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Abstract: Most of the published literature regarding bearing capacity are often focused on linear
and associative soils. Concerning the intrinsic strength nonlinearity in dilatancy soils, this study
investigates the problem of the seismic bearing capacity in the framework of the kinematic theorem of
limit analysis. The conventional linear Mohr–Coulomb criterion is substituted with a nonlinear power
law criterion to depict the nonlinearity of the soil strength. The non-associative feature of soil materials
is considered by defining a nonlinear dilatancy coefficient. A generalized tangential technique is
accordingly introduced to linearize the strength envelope for making the nonlinear criterion tractable
in the analysis. A non-symmetrical translational failure mechanism that is comprised of several rigid
wedges is used to characterize the failure of the foundation at the limit state. Moreover, the seismic
action is considered by the classic pseudo-static method. Based upon the energy equilibrium theory
of the upper-bound limit analysis, new analytical solutions are derived from the work-balanced
equation with nonlinearity and dilatancy. This rigorous upper-bound solution is formulated as a
multivariate optimization problem and is readily addressed by sequential quadratic programming
(SQP). To verify the reliability of the new expressions, the present results are compared with already
posted solutions and the original pseudo-dynamic solutions. The comparative results show a good
agreement with previous works, and the correctness and rationality of the new analytical solutions are
validated. The detailed parametric study reveals that, in the non-associative flow soils, the ultimate
bearing capacity is significantly decreased with a reduction in the dilatancy coefficient. Particularly
in the linear condition, namely m = 1, the larger the internal friction angle is, the more obvious the
influence of the non-associative feature on the bearing capacity is.

Keywords: seismic bearing capacity; shallow foundations; multi-block mechanism; kinematic
theorem

1. Introduction

The foundation is the mainstay that directly bears the load transferred from the
superstructure. It plays an important role in maintaining the safety and stability of the
whole structure since the outcome and casualties are immeasurable once the failure of the
foundations suddenly occurs, especially suffering from natural hazards such as earthquake
striking. Therefore, the influence of earthquakes on the seismic safety of shallow strip
footings draws much attention. Earlier, numerous efforts on the seismic bearing capacity
have been made by several researchers with various methods [1–8].

Concerning the description of seismic acceleration, several proposals were put for-
ward, such as the conventional pseudo-static method, pseudo-dynamic method and its
modification, or directly inputting the seismic signal in a numerical simulation [9–17].
Recently, Keshavarz and Nemati [18] studied the seismic ultimate bearing capacity of strip
footing resting on reinforced soils using a pseudo-static method by the stress characteris-
tics method. The same procedure was applied to foundations resting on rock following
the Hoek–Brown criterion by Keshavarz et al. [19]. Additionally, Casablanca et al. [20]
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revisited the problem of static and seismic bearing capacity factors of foundations placed
on slopes, where the influence of the earthquake wave-induced loads in soils and inertia
forces resulting from the structural dynamic response are analyzed separately. As for the
limit equilibrium method, Ghosh and Debnath [21] conducted a seismic analysis of the
soil–foundation system in M-C materials. A bearing capacity coefficient related to weight,
surcharge, and cohesion was formulated. Izadi et al. [22] considered the effect of undrained
shear strength varying with depth on the bearing capacity of foundations and derived
the seismic bearing capacity of shallow strip footing on heterogeneous marine deposits.
Nouzari et al. [23] studied the bearing capacity of foundations overlying the unsaturated
soil deposits, which made the field research more complete. Note that the seismic analysis
in the aforementioned contributions was considered by the pseudo-static method, which
directly reflects that the application of the pseudo-static method is still predominant.

In addition, based on the limit analysis method, Qin and Chian [24] established a
discretization-based technique to address the seismic stability problem in a non-uniform
soil slope by a pseudo-dynamic approach; then, the same discretization technique was
applied to a similar circumstance for estimating the bearing capacity of the slope which
suffers from Rayleigh waves (a kind surface wave forming in the process of the body wave
propagates to the surface). Such a seismic analysis considered the dynamic properties
of earthquake waves and provided a comprehensive understanding of how the dynamic
parameters influence the ultimate bearing capacity of the slopes. However, the accuracy of
the solution only improved by 5%, and this improvement seems inconspicuous. Moreover,
the theorem of the aforementioned pseudo-dynamic analyses is still defective, such as the
violation of the zero-stress boundary condition, being unable to consider the damping of
geomaterials, and the assumption of a constant amplitude amplification factor not being
thoroughly addressed. Moreover, the structure design in practice tends to be conservative
so that one can provide a safer result. Thus, the classic pseudo-static method is adopted in
this paper instead of the pseudo-dynamic method.

Apart from the external adverse factors [25–30], the inherent nonlinearity of soil
strength and the non-associative characteristics of plastic flow is also necessary to be paid
attention to [30–32]. In reality, amounts of geotechnical tests and experiments have shown
that the strength envelope of soils is often nonlinear in various stress states due to the
sedimentary condition and stress history, and the plastic flow of dilatancy soils is not
always associative. Therefore, several nonlinear failure criteria, such as the power law (PL)
criterion for soils and the Hoek–Brown criterion and its modified forms for rock masses, are
proposed to account for this characteristic in the stress–strain space. To make the nonlinear
criteria tractable in theoretical analysis, Zhang and Chen [33] proposed a generalized
tangential technique to calculate the equivalent Mohr–Coulomb (M-C) strength parameters
and evaluate the slope stability. In practice, the plastic flow of geomaterials at a limit
failure state usually shows non-associated characteristics. In view of this, Drescher and
Detournay [34] defined a nonlinear dilatancy coefficient ζ to consider the non-associative
feature of materials which keeps the associative flow rule unchanged. Then, those methods
were extended to assess stability problems under nonlinear failure criteria with more
complicated conditions involving slopes with cracks, water pressure, and tunnel excavation,
etc. [35–42].

Prior to the analysis, the failure mechanism is necessary to be determined first. Ac-
cording to the situation, whether the seismic loading is considered or not, the failure
mechanism of shallow foundations consists of two types: one is the symmetrical mecha-
nism that applies to seismic conditions, while the other is non-symmetrical that is capable
of handling the earthquake action. For addressing the bearing capacity problem under
seismic conditions, Soubra [43] proposed two multi-block translational mechanisms. One
of the multi-block mechanisms is non-symmetrical and is used for a seismic situation;
it consists of a certain number of rigid blocks that can slide with each other in the limit
state, which makes the failure of the foundation easier to achieve and can derive a fine
upper-bound solution. Therefore, this study focuses on the influence of the strength non-
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linearity and dilatancy of geomaterials on the ultimate bearing capacity of foundations
using the non-symmetrical multi-block mechanism and pseudo-static method. Then, a
closed-form analytical expression of the bearing capacity of strip footings is derived from
the equilibrium between the internal energy dissipation and the external work rate. This
solution is determined by 2n + 1 dependent variables, which are difficult to be accurately
solved; therefore, an optimization toolbox embedded in MATLAB software is adopted to
search for the least upper-bound solution. Moreover, a direct optimization procedure is
used to find the best bearing capacity instead of the superposition method that calculates
the bearing capacity factors, respectively. The detailed implementation of this work is
provided in the following sections.

2. Methodology
2.1. Kinematic Theorem of Limit Analysis

It is shown that, after long-term development and improvement, the limit analysis
theorem has been widely accepted by researchers and designers due to its rigorous theory
and robustness. Chen [44] initially summarized the existing contributions of limit analysis
and provided a systematic elaboration of the theoretical background, formula derivation,
and practical application. It is known that the principal part of limit analysis is made up
of the kinematic theorem which addresses the geotechnical engineering problem from the
perspective of kinematics and the stress equilibrium theorem which solves the equilibrium
problem in the context of stress analysis. Because of the intrinsic theory feature of the limit
analysis, the kinematic method is capable of addressing the problems analytically and
is usually preferred by scholars while the lower bound method focuses on establishing
a statically permissible stress field which is complicated to construct analytically and is
usually solved by the finite element method.

In this section, only the kinematic approach of the limit analysis is taken into consider-
ation. Some basic assumptions are made as follows to accommodate for the applicability of
the kinematic limit analysis. The soil materials in the limit state present an ideal elastic-
plastic deformation and the plastic flow respects the normal flow rule. Assuming the
principal rate of the plastic strain and principal stress is coaxial, the following relationship
between stress and the rate of strain is derived from the associated flow rule and the
normality of the yield function:

.
εij =

.
λ

∂ f
(
σ′ ij
)

∂σ′ ij
,

.
λ ≥ 0 (1)

where
.
εij is the rate of the plastic strain, σ′ ij is the effective stress, f

(
σ′ ij
)
= 0 is the yield

function, and
.
λ is a non-negative coefficient. The upper-bound theorem typically takes the

following form: ∫
V

σij
.
εijdV ≥

∫
S

TividS +
∫

V
FividV (2)

where Ti and Fi denote the external loads that apply to the surface S and volume V,
respectively, vi represents a kinematically admissible velocity field, σij is effective stress,
and

.
εij is the plastic strain rate along the plastic shear band. Solving this equation, a

closed-form limit load that is no less than the true limit load can be derived.

2.2. Nonlinear Failure Criterion of Dilatancy Soils

The nonlinearity of the soil strength, as a common existence in the natural environment,
has been found by numerous laboratory tests and in situ tests. After constantly fitting
from trial and error, the generalized form of the nonlinear failure criterion can be typically
presented as a P-L expression for the soil materials in σn − τ stress space:

τ = c0

(
1 +

σn

σt

) 1
m

(3)
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where σn and τ denote the stress state in the slip surface at failure, σt represents the uniaxial
tensile strength which can be derived from the experiment, the physical meaning of c0 is
the initial cohesion, and m is a dimensionless coefficient that describes the degree of the
nonlinearity of the strength envelope; when m = 1, the above nonlinear criterion becomes
the linear M-C criterion. There are no proper measures to directly apply the nonlinear
criterion to the analysis so far. Several linearized methods can be found in the literature,
such as the equivalent M-C parameters method, tangential technique, and piecewise linear
method, among which the tangential technique is widely applied in the limit analysis
because of its advantage of a clear concept and easy implementation. Therefore, the
tangential technique developed by Zhang and Chen [33] and Yang and Yin [45] is adopted
in this work. Introducing a tangential line to linearize the nonlinear strength criterion
makes the nonlinear envelope tractable. As illustrated in Figure 1, for a random straight
line that is tangent to the nonlinear envelope at point P, the tangential equation reads:

τt = ct + σn tan ϕt (4)

where ct and ϕt represent the equivalent cohesion and internal friction angle, and based on
the geometry relationship, the corresponding shear strength parameters have the following
relationship with the parameters of the P-L failure criterion.

ct =
m− 1

m
c0

(
mσt tan ϕt

c0

)1/(1−m)

+ σt tan ϕt (5)

This linearization operation makes the nonlinear strength envelope represented by the
amounts of tangents, and each solution obtained by a tangent is proven to be a rigorous
upper-bound solution, from which one can obtain the least upper-bound solution.
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2.3. Non-Associative Flow Rule

In the literature, the major geotechnical problems were analyzed in the geomaterials
governed by the associative flow rule. However, it is recognized that the plastic flow in
the limit state behaves as a non-associative feature for real soils [34,46]. At present, there
are two main research ideas to consider the non-associative characteristics of materials in
the limit analysis: (1) use the non-associative flow rule directly for the calculation without
changing the yield criterion, and (2) keep the associative flow rule unchanged and modify
the parameters in the yield criterion or introduce a variable to represent the non-associative
characteristics. In practice, the calculation process of the former is usually complex, and the
trickier point is that the non-associative flow method does not satisfy the basic assumptions
of the limit analysis principle, which makes it difficult to continue the analysis. The latter
has a clear idea and method and is more suitable for combining with the upper-bound
principle. Therefore, following the second research idea, a nonlinear dilatancy coefficient
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ζ proposed by Drescher and Detournay [34] is introduced in this work to improve the
strength criterion, and the shear strength parameters can be modified by the following
expression: {

c∗ = ζc
tan ϕ∗ = ζ tan ϕ

(6)

where c* and ϕ* represent the shear strength parameters of the materials that satisfy the
non-associative flow rule; ζ denotes the dilatancy coefficient and is defined as:

ζ =
cos ϕ cos ψ

1− sin ϕ sin ψ
(7)

where ψ is the dilatancy angle during the plastic shearing failure, which ranges from 0
to ϕ. According to Equation (7), the coefficient ζ reaches the maximum value, namely 1,
when ψ = ϕ, which is also the case that the plastic flow rule changes from non-associative
to associative. Such an introduction of the dilatancy coefficient makes the M-C criterion
applicable to the non-associative material. Accordingly, the P-L criterion is also revised to
portray the nonlinearity and non-associative flow characteristics of the materials.

τ = ζc0

(
1 +

σn

σt

) 1
m

(8)

Applying the derivation operation to Equation (8) about σn, the tangent slope yields:

tan ϕ∗t =
dτ

dσn
=

ζc0

mσt

(
σn

σt
+ 1
)(1−m)/m

(9)

By rearranging Equations (4), (8), and (9) and eliminating the stress components from
the equations, an expression that only contains the shear strength parameters c∗t and ϕ∗t is
expressed as:

c∗t =
m− 1

m
ζc0

(
mσt tan ϕ∗t

ζc0

)1/(1−m)

+ σt tan ϕ∗t (10)

3. Pseudo-Static Analysis of Ultimate Bearing Capacity

The implementation of the upper-bound limit analysis entails the first establishment of
a kinematically admissible velocity field, thus, a shallow strip footing that is placed on the
homogeneous geomaterial governed by the P-L criterion is depicted in Figure 2. The buried
depth from the footing level to the ground surface is D and the width is B. The bottom of
the foundation is presumed to be rough. The lateral soil pressure is equivalent to uniformly
distributed loads denoted as p = γD. In the presence of an earthquake, a non-symmetrical
failure is prone to happen due to the existence of a horizontal seismic load, whereby a non-
symmetrical multi-block translational mechanism is necessarily established. The inertia
forces acting on the lateral covering layer are considered as two uniformly distributed loads
that are perpendicular to the surface and parallel to the surface, respectively. It is common
sense to the researchers that decreasing the soil strength and/or raising the failure loads are
two primary forms by which the earthquake action influences the soil–foundation system.
Herein, only the latter is taken into consideration.
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Figure 2. Sketch map of shallow foundation failure mechanism under the seismic condition.

Figure 2 shows a simple sketch map of a shallow foundation in a broken state. The
whole failure region is decomposed into a multi-block collapse mechanism that is comprised
of n rigid wedges with point B as the same vertex. The first rigid block lying at the bottom of
the strip footing translates in the meantime with footing without relative sliding, and the last
block terminates at the footing level BC. The relative sliding between the successive blocks
along the contacted face is permitted. The geometry shape of each block is determined by
total 2n independent angular parameters δi and κi.

Then, the kinematic analysis of the rigid blocks is developed herein to formulate the
energy equilibrium equation. The associative flow rule requires that materials in the plastic
flow state should possess the property that the rate of plastic strain is perpendicular to the
yield surface. This requests a normal detaching velocity along the contacted face, which
results in an inclined angle ϕ∗t between the relative velocity and slip surface. In this view,
given the translational velocity of block 1 denoted as v1, combining the aforementioned
requirements, one can readily derive the relative velocity v1,2 from the velocity vector
triangle, as sketched in the left-hand of Figure 3. For simplicity, the generic recurrence
relationships between vi and vi,i+1 of the ith block are presented as:

vi+1 =
sin(δi + κi − 2ϕ∗t )

sin(κi+1 − 2ϕ∗t )
· vi (11)

vi,i+1 =
sin(δi + κi − κi+1)

sin(κi+1 − 2ϕ∗t )
· vi (12)Appl. Sci. 2023, 12, x FOR PEER REVIEW 7 of 20 

 

 

Figure 3. Velocity vector diagram of failure blocks. 

In analogy, the lengths of the slip surface i
a

 and i
b

 of the ith wedge can be readily 

derived: 

( ) 1

sin

sin

i

i i

i i

a b
δ

δ κ −=
+

 
(13) 

( ) 1

sin

sin

i

i i

i i

b b
κ

δ κ −=
+

 
(14) 

The initial values of 1
a  and 1

b  in the first block attribute to width B  are depicted 

as: 

( )
1

1

1 1

sin

sin
a B

δ
δ κ

=
+

 
(15) 

( )
1

1

1 1

sin

sin
b B

κ
δ κ

=
+

 
(16) 

3.1. Rate of External Work and Internal Energy Dissipation 

This subsection concentrates on the calculation of the external work rate. The external 

loads included in the soil–foundation system are comprised of the gravity of soil, equiva-

lent surcharge load, loads from the superstructure, and inertia force. First, because the soil 

weight and inertia force are both a uniformly distributed body force that depends on the 

soil mass, for convenience, their work rate can be calculated together by the following 

expression: 

11

1
sin cos

2

n

i i i i ii
W b b vγ γ δ θ−=

= 
 

(17) 

( )e 1 h v1

1
sin sin cos

2

n

i i i i i ii
W b b v k kγ δ θ θ−=

= −
 

(18) 

where γ  denotes the unit weight of foundation soil, and i
θ  denotes the inclined angle 

of i
v  in a vertical direction, as presented in the left hand of Figure 3, and reads: 

1

π
=

2

i

i i t kk
θ κ ϕ δ∗

=
− + +

 
(19) 

Then, the work rate produced by the lateral soil pressure p is obtained by the product 

velocity vector and force vectors as follows: 

Figure 3. Velocity vector diagram of failure blocks.

In analogy, the lengths of the slip surface ai and bi of the ith wedge can be readily
derived:

ai =
sin δi

sin(δi + κi)
bi−1 (13)

bi =
sin κi

sin(δi + κi)
bi−1 (14)
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The initial values of a1 and b1 in the first block attribute to width B are depicted as:

a1 =
sin δ1

sin(δ1 + κ1)
B (15)

b1 =
sin κ1

sin(δ1 + κ1)
B (16)

3.1. Rate of External Work and Internal Energy Dissipation

This subsection concentrates on the calculation of the external work rate. The external
loads included in the soil–foundation system are comprised of the gravity of soil, equivalent
surcharge load, loads from the superstructure, and inertia force. First, because the soil
weight and inertia force are both a uniformly distributed body force that depends on the
soil mass, for convenience, their work rate can be calculated together by the following
expression:

Wγ =
1
2

γ∑n
i=1 bi−1bi sin δivi cos θi (17)

We =
1
2

γ∑n
i=1 bi−1bi sin δivi(kh sin θi − kv cos θi) (18)

where γ denotes the unit weight of foundation soil, and θi denotes the inclined angle of vi
in a vertical direction, as presented in the left hand of Figure 3, and reads:

θi =
π

2
− κi + ϕ∗t + ∑i

k=1 δk (19)

Then, the work rate produced by the lateral soil pressure p is obtained by the product
velocity vector and force vectors as follows:

Wp = pbnvn sin θnkh + pbnvn cos θn(1− kv) (20)

Similarly, the work rate contributed by the load of the superstructure Pe is depicted by:

WPe = Pev1[(1− kv) sin(κ1 − ϕ∗t ) + kh cos(κ1 − ϕ∗t )] (21)

Lastly, the gross external work rates are captured by the accumulation of the compo-
nents of Equations (17), (18), (20), and (21).

Wext = Wγ + We + Wp + WPe (22)

Apart from the work rate achieved by an external force, the summation of the internal
energy consumed in the thin shear band ai and bi yields:

Dint = ct cos ϕ∗t

(
∑n

i=1 aivi + ∑n−1
i=1 bivi,i+1

)
(23)

3.2. Seismic Ultimate Bearing Capacity

Based upon the equilibrium between Equations (22) and (23), an analytical upper
bound solution of the ultimate bearing capacity of strip footings in the presence of earth-
quake conditions is eventually derived in the following form:

Pe =
(

Dint −We −Wγ −Wp
)
/[v1kh cos(κ1 − ϕ∗t ) + v1(1− kv) sin(κ1 − ϕ∗t )] (24)

For comprehensively understanding the contributions of different parameters, the
normalized ultimate bearing capacity is furtherly decomposed into the following three
components:

pce =
Pe

B
=

1
2

γB · Nγe + p · Npe + c∗t · Nc∗t e (25)
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where Nγe, Npe, and Nc∗t e are dimensionless functions and are known as the bearing capacity
factors which separately depict the significance of the soil gravity, equivalent surcharge,
and cohesion on the seismic bearing capacity. The above dimensionless functions are
presented in terms of the as of yet unspecified angles 2n + 1 δi, κi, and ϕ∗t

Nγe = − khg1 + (1− kv)g2

cos(κ1 − ϕ∗t )kh + (1− kv) sin(κ1 − ϕ∗t )
(26)

Npe = − khg3 + (1− kv)g4

cos(κ1 − ϕ∗t )kh + (1− kv) sin(κ1 − ϕ∗t )
(27)

Nc∗t e =
g5

cos(κ1 − ϕ∗t )kh + (1− kv) sin(κ1 − ϕ∗t )
(28)

The above dimensionless expressions gi (i = 1, 2, . . . , 5) have a specific form that is
referred to in Appendix A.

Note that from Equation (25), clearly the ultimate bearing capacity is determined by
the 2n independent angular variable δi, κi and one equivalent internal frictional angle ϕ∗t .
Any set of these parameters will provide a certain upper-bound solution; the least one of
them needs to be found by the SQP algorithm.

Since the advent of MATLAB numerical software in 1984, it has gradually developed
into one of the most popular scientific and technological application software due to its
simple syntax rules, powerful drawing and operation capabilities, and excellent openness.
Therefore, the optimization solution in this work will be realized by using the fmincon
function in the built-in toolbox of MATLAB. One can call the SQP algorithm in the fmincon
function. The following is a brief introduction to the use of the fmincon function. The
mathematical model of the fmincon function is:

min f (x)

s.t.


C(x) ≤ 0
Ceq(x) = 0
A · x ≤ b
Aeq · x = beq
lb ≤ x ≤ ub

(29)

The calling format of the fmincon function in Matlab is:

x = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options) (30)

where fun is the objective function which is defined by the actual problem; x0 is the initial
value of the variables; and A, b Aeq, beq, lb, and ub are the matrices that need to meet the
constraint in Equation (29). Therefore, the optimization problem in this work is formulated as:

min pce = f (δi, κi, ϕ∗t )

s.t.


n
∑

i=1
δi = π, i = 1, 2, . . . n

δi + κi ≥ κi+1

(31)

In most previous analyses, the bearing capacity of the foundations is obtained by sepa-
rately calculating Equations (26)–(28) and accumulating them. Such a superposition method
tends to provide a safe estimation compared to the direct numerical optimization method;
hence, the direct numerical optimization of Equation (31) is employed in this work.

4. Numerical Results and Discussions
4.1. Comparisons

The closed-form analytical solution of Equation (31) is formulated as a multivariate
optimization problem where the number of optimized variables is 2n + 1. An increase in
the number of blocks indeed results in a better accuracy of the solution; however, this is
directly accompanied by the burden of the computation time, thus a compromise between
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the efficiency and accuracy should be accomplished. Table 1 calculates the values of seismic
bearing capacity factors versus the number of blocks without considering the seismic loading.
It is obvious that the ultimate bearing capacity of the foundation decreases with the number
of blocks gradually increasing, and the corresponding bearing capacity factors show the same
tendency as the bearing capacity. Notably, the reduction effect is significant with n varying
from 2 to 5 and then slowly disappearing with a reduction of no more than 0.06% when n
= 14, which indicates at this time that a further increase in the number of blocks leads to a
neglectable positive effect on the upper bound solution and results in great time consumption.
Therefore, a mechanism of 14 blocks is adopted in the later development.

Table 1. Values of bearing capacity factors versus the number of blocks.

n Nγe Npe Nce pce/kPa Relative Error/%

2 37.85 28.65 47.89 1106.02 -
3 28.03 21.36 35.26 818.42 26.37
4 26.17 20.07 33.02 766.44 6.62
5 25.50 19.61 32.24 748.05 2.56
6 25.19 19.40 31.88 739.49 1.24
7 25.01 19.29 31.68 734.81 0.69
8 24.91 19.22 31.56 731.99 0.42
9 24.84 19.18 31.48 730.15 0.28
10 24.79 19.15 31.43 728.89 0.19
11 24.76 19.12 31.39 727.99 0.14
12 24.73 19.11 31.36 727.32 0.10
13 24.72 19.10 31.34 726.81 0.08
14 24.70 19.09 31.33 726.41 0.06

The existing work of Soubra [43] investigated the bearing capacity problem by the
same failure mechanism; however, the optimization is implemented separately about three
independent components, that is Nγe, Npe, and Nc∗t e, and the ultimate bearing capacity
is obtained by the superposition method. Instead, an alternative that directly optimizes
Equation (31) is also prevalent among many scholars. It turns out that the latter tends
to estimate the solution on the conservative side. Consequently, in this work, the direct
optimization of Equation (31) is implemented.

In the linear M-C failure criterion with n = 14, B = 1 m, ζ = 1, ϕ = 30◦, c = 15 kPa,
p = 10 kPa, and γ = 18 kN/m3, Tables 2–5 list the results of the bearing capacity and the
corresponding bearing capacity factors of Soubra [43] for comparison. The results of the
present paper show a good consistency with those of Soubra [43]; the maximum difference
is approximately 5% in the case of non-earthquake. However, the difference would be up
to 30% in the presence of an earthquake, which states clearly that the discrepancy between
direct optimization and the superposition method may be significantly amplified by the
earthquake loads. The difference in the dimensionless coefficient Nγe is the maximum
among the three components while the rest is not significant.

Table 2. Values of seismic bearing capacity pce/kPa.

kh

ϕ/◦

15 20 25 30

This
Paper

Soubra
[43]

This
Paper

Soubra
[43]

This
Paper

Soubra
[43]

This
Paper

Soubra
[43]

0 176.34 168.4 268.60 254.83 429.00 405.24 726.41 684.02
0.1 140.90 134.79 210.81 200.59 330.20 312.86 546.95 516.61
0.2 108.75 102.64 160.22 151.77 246.73 233.66 400.75 378.93
0.3 81.43 64.80 118.43 110.14 179.79 169.02 287.17 270.8
0.4 59.83 51.40 86.27 67.50 129.98 117.92 206.30 189.09
0.5 45.80 39.80 65.63 52.30 98.57 70.20 156.32 128.45
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Table 3. Values of seismic bearing capacity factor Nγe.

kh

ϕ/◦

15 20 25 30

This
Paper

Soubra
[43]

This
Paper

Soubra
[43]

This
Paper

Soubra
[43]

This
Paper

Soubra
[43]

0 2.80 2.10 5.77 4.67 11.80 10.06 24.70 21.88
0.1 1.54 1.01 3.46 2.61 7.37 6.04 15.75 13.59
0.2 0.66 0.26 1.78 1.13 4.14 3.14 9.28 7.67
0.3 0.14 - 0.71 0.26 2.02 1.28 4.97 3.80
0.4 - - 0.21 - 0.97 0.28 2.87 1.51
0.5 - - - - 0.47 - 1.78 0.35

Table 4. Values of seismic bearing capacity factor Npe.

kh

ϕ/◦

15 20 25 30

This
Paper

Soubra
[43]

This
Paper

Soubra
[43]

This
Paper

Soubra
[43]

This
Paper

Soubra
[43]

0 3.98 3.95 6.51 6.41 10.95 10.69 19.09 18.46
0.1 3.10 3.07 5.07 5.02 8.49 8.35 14.70 14.34
0.2 2.22 2.07 3.71 3.62 6.27 6.17 10.87 10.67
0.3 1.42 - 2.50 2.25 4.37 4.22 7.70 7.54
0.4 0.82 - 1.59 - 2.91 2.47 5.27 4.97
0.5 0.50 - 1.03 - 1.99 - 3.71 2.85

Table 5. Values of seismic bearing capacity factor Ncte.

kh

ϕ/◦

15 20 25 30

This
Paper

Soubra
[43]

This
Paper

Soubra
[43]

This
Paper

Soubra
[43]

This
Paper

Soubra
[43]

0 11.13 11.00 15.15 14.87 21.33 20.78 31.33 30.25
0.1 9.61 9.50 12.90 12.69 17.89 17.50 25.83 25.09
0.2 8.07 7.96 10.72 10.54 14.67 14.37 20.85 20.32
0.3 6.60 6.48 8.71 8.53 11.80 11.53 16.54 16.12
0.4 5.22 5.14 6.85 6.75 9.21 9.07 12.78 12.58
0.5 4.22 3.98 5.54 5.23 7.45 7.02 10.32 9.68

4.2. Parametric Study

Parametric analysis is conducted in non-associative soils encompassing the seismic
coefficients and the nonlinear parameters. For convenience, the minor factors that have no
impact on the final result are set as constant in the whole text: B = 1 m, γ = 18 kN/m3.
The other basic inputs parameters are set as kh = kv = 0.2, p = 15 kPa, ζ = 0.8, m = 1.6,
c0 = 15 kPa, and σt = 15 kPa. The normality of the plastic flow rule is one of the basic
assumptions in the limit analysis, whereas the dilatancy angle of the soil is not necessarily
equal to the internal friction angle for the natural geomaterials, which indicates that the
plastic flow is not associative. Therefore, the illustrations in Figure 4 present the influence
of the nonlinear coefficient on the seismic bearing capacity of foundations concerning
different seismic coefficients under associative and non-associative soils, respectively. It
appears that the bearing capacity of foundations under non-associative soils is significantly
smaller than that under associative soils, which implies that the previous assumption of
the normality of plastic flow tends to overestimate the upper-bound of the bearing capacity.
In addition, the influence of the vertical seismic coefficient is so slight that can be neglected



Appl. Sci. 2023, 13, 3215 11 of 18

in the analysis compared to that of the horizontal seismic coefficient. To further investigate
the intrinsic influence of the non-associative characteristic of soils on the bearing capacity
of the foundations, Figure 5 displays the variation in the bearing capacity with a dilatancy
coefficient under the nonlinear failure criterion. It is observed that the bearing capacity
of the foundations increases with the increase in the dilatancy coefficient. In Figure 6, the
failure criterion changes into a linear M-C criterion, where the dilatancy angle ψ can be
calculated based on Equation (7) with a known internal friction angle. The observed result
shows that the foundation can bear more loads in the case of a greater dilatancy angle;
notably, such an improvement becomes more pronounced for soils with a higher internal
friction angle.
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Figure 4. Seismic bearing capacity versus nonlinear coefficient and seismic coefficients: (a) horizontal
seismic coefficient; (b) vertical seismic coefficient.
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The consideration of earthquake loads is also necessary for the foundation located in
an earthquake-prone area; therefore, earthquake analysis is also conducted in this work
by the classic pseudo-static method. Not only are both the horizontal and vertical seismic
coefficients considered, but also inertia forces acting on the soil mass, the lateral soil of
footing, and the superstructure are included. The variation in the seismic bearing capacity
with a vertical seismic coefficient is illustrated in Figure 7, where it is interestingly noted
that when the horizontal seismic coefficient remains in a small range, such as no more
than 0.2, the increase in the vertical seismic coefficient has a negative influence on the
bearing capacity of the foundation, whereas a positive influence appears as the horizontal
seismic coefficient becomes relatively greater. Such a strange phenomenon somewhat
may be caused by the following reasons. First, this work assumes that the failure of
the foundation is a process of footing sinking and lateral soil uplifting towards a certain
direction. Assuming the vertical direction to be positive, in this case, the work rate done by
the horizontal inertia force of the failure blocks is always positive while that of the vertical
inertia force is not always positive because the failure blocks under the foundation produce
negative work rates. The combined effect of horizontal and vertical seismic loads may
result in a decreasing trend of the bearing capacity when the horizontal seismic coefficient
is relatively small.
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Figure 7. Influence of seismic coefficients on the seismic bearing capacity.

As illustrated in Figure 8, the equivalent surface surcharge has a favorable impact on
the bearing capacity since it produces a negative work rate in the soil–foundation system
and provides a resistance for preventing the foundation from failure. The improvement
of the equivalent surcharge on the foundation is obvious in the absence of a horizontal
seismic coefficient; then, the improvement effect gradually decreases with an increase in kh.
Figure 9 illustrates the influence of nonlinear parameters on the seismic bearing capacity
of the foundations. The nonlinear coefficient m accounts for the curvature of the strength
envelope, an increase in the nonlinear coefficient provokes a significant decrease in the
bearing capacity, and the maximal reduction in the bearing capacity achieves 70.0% with
a nonlinear coefficient ranging from 1.2 to 2.0 for p = 25 kPa. The same influence on
the bearing capacity as the nonlinear coefficient is also observed from the uniaxial tensile
strength, with a decrease of up to 82.4%. However, the initial cohesion has a beneficial
effect on the bearing capacity of the foundation; an increase in the initial cohesion obtains a
greater bearing capacity for the foundations. Notably, the variation in the bearing capacity
with all nonlinear parameters behaves as a nonlinear tendency.
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Figure 8. Seismic bearing capacity versus equivalent surcharge and horizontal seismic coefficient.
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(b) uniaxial tension strength; (c) nonlinear coefficient.

4.3. Critical Failure Surface

This subsection discusses the effects of nonlinear parameters and seismic coefficients
on the shape of critical slip surfaces, as presented in Figures 10 and 11. It is observed
from Figure 10a that the surface surcharge has a small impact on the area of the critical
slip surface. The increase in the initial cohesion leads to an extensive failure area and
higher bearing capacity of the foundation; on the contrary, it is deserved to be noticed
that the greater value of the nonlinear coefficient and uniaxial tensile strength results in a
decrease in both failure regions and the bearing capacity, as shown in Figure 10c,d. As for
the influence of seismic coefficients, Figure 11 displays the variation in the failure region of
critical slip surfaces with horizontal and vertical seismic coefficients. It can be found that



Appl. Sci. 2023, 13, 3215 14 of 18

the critical failure region becomes shallower as the horizontal seismic coefficient increases.
However, the vertical acceleration intensity seems to not influence the failure region.
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Figure 10. Critical failure surfaces for different p, c0, m, and σt. (a) Effects of p. (b) Effects of c0.
(c) Effects of m. (d) Effects of σt.
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5. Conclusions

In terms of the upper-bound limit analysis, a non-symmetrical multi-block transla-
tional failure mechanism has been constructed for the investigation of the seismic bearing
capacity of strip footings under the P-L strength criterion. The non-associative feature
of soils is considered by introducing a dilatancy coefficient. Then, the new analytical
solution is eventually derived from the energy equilibrium equation and is formulated as a
multivariate optimization problem. The SQP algorithm is utilized herein to search for the
least upper-bound solution. The proper number of rigid blocks of the failure mechanism
is discussed based on the compromise between efficiency and accuracy. A comparison
with the previous solutions is made in the linear condition to ensure the correctness of the
present work, and the comparative result shows a good consistency with the literature. The
detailed conclusions are summarized as follows:

In the process of searching the least upper-bound solution, two different optimization
methods have a slight difference of approximately 5% in the absence of earthquakes; however,
a significant difference of 30% might be attained for kh = 0.5, which demonstrated that the
presence of an earthquake would amplify the difference in different various optimization
methods. In soils governed by the non-associative flow rule, the bearing capacity of the
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foundations is significantly decreased with a decrease in the dilatancy coefficient. Especially
in the linear condition, namely m = 1, the larger the internal friction angle is, the more obvious
the influence of the non-associative feature on the bearing capacity is.

The uniaxial tension strength and nonlinear coefficient impose an adverse influence
on the ultimate bearing capacity of the foundations, whereas the influence of an initial
cohesion on the bearing capacity is favorable. In addition, the equivalent surface surcharge,
as a positive factor, keeps the foundation from breaking by providing lateral soil pressure
as the resistance. The kh is always harmful to the bearing capacity, while the vertical seismic
coefficient almost does not influence the bearing capacity of the foundations; interestingly,
an increase in the vertical seismic coefficient may obtain a beneficial result to the foundation
when the horizontal seismic coefficient is no more than 0.2. As expected, the horizontal
seismic coefficient and surface surcharge have almost no influence on the shape of the
critical failure mechanism; in contrast, the nonlinear parameters and horizontal seismic
coefficient affect the critical failure region significantly, which demonstrated that the failure
of the foundations tends to happen close to the surface with a small region when the
adverse factors are significantly aggravated.
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Nomenclature

ai = velocity discontinuity of the ith block V = volume of failure body
B = footing width vi = velocity of the ith block
bi = velocity discontinuity of the ith block vi,i+1 = relative velocity between the ith block and

the i + 1st block
c0 = initial cohesion We = work rate achieved by earthquake loads
ct, ϕt = equivalent shear strength Wext = total external work rate
c∗, ϕ∗ = shear strength for non-associative
materials

WPe = work rate produced by Pe

c∗t , ϕ∗t = equivalent shear strength for
non-associative materials

Wp = work rate achieved by lateral soils

D = buried depth of footing Wγ = work rate achieved by soil weight
Dint = work rate of internal energy δi = angular variables of mechanism
Fi = external body loads

.
εij = plastic strain rate

g = gravity acceleration γ = unit weight of soils
gi = dimensionless expressions κi = angular variables of mechanism
kh, kv = seismic coefficients

.
λ = non-negative coefficient

m = nonlinear coefficient θi = angle between vi and vertical direction
n = number of blocks σij = effective stress
Nc∗t e, Npe, Nγe = bearing capacity factors σn = normal stress at the failure surface
Pe = load from the superstructure σt = uniaxial tensile strength
p = equivalent pressure of lateral soils τ = shear stress at failure surface
pce = normalized bearing capacity τt = equivalent shear stress
S = area of failure surface Ψ = dilatancy angle
Ti = external surface loads ζ = dilatancy coefficient
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Appendix A

vi+1 = v1 ·
i

∏
k=1

sin(δi + κi − 2ϕ∗t )

sin(κi+1 − 2ϕ∗t )
, (i = 1, 2, 3 · · · n) (A1)

vi,i+1 = v1 ·
sin(δi + κi − κi+1)

sin(κi+1 − 2ϕ∗t )

i

∏
k=1

sin(δi + κi − 2ϕ∗t )

sin(κi+1 − 2ϕ∗t )
(A2)

ai = B · sin δi
sin(δi + κi)

i

∏
k=2

sin κk
sin(δk + κk)

(A3)

bi = B · sin κ1

sin(δ1 + κ1)

i

∏
k=2

sin κk
sin(δk + κk)

(A4)

g1 = sin2 κ1
sin2(δ1+κ1)

∑n
i=2

[
sin δi sin κi
sin(δi+κi)

i−1
∏

k=2

sin2 κk
sin2(δk+κk)

·
i−1
∏

k=1

sin(δk+κk−2ϕ∗t )
sin(κk+1−2ϕ∗t )

sin θi

]
+ sin κ1

sin(δ1+κ1)
sin δ1 sin θ1

(A5)

g2 = sin2 κ1
sin2(δ1+κ1)

∑n
i=2

[
sin δi sin κi
sin(δi+κi)

i−1
∏

k=2

sin2 κk
sin2(δk+κk)

·
i−1
∏

k=1

sin(δk+κk−2ϕ∗t )
sin(κk+1−2ϕ∗t )

cos θi

]
+ sin κ1

sin(δ1+κ1)
sin δ1 cos θ1

(A6)

g3 =
sin δi

sin(δi + κi)

i

∏
k=2

sin κk
sin(δk + κk)

·
i−1

∏
k=1

sin(δi + κi − 2ϕ∗t )

sin(κi+1 − 2ϕ∗t )
· cos

(
κn − ϕ∗t −∑n

k=1 δk

)
(A7)

g4 =
sin δi

sin(δi + κi)

i

∏
k=2

sin κk
sin(δk + κk)

·
i−1

∏
k=1

sin(δi + κi − 2ϕ∗t )

sin(κi+1 − 2ϕ∗t )
· sin

(
κn − ϕ∗t −∑n

k=1 δk

)
(A8)

g5 = cos ϕ∗t ∑n
i=1

sin δi
sin(δi+κi)

·
i

∏
k=2

sin κk
sin(δk+κk)

·
i−1
∏

k=1

sin(δi+κi−2ϕ∗t )
sin(κi+1−2ϕ∗t )

+ cos ϕ∗t ∑n−1
i=1

sin κ1
sin(δ1+κ1)

sin(αi+κi−κi+1)

sin(κi+1−2ϕ∗t )

i
∏

k=2

sin κk
sin(δk+κk)

i
∏

k=1

sin(δi+κi−2ϕ∗t )
sin(κi+1−2ϕ∗t )

(A9)
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