.A.; Al-qaness, M.A.; Elaziz, M.A.; Yousri, D.; Ibrahim, R.A.; Altalhi, M. Boosting arithmetic optimization

algorithm by sine cosine algorithm and levy flight distribution for solving engineering optimization problems. Neural Comput.
Appl. 2022, 34, 8823–8852. [CrossRef]

5. Al-Qaness, M.A.; Helmi, A.M.; Dahou, A.; Elaziz, M.A. The applications of metaheuristics for human activity recognition and fall
detection using wearable sensors: A comprehensive analysis. Biosensors 2022, 12, 821. [CrossRef] [PubMed]

6. Al-Qaness, M.A.; Ewees, A.A.; Abualigah, L.; AlRassas, A.M.; Thanh, H.V.; Abd Elaziz, M. Evaluating the Applications of
Dendritic Neuron Model with Metaheuristic Optimization Algorithms for Crude-Oil-Production Forecasting. Entropy 2022,
24, 1674. [CrossRef]

7. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85. [CrossRef]
8. Dorigo, M.; Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary

Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; Volume 2, pp. 1470–1477.
9. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.
10. Yang, X.S.; Slowik, A. Firefly algorithm. In Swarm Intelligence Algorithms; CRC Press: Boca Raton, FL, USA, 2020; pp. 163–174.
11. Mirjalili, S. SCA: A sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]
12. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A. Multi-verse optimizer: A nature-inspired algorithm for global optimization. Neural

Comput. Appl. 2016, 27, 495–513. [CrossRef]
13. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.

Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

http://doi.org/10.1007/s40815-022-01276-1
http://dx.doi.org/10.1016/j.knosys.2022.109811
http://dx.doi.org/10.1016/j.eswa.2022.116552
http://dx.doi.org/10.1007/s00521-022-06906-1
http://dx.doi.org/10.3390/bios12100821
http://www.ncbi.nlm.nih.gov/pubmed/36290958
http://dx.doi.org/10.3390/e24111674
http://dx.doi.org/10.1007/BF00175354
http://dx.doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.1007/s00521-015-1870-7
http://dx.doi.org/10.1016/j.future.2019.02.028

Appl. Sci. 2023, 13, 3206 22 of 24

14. Faramarzi, A.; Heidarinejad, M.; Mirjalili, S.; Gandomi, A.H. Marine Predators Algorithm: A nature-inspired metaheuristic.
Expert Syst. Appl. 2020, 152, 113377. [CrossRef]

15. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila optimizer: A novel meta-heuristic
optimization algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]

16. Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The arithmetic optimization algorithm. Comput. Methods
Appl. Mech. Eng. 2021, 376, 113609. [CrossRef]

17. Abualigah, L.; Abd Elaziz, M.; Sumari, P.; Geem, Z.W.; Gandomi, A.H. Reptile Search Algorithm (RSA): A nature-inspired
meta-heuristic optimizer. Expert Syst. Appl. 2022, 191, 116158. [CrossRef]

18. Bo, Q.; Cheng, W.; Khishe, M. Evolving chimp optimization algorithm by weighted opposition-based technique and greedy
search for multimodal engineering problems. Appl. Soft Comput. 2023, 132, 109869. [CrossRef]

19. Shen, Y.; Zhang, C.; Gharehchopogh, F.S.; Mirjalili, S. An Improved Whale Optimization Algorithm based on Multi-Population
Evolution for Global Optimization and Engineering Design problems. Expert Syst. Appl. 2023, 215, 119269. [CrossRef]

20. Yang, X.; Wang, R.; Zhao, D.; Yu, F.; Huang, C.; Heidari, A.A.; Cai, Z.; Bourouis, S.; Algarni, A.D.; Chen, H. An adaptive quadratic
interpolation and rounding mechanism sine cosine algorithm with application to constrained engineering optimization problems.
Expert Syst. Appl. 2023, 213, 119041. [CrossRef]

21. Hong, J.; Shen, B.; Xue, J.; Pan, A. A vector-encirclement-model-based sparrow search algorithm for engineering optimization
and numerical optimization problems. Appl. Soft Comput. 2022, 131, 109777. [CrossRef]

22. Zhao, X.; Fang, Y.; Ma, S.; Liu, Z. Multi-swarm improved moth–flame optimization algorithm with chaotic grouping and Gaussian
mutation for solving engineering optimization problems. Expert Syst. Appl. 2022, 204, 117562. [CrossRef]

23. Peng, H.; Xiao, W.; Han, Y.; Jiang, A.; Xu, Z.; Li, M.; Wu, Z. Multi-strategy firefly algorithm with selective ensemble for complex
engineering optimization problems. Appl. Soft Comput. 2022, 120, 108634. [CrossRef]

24. Zhang, Y.J.; Wang, Y.F.; Yan, Y.X.; Zhao, J.; Gao, Z.M. LMRAOA: An improved arithmetic optimization algorithm with multi-leader
and high-speed jumping based on opposition-based learning solving engineering and numerical problems. Alex. Eng. J. 2022,
61, 12367–12403. [CrossRef]

25. Al-qaness, M.A.; Ewees, A.A.; Elaziz, M.A.; Samak, A.H. Wind Power Forecasting Using Optimized Dendritic Neural Model
Based on Seagull Optimization Algorithm and Aquila Optimizer. Energies 2022, 15, 9261. [CrossRef]

26. Al-qaness, M.A.; Ewees, A.A.; Thanh, H.V.; AlRassas, A.M.; Dahou, A.; Elaziz, M.A. Predicting CO2 trapping in deep saline
aquifers using optimized long short-term memory. Environ. Sci. Pollut. Res. 2022, 1–15. [CrossRef] [PubMed]

27. Al-qaness, M.A.; Ewees, A.A.; Thanh, H.V.; AlRassas, A.M.; Abd Elaziz, M. An optimized neuro-fuzzy system using advance
nature-inspired Aquila and Salp swarm algorithms for smart predictive residual and solubility carbon trapping efficiency in
underground storage formations. J. Energy Storage 2022, 56, 106150. [CrossRef]

28. Lin, Y.; Bian, X.Y.; Dong, Z.R. A discrete hybrid algorithm based on Differential Evolution and Cuckoo Search for optimizing the
layout of ship pipe route. Ocean. Eng. 2022, 261, 112164. [CrossRef]

29. Zhong, X.; You, Z.; Cheng, P. A hybrid optimization algorithm and its application in flight trajectory prediction. Expert Syst. Appl.
2023, 213, 119082. [CrossRef]

30. Balyan, A.K.; Ahuja, S.; Lilhore, U.K.; Sharma, S.K.; Manoharan, P.; Algarni, A.D.; Elmannai, H.; Raahemifar, K. A hybrid
intrusion detection model using ega-pso and improved random forest method. Sensors 2022, 22, 5986. [CrossRef]

31. Bu, S.J.; Kang, H.B.; Cho, S.B. Ensemble of Deep Convolutional Learning Classifier System Based on Genetic Algorithm for
Database Intrusion Detection. Electronics 2022, 11, 745. [CrossRef]

32. Fatani, A.; Dahou, A.; Al-Qaness, M.A.; Lu, S.; Abd Elaziz, M. Advanced feature extraction and selection approach using deep
learning and Aquila optimizer for IoT intrusion detection system. Sensors 2022, 22, 140. [CrossRef]

33. Mansour, R.F. Blockchain assisted clustering with Intrusion Detection System for Industrial Internet of Things environment.
Expert Syst. Appl. 2022, 207, 117995. [CrossRef]

34. Dahou, A.; Abd Elaziz, M.; Chelloug, S.A.; Awadallah, M.A.; Al-Betar, M.A.; Al-qaness, M.A.; Forestiero, A. Intrusion Detection
System for IoT Based on Deep Learning and Modified Reptile Search Algorithm. Comput. Intell. Neurosci. 2022, 2022, 6473507 .
[CrossRef]

35. Elgamal, Z.; Sabri, A.Q.M.; Tubishat, M.; Tbaishat, D.; Makhadmeh, S.N.; Alomari, O.A. Improved Reptile Search Optimization
Algorithm using Chaotic map and Simulated Annealing for Feature Selection in Medical Filed. IEEE Access 2022, 10, 51428–51446.
[CrossRef]

36. Chauhan, S.; Vashishtha, G.; Kumar, A. Approximating parameters of photovoltaic models using an amended reptile search
algorithm. J. Ambient. Intell. Humaniz. Comput. 2022, 1–16. [CrossRef]

37. Połap, D.; Woźniak, M. Red fox optimization algorithm. Expert Syst. Appl. 2021, 166, 114107. [CrossRef]
38. Khorami, E.; Mahdi Babaei, F.; Azadeh, A. Optimal diagnosis of COVID-19 based on convolutional neural network and red Fox

optimization algorithm. Comput. Intell. Neurosci. 2021, 2021, 4454507. [CrossRef] [PubMed]
39. Natarajan, R.; Megharaj, G.; Marchewka, A.; Divakarachari, P.B.; Hans, M.R. Energy and Distance Based Multi-Objective Red Fox

Optimization Algorithm in Wireless Sensor Network. Sensors 2022, 22, 3761. [CrossRef] [PubMed]
40. Zaborski, M.; Woźniak, M.; Mańdziuk, J. Multidimensional Red Fox meta-heuristic for complex optimization. Appl. Soft Comput.

2022, 131, 109774. [CrossRef]
41. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2020.113377
http://dx.doi.org/10.1016/j.cie.2021.107250
http://dx.doi.org/10.1016/j.cma.2020.113609
http://dx.doi.org/10.1016/j.eswa.2021.116158
http://dx.doi.org/10.1016/j.asoc.2022.109869
http://dx.doi.org/10.1016/j.eswa.2022.119269
http://dx.doi.org/10.1016/j.eswa.2022.119041
http://dx.doi.org/10.1016/j.asoc.2022.109777
http://dx.doi.org/10.1016/j.eswa.2022.117562
http://dx.doi.org/10.1016/j.asoc.2022.108634
http://dx.doi.org/10.1016/j.aej.2022.06.017
http://dx.doi.org/10.3390/en15249261
http://dx.doi.org/10.1007/s11356-022-24326-5
http://www.ncbi.nlm.nih.gov/pubmed/36495438
http://dx.doi.org/10.1016/j.est.2022.106150
http://dx.doi.org/10.1016/j.oceaneng.2022.112164
http://dx.doi.org/10.1016/j.eswa.2022.119082
http://dx.doi.org/10.3390/s22165986
http://dx.doi.org/10.3390/electronics11050745
http://dx.doi.org/10.3390/s22010140
http://dx.doi.org/10.1016/j.eswa.2022.117995
http://dx.doi.org/10.1155/2022/6473507
http://dx.doi.org/10.1109/ACCESS.2022.3174854
http://dx.doi.org/10.1007/s12652-022-04412-9
http://dx.doi.org/10.1016/j.eswa.2020.114107
http://dx.doi.org/10.1155/2021/4454507
http://www.ncbi.nlm.nih.gov/pubmed/34422033
http://dx.doi.org/10.3390/s22103761
http://www.ncbi.nlm.nih.gov/pubmed/35632170
http://dx.doi.org/10.1016/j.asoc.2022.109774
http://dx.doi.org/10.1016/j.advengsoft.2016.01.008

Appl. Sci. 2023, 13, 3206 23 of 24

42. Krohling, R.A.; dos Santos Coelho, L. Coevolutionary particle swarm optimization using Gaussian distribution for solving
constrained optimization problems. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2006, 36, 1407–1416. [CrossRef]

43. Awad, N.H.; Ali, M.Z.; Suganthan, P.N. Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighbor-
hood for solving CEC2017 benchmark problems. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC),
San Sebastián, Spain, 5–8 June 2017; pp. 372–379.

44. Huang, F.z.; Wang, L.; He, Q. An effective co-evolutionary differential evolution for constrained optimization. Appl. Math.
Comput. 2007, 186, 340–356. [CrossRef]

45. Ragsdell, K.; Phillips, D. Optimal design of a class of welded structures using geometric programming. J. Manuf. Sci. Eng. 1976,
38, 1021–1025. [CrossRef]

46. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
47. Deb, K. Optimal design of a welded beam via genetic algorithms. AIAA J. 1991, 29, 2013–2015. [CrossRef]
48. Lee, K.S.; Geem, Z.W. A new meta-heuristic algorithm for continuous engineering optimization: Harmony search theory and

practice. Comput. Methods Appl. Mech. Eng. 2005, 194, 3902–3933. [CrossRef]
49. Mohamed, A.W.; Hadi, A.A.; Fattouh, A.M.; Jambi, K.M. LSHADE with semi-parameter adaptation hybrid with CMA-ES for

solving CEC 2017 benchmark problems. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), San
Sebastián, Spain, 5–8 June 2017; pp. 145–152.

50. Ewees, A.A.; Abd Elaziz, M.; Houssein, E.H. Improved grasshopper optimization algorithm using opposition-based learning.
Expert Syst. Appl. 2018, 112, 156–172. [CrossRef]

51. Kaveh, A.; Khayatazad, M. A new meta-heuristic method: Ray optimization. Comput. Struct. 2012, 112, 283–294. [CrossRef]
52. Coello, C.A.C. Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 2000, 41, 113–127.

[CrossRef]
53. Mezura-Montes, E.; Coello, C.A.C. An empirical study about the usefulness of evolution strategies to solve constrained optimiza-

tion problems. Int. J. Gen. Syst. 2008, 37, 443–473. [CrossRef]
54. Ray, T.; Saini, P. Engineering design optimization using a swarm with an intelligent information sharing among individuals. Eng.

Optim. 2001, 33, 735–748. [CrossRef]
55. Belegundu, A.D.; Arora, J.S. A study of mathematical programmingmethods for structural optimization. Part II: Numerical

results. Int. J. Numer. Methods Eng. 1985, 21, 1601–1623. [CrossRef]
56. He, Q.; Wang, L. A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization. Appl. Math.

Comput. 2007, 186, 1407–1422. [CrossRef]
57. Kaveh, A.; Talatahari, S. An improved ant colony optimization for constrained engineering design problems. Eng. Comput. 2010,

27, 155–182. [CrossRef]
58. Liu, H.; Cai, Z.; Wang, Y. Hybridizing particle swarm optimization with differential evolution for constrained numerical and

engineering optimization. Appl. Soft Comput. 2010, 10, 629–640. [CrossRef]
59. Ray, T.; Liew, K.M. Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans.

Evol. Comput. 2003, 7, 386–396. [CrossRef]
60. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.

[CrossRef]
61. Zhang, M.; Luo, W.; Wang, X. Differential evolution with dynamic stochastic selection for constrained optimization. Inf. Sci. 2008,

178, 3043–3074. [CrossRef]
62. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer

for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
63. Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm: A new population based algorithm for solving

constrained engineering optimization problems. Appl. Soft Comput. 2013, 13, 2592–2612. [CrossRef]
64. Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization

problems. Eng. Comput. 2013, 29, 17–35. [CrossRef]
65. YILDIRIM, A.E.; KARCI, A. Application of Three Bar Truss Problem among Engineering Design Optimization Problems using

Artificial Atom Algorithm. In Proceedings of the 2018 International Conference on Artificial Intelligence and Data Processing
(IDAP), Malatya, Turkey, 28–30 September 2018; pp. 1–5.

66. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47.
[CrossRef]

67. Siddall, J.N. Analytical Decision-Making in Engineering Design; Prentice Hall: Upper Saddle River, NJ, USA, 1972.
68. Akhtar, S.; Tai, K.; Ray, T. A socio-behavioral simulation model for engineering design optimization. Eng. Optim. 2002, 34, 341–354.

[CrossRef]
69. SARUHAN, H.; UYGUR, İ. Design optimization of mechanical systems using genetic algorithms. Sak. Üniv. Fen Bilim. Enst. Derg.

2003, 7, 77–84.
70. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.

[CrossRef]

http://dx.doi.org/10.1109/TSMCB.2006.873185
http://dx.doi.org/10.1016/j.amc.2006.07.105
http://dx.doi.org/10.1115/1.3438995
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.2514/3.10834
http://dx.doi.org/10.1016/j.cma.2004.09.007
http://dx.doi.org/10.1016/j.eswa.2018.06.023
http://dx.doi.org/10.1016/j.compstruc.2012.09.003
http://dx.doi.org/10.1016/S0166-3615(99)00046-9
http://dx.doi.org/10.1080/03081070701303470
http://dx.doi.org/10.1080/03052150108940941
http://dx.doi.org/10.1002/nme.1620210905
http://dx.doi.org/10.1016/j.amc.2006.07.134
http://dx.doi.org/10.1108/02644401011008577
http://dx.doi.org/10.1016/j.asoc.2009.08.031
http://dx.doi.org/10.1109/TEVC.2003.814902
http://dx.doi.org/10.1016/j.knosys.2015.07.006
http://dx.doi.org/10.1016/j.ins.2008.02.014
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002
http://dx.doi.org/10.1016/j.asoc.2012.11.026
http://dx.doi.org/10.1007/s00366-011-0241-y
http://dx.doi.org/10.1016/j.advengsoft.2017.01.004
http://dx.doi.org/10.1080/03052150212723
http://dx.doi.org/10.1177/003754970107600201

Appl. Sci. 2023, 13, 3206 24 of 24

71. Mezura-Montes, E.; Coello, C.C.; Landa-Becerra, R. Engineering optimization using simple evolutionary algorithm. In Proceedings
of the 15th IEEE International Conference on Tools with Artificial Intelligence, Sacramento, CA, USA, 5 November 2003;
pp. 149–156.

72. Lu, S.; Kim, H.M. A regularized inexact penalty decomposition algorithm for multidisciplinary design optimization problems
with complementarity constraints. J. Mech. Des. 2010, 132, 410051–4100512. [CrossRef]

73. Stephen, S.; Christu, D.; David, D.C.N. Design Optimization of Weight of Speed Reducer Problem Through Matlab and Simulation
Using Ansys. Int. J. Mech. Eng. Technol. (IJMET) 2018, 9, 339–349.

74. Baykasoğlu, A.; Ozsoydan, F.B. Adaptive firefly algorithm with chaos for mechanical design optimization problems. Appl. Soft
Comput. 2015, 36, 152–164. [CrossRef]

75. Kamboj, V.K.; Nandi, A.; Bhadoria, A.; Sehgal, S. An intensify Harris Hawks optimizer for numerical and engineering optimization
problems. Appl. Soft Comput. 2020, 89, 106018. [CrossRef]

76. Rao, R.V.; Savsani, V.J.; Vakharia, D. Teaching–learning-based optimization: A novel method for constrained mechanical design
optimization problems. Comput.-Aided Des. 2011, 43, 303–315. [CrossRef]

77. Deb, K.; Srinivasan, A. Innovization: Discovery of innovative design principles through multiobjective evolutionary optimization.
In Multiobjective Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 2008; pp. 243–262.

78. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm—A novel metaheuristic optimization method for
solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [CrossRef]

79. Sayed, G.I.; Darwish, A.; Hassanien, A.E. A new chaotic multi-verse optimization algorithm for solving engineering optimization
problems. J. Exp. Theor. Artif. Intell. 2018, 30, 293–317. [CrossRef]

80. Bhesdadiya, R.; Trivedi, I.N.; Jangir, P.; Jangir, N. Moth-flame optimizer method for solving constrained engineering optimization
problems. In Advances in Computer and Computational Sciences; Springer: Berlin/Heidelberg, Germany, 2018; pp. 61–68.

81. Zarpelão, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A survey of intrusion detection in Internet of Things. J. Netw.
Comput. Appl. 2017, 84, 25–37. [CrossRef]

82. Abomhara, M.; Køien, G.M. Security and privacy in the Internet of Things: Current status and open issues. In Proceedings of the
2014 international conference on privacy and security in mobile systems (PRISMS), Aalborg, Denmark, 11–14 May 2014; pp. 1–8.

83. Fatani, A.; Abd Elaziz, M.; Dahou, A.; Al-Qaness, M.A.; Lu, S. IoT intrusion detection system using deep learning and enhanced
transient search optimization. IEEE Access 2021, 9, 123448–123464. [CrossRef]

84. Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010);
Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74.

85. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of
things for network forensic analytics: Bot-iot dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

86. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic
characterization. ICISSp 2018, 1, 108–116.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1115/1.4001206
http://dx.doi.org/10.1016/j.asoc.2015.06.056
http://dx.doi.org/10.1016/j.asoc.2019.106018
http://dx.doi.org/10.1016/j.cad.2010.12.015
http://dx.doi.org/10.1016/j.compstruc.2012.07.010
http://dx.doi.org/10.1080/0952813X.2018.1430858
http://dx.doi.org/10.1016/j.jnca.2017.02.009
http://dx.doi.org/10.1109/ACCESS.2021.3109081
http://dx.doi.org/10.1016/j.future.2019.05.041

	Introduction
	Background
	The Reptile Search Algorithm
	Exploration Search
	Exploitation Search

	Red Fox Algorithm
	Triangular Mutation Operator

	Proposed RSRFT Method
	Initial Phase
	Updating Phase
	Terminal Phase

	Experimental Results and Discussion
	Series of Analysis 1: Engineering Problems
	Welded Beam Design Problem
	Tension/Compression Spring Design Problem
	Pressure Vessel Design Problem
	Three-Bar Truss Design Problem Design
	Speed Reducer Problem
	Multiple Disc Clutch Brake Problem

	Series of Analysis 2: RSRFT for Security in the IoT
	Dataset Description
	Evaluation Criteria and Experimental Setup
	Results and Discussion

	Conclusions
	References

