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Abstract: Due to the poor lighting conditions and the presence of a large amount of suspended dust
in coal mines, obtained video has problems with uneven lighting and low differentiation of facial
features. In order to address these problems, an improved image enhancement method is proposed.
Firstly, the characteristics of underground coal mine images are analyzed, and median filtering is
selected for noise removal. Then, the gamma function and fractional order operator are introduced,
and an image enhancement algorithm based on particle swarm optimization is proposed. Finally,
several experiments are conducted, and the results show that the proposed improved algorithm
outperforms classical image enhancement algorithms, such as MSR, CLAHE and HF. Compared
with the original image, the evaluation metrics of the enhanced Yale face images, including average
local standard deviation, average gradient, information entropy and contrast, are improved by
113.1%, 63.8%, 22.8% and 24.1%, respectively. Moreover, the proposed algorithm achieves a superior
enhancement effect in the simulated coal mine environment.

Keywords: image enhancement; particle swarm optimization; gamma transform; fractional order;
coal mine environment

1. Introduction

With the rapid improvement of coal mine informationization [1–3], underground coal
mine image enhancement has drawn considerable attention in image processing. How-
ever, due to the complicated underground environment and poor lighting conditions, coal
mine image enhancement is a challenging problem. Usually caused by the presence of
a large amount of suspended dust, the images obtained in coal mines are not clear and
prone to the halo phenomenon [4,5]. This kind of image makes it difficult to identify
the region of interest, which reduces the quality of the image and the visual effect of hu-
man eyes [6,7]. Therefore, it is necessary to enhance the image by image enhancement
technology to highlight the detailed features of the original image and make the original
blurred and low recognition image clear [8–10]. Image enhancement is essentially a noise
reduction process, which enriches the favorable information in the image and eliminates
or suppresses the worthless parts. At present, with the continuous innovation of image
enhancement technology, many image enhancement algorithms have emerged [11–13],
including gray transformation enhancement algorithms, frequency transformation enhance-
ment algorithms and enhancement algorithms based on Retinex. However, the current
image enhancement algorithms mainly focus on improving the brightness and contrast of
uneven illumination images [14–16], while the problems of magnifying noise and losing
weak texture detail information of mine images still exist.

The image enhancement methods based on gray transformation mainly improve the
brightness and contrast of the image through histogram equalization. Liu et al. [17] opti-
mized global histogram normalization and local histogram normalization through global
and local constraints, which greatly improves the contrast of the original image. Based
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on the dark primary color prior and the CLAHE algorithm, a novel image enhancement
method was presented by Wu et al. [18] to get clear images in the foggy coal mine. Aiming
to solve the problem of reading errors caused by color deviation under abnormal light
sources, Niu et al. [19] proposed an adaptive color barcode image restoration algorithm.
Considering that medical images acquired at insufficient lighting conditions suffer from
low contrast issues, Saravanan et al. [20] proposed a fuzzy and spline-based histogram
equalization to perform contrast enhancement with medical images. In order to improve
the effect of image acquisition under the condition of low illumination, Zhang et al. [21]
adopted a low-illumination image enhancement algorithm based on multi-feature fusion.
However, it can be seen from these studies that most algorithms focus only on the overall
contrast of the image and have limited ability to suppress noise.

Frequency domain image enhancement methods, such as Discrete Cosine Transform
(DCT), Discrete Wavelet Transform (DWT) and Fast Fourier Transform (FFT), decompose
the image into subbands of different frequencies or directions and then process each
subband separately. Wan et al. [22] found that the fusion of multiple methods can effectively
improve the effect of image enhancement and developed an image enhancement method
based on DCT and DWT. Aiming to alleviate the image distortion caused by refraction and
absorption of light depending on depth and color of water, Banerjee et al. [23] proposed an
underwater image enhancement algorithm based on DCT, DWT and FFT. The basic content
of Retinex theory is that the color of an object is determined by its ability to reflect light
waves rather than by the intensity of the reflected light. Ji et al. [24] proposed a Retinex
algorithm based on a guided filter, aiming to solve the problem that nighttime images
have many dark spaces and shadows with low resolution. Priyanka et al. [25] combined
principal component analysis with a multi-scale retinex-based adaptive filter to enhance
low-light-level images. Based on camera response and weighted least squares strategies, a
details enhancement approach was proposed by Rahman et al. [26] to enhance low-light
images. In order to reduce the loss of detailed information during image enhancement in
low light environments, Sun et al. [27] proposed an image enhancement algorithm based on
improved multi-scale Retinex and artificial bee colony. However, over-enhancement may
occur in areas of the image that have salient information, and the visual effect of enhanced
coal mine images still needs to be improved.

Existing low-illumination image enhancement algorithms inevitably cause an en-
hanced image to be over- or under-enhanced images after enhancement, resulting in color
distortion, so some measures are needed to correct the images. Liu et al. [28] proposed a
simple but effective low-light image enhancement algorithm based on gamma function
correction to address uneven brightness. Using a fractional-order mask and the fusion
framework to enhance the low-light image, a novel fractional-order fusion model (FFM)
is presented by Dai et al. [29] for low-light image enhancement, which extracts more in-
visible contents in dark areas. Aiming to increase the information content and enhance
the details of an image, Kanmani et al. [30] presented an image contrast enhancement
algorithm, which uses an adaptive gamma correction technique aided by particle swarm
optimization. However, it is a challenge to effectively combine the advantages of the above
image enhancement methods.

In this paper, a gamma transformation and fractional order image enhancement algo-
rithm based on particle swarm optimization are proposed, which removes noise and en-
hances the texture information of low-light images. Firstly, by analyzing the characteristics
of underground coal mine images, a median filter is selected for image denoising. More-
over, gamma transformation is introduced to correct images with unbalanced grayscale,
and facial detail features are enhanced by the fractional order operator. Experimental
results show that the image enhancement performance indexes processed by the proposed
algorithm, such as average local standard deviation, average gradient, information entropy
and contrast, are superior to those of other classical image enhancement algorithms. Lastly,
the validity of the proposed algorithm is verified by an image enhancement test in the
simulated coal mine environment.
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The remainder of this paper is organized as follows. In Section 2, the proposed im-
proved particle swarm optimization algorithm is presented. The comparison experiments
of image enhancement algorithms are carried out, and the effectiveness of the proposed
improved algorithm is verified in Section 3. In Section 4, a face recognition system is built,
and an occluded face recognition experiment is carried out in the simulated coal mine
environment. Conclusions and future works are summarized in Section 5.

2. The Proposed Method
2.1. Improved Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) [31] is an optimization algorithm based on the
foraging movement of the flock, in which the birds closest to the food will share information
with the group so that the flock can narrow the search range to achieve the optimal foraging.
Each particle can be measured in terms of position and speed at every moment, and its
particle position and velocity can be expressed as xt = (xt1, xt2, . . . , xtm) and vt = (vt1, vt2, . . . ,
vtn). The optimal value is searched for each particle iteration, and the fitness of each particle
iteration result is evaluated. After each iteration, all the individuals are compared to get the
optimal individual optimal value (pbest); the optimal individual value from the beginning
of the iteration to the current iteration is called the global optimal value (gbest). The process
of particle iteration is a process in which the individual optimal value constantly replaces
the global optimal value. When pbest reaches the current optimal value, pbest will replace
gbest. When pbest is not the current optimal value, pbest will be discarded. The particles
iterate until the stop condition is reached, and each particle iteration is updated with the
following formula:

vt(d+1) = ω× vtd + c1r1(ptd − xtd) + c2r2(gtd − xtd) (1)

xt(d+1) = xtd + vt(d+1) (2)

where d is the number of iterations, vt(d+1) and xt(d+1) are the velocity and position of the
particle after updating, ω is the inertia weight, c1 and c2 are the learning factors and r1 and
r2 are the uniform random numbers within the range [0, 1].

2.1.1. Fitness Evaluation Function

The value of the evaluation function corresponding to each particle determines the next
update direction of the particle, which is related to whether a better image enhancement
effect can be achieved. The coal mine image has the characteristics of low contrast and
blurred details, while image enhancement requires information enhancement, and the
effect of image enhancement after particle iteration should meet some evaluation indexes.
In this paper, information entropy, gradient and variance are selected to form the suitability
evaluation function fitness, and fitness is defined as:

fitnesss = λ1S + λ2H + λ3D (3)

where S is the information entropy, H is the average gradient, D is the variance, λ1, λ2
and λ3 are the weighting coefficient, and the value of λ1, λ2 and λ3 are 0.3, 0.5 and
0.2, respectively.

Information entropy is a common index for image quality evaluation, which reflects
the richness of image information. Generally speaking, images with high information
entropy are more colorful and of better quality. The definition of information entropy is
as follows:

S = −
255

∑
i=0

pi log pi (4)

where pi is the proportion of pixels with grayscale values in the image.
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The gradient is the index that can reflect the difference between pixels. When the
gradient is large, there is a significant difference in grayscale at the edge of the image, and
the image is sharper. For an image f (i, j), the gradient is defined as:

∇ f (i, j) =

√
(

∂ f
∂i

)
2
+ (

∂ f
∂j

)
2

(5)

For an image of size L = m × n, the average gradient is:

H =
∑i,j∈L∇ f (i, j)

m× n
(6)

Variance D reflects the degree of dispersion of the image pixel value from the mean
value, and a large standard deviation represents a clear image edge. For an image f (i, j), the
mean and variance are recorded as µ and σ2, respectively:

µ =
∑i,j∈L f (i, j)

m× n
(7)

D = σ2 =
∑i,j∈L ( f (i, j)− µ)2

m× n
(8)

The calculation flowchart of the fitness evaluation function proposed in this paper is
shown in Figure 1.
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2.1.2. Inertia Weight and Learning Factor

The value of inertia weight ω will affect the searching ability of particles, and the
range of values is usually [0.2, 1.2]. Inertia weight can be divided into fixed weight and
dynamic weight, and the dynamic inertia weight factor will change with the number of
iterations, which can maintain the search ability, and the particles with dynamic weight
have higher exploration ability.

In the initial stage of the search, ω is generally set to be larger, and the particles have
the ability to have a larger global search area. With the increase in the number of iterations,
it is necessary to optimize the local search and then reduce the value of ω. The common
method is linear iterative decline:

ωt = ωmax −
(ωmax −ωmin)t

tmax
(9)
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where ωt is the value of the first iteration, ωmax and ωmin are the maximum and minimum
inertia weight, and the value of ωmax and ωmin are 0.8 and 0.2, respectively.

The learning factors c1 and c2 represent the weight of each particle, where c1 is the
private learning weight, and c2 is the global social weight. The learning weight of the
particle swarm is different at different stages in the process of optimization. When the
value of c1 is large, the particles have a trend around their own optimal. When the value of
c2 is large, the PSO is more like a global search method, and even more, it always tries to
exploit new areas. In order to achieve a better optimization effect, this paper designs a way
to define the learning factor, which varies with the number of iterations. At the beginning
of the iteration, the value of c1 is larger, and the particle swarm can explore more areas
on its own. With the increase of the number of iterations, the value of c1 becomes smaller,
while the value of c2 increases, and the particle swarm learns more from the social global
optimal. Through the comparison of several local optimal solutions, the global optimal
solution will be found. The learning factor update is as follows:

c1 = c1a − 0.01(c1a − c1b)t (10)

c2 = c2a − 0.01(c2b − c2a)t (11)

where c1 and c2 are the current learning factors, c1a and c2a are the initial value of the
learning factors, c1b and c2b are the final values of the learning factor, t is the current
iteration and the value of c1a, c2a, c1b and c2b are set to 2.5, 2.5, 0.5 and 2.2, respectively.

2.2. Gamma Transform and Fractional Order Image Enhancement
2.2.1. Gamma Transform

Gamma transform [32] can effectively improve the illumination quality of an image
and construct a gamma function for image correction. The definition of gamma transform
of a 2-dimensional image is as follows:

G(i, j) = cI(x, y)γ (12)

where I(x, y) is the input image, G(x, y) is the output image, c and γ are the strength
parameter, c is the intensity range, γ is the intensity factor, the value of c is 1 in this paper
and the effect of different γ is shown in Figure 2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 19 
 

 
Figure 2. The gamma function curve with different values. 

As can be seen from Figure 2, when the value of γ is less than 1, the brightness of the 
output image is brighter than that of the input image, and the transformation has the effect 
of brightness enhancement. When the value of γ is more than 1, the brightness of the out-
put image is attenuated compared with the input image. When using gamma transform 
to realize image enhancement, it is generally desired to achieve a larger enhancement of 
luminance in the low-illuminance region and a small enhancement in the high-illumi-
nance region. We randomly select a face in the Yale face dataset as the test image, and the 
enhancement effects of different γ are shown in Figure 3 below. 

 
Figure 3. Image enhancement effect with different gamma values. 

2.2.2. Fractional Order Detail Enhancement 
Three types of fractional order differentiation are commonly used, namely the Grün-

wald–Letnikov definition (G–L), the Riemann–Liouville definition (R–L) and the Caputo 
definition [33]. The Caputo definition is a modified form of G–L, which is given in a dif-
ferential form and defined as follows: 

( )
1

1 1( ) ( )
( ) ( )

xv m
a x v ma
D f x f d

m v x
ξ ξ

ξ − +=
Γ − −   (13)

where a and x are the upper and lower limits of the integral, v is the order of differentia-
tion, m is a positive integer that satisfies m − 1 < v < m and Г(v) is the gamma function. 

When m = 1 and a = 0: 

'

0

1 1( ) ( )
(1 ) ( )

xv
a x vD f x f d

v x
ξ ξ

ξ
=
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As can be seen from Figure 2, when the value of γ is less than 1, the brightness of
the output image is brighter than that of the input image, and the transformation has the
effect of brightness enhancement. When the value of γ is more than 1, the brightness of the
output image is attenuated compared with the input image. When using gamma transform
to realize image enhancement, it is generally desired to achieve a larger enhancement of
luminance in the low-illuminance region and a small enhancement in the high-illuminance
region. We randomly select a face in the Yale face dataset as the test image, and the
enhancement effects of different γ are shown in Figure 3 below.
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2.2.2. Fractional Order Detail Enhancement

Three types of fractional order differentiation are commonly used, namely the Grünw-
ald–Letnikov definition (G–L), the Riemann–Liouville definition (R–L) and the Caputo
definition [33]. The Caputo definition is a modified form of G–L, which is given in a
differential form and defined as follows:

aDv
x f (x) =

1
Γ(m− v)

∫ x

a

1

(x− ξ)v−m+1 f (m)(ξ)dξ (13)

where a and x are the upper and lower limits of the integral, v is the order of differentiation,
m is a positive integer that satisfies m − 1 < v < m and Γ(v) is the gamma function.

When m = 1 and a = 0:

aDv
x f (x) =

1
Γ(1− v)

∫ x

0

1
(x− ξ)v f ′(ξ)dξ (14)

By dividing the interval [0, x] into N equal parts, the size of each part is ∆x = x/N, and
f 0 = f (0), f 1 = f (x/N), . . . , fk = f (kx/N), . . . , fN = f (x). Then the approximate expression of
Equation (14) can be obtained from the definition:

aDv
x f (x) ≈ 1

Γ(1− v)∑
N−1
k=0

∫ x

0

1
(x− ξ)v f ′(ξ)dξ (15)

According to the first-order derivative difference format:

aDv
x f (x) ≈ FN

Γ(2−v) +
(21−v−2∗11−v) fN−1

Γ(2−v) + . . .

+ [(N−k+1)1−v+(N−k−1)1−v−2∗(N−k)1−v ] fN−1
Γ(2−v)

+ . . . + (N−1)1−v−N1−v

Γ(2−v)

(16)

The first 3 coefficients on the right side of the equation are selected according to
Equation (16): 

a0 = 1
Γ(2−v)

a1 = (21−v−2∗11−v)
Γ(2−v)

a2 = [31−v−2∗21−v+1]
Γ(2−v)

(17)
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Fractional order differentiation is applied to adjacent pixels to fully exploit the image′s
local feature information and avoid over-smoothing of the enhanced image. This work
uses a fractional order template of size 5 × 5 to perform the convolution operation and
constructs fractional order operators in 8 directions as convolution kernels using the
correlation coefficients of fractional order differentiation. The weight coefficients in the
fractional order convolution kernel are related to the distance from its center pixel, and
the specific fractional order operators are constructed, as shown in Figure 4 below. The
inverse of the distance from the center pixel is used as the weight coefficient so that the
pixels between the adjacent ones have a more significant influence on the weight.
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As shown in Figure 5, when the order of differentiation is an integer, the differentiation
operation has the effect of gain for high-frequency signals, and its gain is non-linear with
the growth of frequency and order. However, the high frequency will lead to ineffective
noise suppression in the actual image enhancement. While fractional order differentiation
is not as effective as integer order for high-frequency enhancement, fractional order differ-
entiation can ensure that there is also a gain effect on the low-frequency part. Choosing the
appropriate fractional order coefficients can achieve the enhancement of edge information
while preserving the weak texture features of the background to a certain extent, which
avoids making the image fall into over-enhancement. At present, the order of fractional
differential enhancement is set manually. If the order is too small, it will lead to image
sharpening. On the contrary, it will lead to the image detail enhancement is not obvious
and cannot effectively suppress the noise. We randomly select a face in the Yale face dataset
as the test image, and the enhancement effects of different ν are shown in Figure 6 below.
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Step 2: Set particle swarm parameters, mainly including the number of particles
(N = 300), particle parameters xi and vi, particle update parameters ω, c1a, c2a, c1b and c2b;

Step 3: Gamma transform and fractional order enhancement are performed on the
input image, gamma parameters γ ∈ (0, 3) and fractional order parameters v ∈ (0, 1.5);

Step 4: Calculate the value of entropy S, the average gradient H and the variance D of
the image, and calculate the value of fitness after each iteration;

Step 5: Compare fitness with pbest, and update pbest if it is greater than pbest, otherwise
discard it;

Step 6: If the condition is not satisfied, update the values of c1, c2, xi and vi, and return
to step 3; Otherwise, stop iteration;

Step 7: Using optimal gamma parameters and fractional order parameters gbest(γ, ν)
for image enhancement.

3. Experimental Results and Analysis
3.1. Image Enhancement Comparison Experiment

To verify the effectiveness of the proposed improved algorithm, the illumination
inhomogeneous corridor image and the real image of an underground coal mine are se-
lected for enhancement analysis experiments. Simulation experiments are conducted by
MATLAB, and the proposed algorithms are compared with other classical image enhance-
ment algorithms, including Multisim Scale Retinex (MSR), Contrast Limited Adaptive
Histogram Equalization (CLAHE), Homomorphic Filter (HF) and the algorithm based on
common PSO.

The image of the corridor with poor lighting conditions is selected for image analysis
of different algorithms, and the image enhancement effects of each comparison algorithm
and the proposed algorithm are shown in Figure 8 below.
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The image of the conveyor belt during coal mine production is selected for image
analysis by different algorithms, and the image enhancement effects of each comparison
algorithm and the proposed algorithm are shown in Figure 9 below.
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The original images, Figures 8a and 9a, have low brightness resulting in insufficient
image detail information. The contrast and brightness of images in Figures 8b and 9b are
improved by processing with MSR, but the phenomenon of over-enhancement appears, and
the brighter areas of the original images are not better suppressed. The overall brightness
and sharpness of images in Figures 8c and 9c are improved after processing with CLAHE,
but the phenomenon of halo appears in the brighter areas of the original images. The
contrast of images Figures 8c and 9c is improved more after HF enhancement, but the
overall brightness of the images is not improved enough compared with the original
images, and some detailed information in the images is not reflected enough. After using
the algorithm based on common PSO to process the images, the brightness and contrast of
images in Figures 8e and 9e are better balanced, but the images still have detailed noise
interference. The brightness of the image processed by the proposed algorithm is enhanced
appropriately, and the original color and detail information of the image is retained better.
Moreover, the noise is suppressed better while enhancing the image, which has a better
visual effect compared with other image enhancement algorithms.

3.2. Analysis of Experimental Results

The general evaluation metrics for image enhancement include Average Local Stan-
dard Deviation (ALSD), Average Gradient (AG), Information Entropy (IE) and Contrast.

In this paper, the above evaluation metrics are selected to evaluate images. The specific
evaluation data are shown in Table 1 below, and the histogram of each enhancement
algorithm after enhancement is shown in Figure 10.

Table 1. Comparison of corridor image enhancement algorithms.

Metrics Original Image MSR CLAHE HF PSO Proposed Algorithm

ALSD 25.85 31.24 44.24 55.94 38.52 73.47
AG 3.91 4.29 5.11 7.12 6.93 8.54
IE 6.27 6.72 6.69 7.15 6.79 7.23

Contrast 16,376.2 16,720.2 19,597.3 21,334.9 18,978.3 23,399.8
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Figure 10. Enhancement histogram of corridor image.

Compared with the original image of the corridor, the enhanced images have been
improved in terms of image brightness. However, the image after MSR enhancement
appears over-enhanced, resulting in poor subjective image effects. The brightness of the
image after CLAHE enhancement has been improved reasonably, but the visual effect is
poor in terms of color retention. The image after HF enhancement has over-enhanced the
contrast and neglected the detailed information, resulting in a lack of clarity in the detailed
background. The algorithm based on common PSO has a good balance in all aspects, but
the overall brightness and pattern details of the image still need to be improved compared
with the proposed algorithm.

As shown in Figure 11 above, compared with the original image, ALSD, AG, IE and
contrast of the image enhanced by the proposed algorithm improve by 184.2%, 118.4%,
15.3% and 42.8%, respectively, which are better than other algorithms. In terms of the
enhanced histogram, the proposed algorithm takes into account the distribution of differ-
ent pixel values of the image while enhancing the brightness and retaining more image
detail information.
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For the analysis of the actual coal mine image, the image of the conveyor belt is
selected, and the specific evaluation data are shown in Table 2 below. The histogram after
enhancement by each enhancement algorithm is shown in Figure 12.

Table 2. Comparison of mine image enhancement algorithms.

Metrics Original Image MSR CLAHE HF PSO Proposed Algorithm

ALSD 29.62 35.43 39.66 42.15 39.89 44.71
AG 6.34 6.94 7.65 7.79 6.82 8.36
IE 6.11 7.38 7.26 7.42 7.14 7.96

Contrast 24,770.7 26,014.6 27,043.7 27,335.3 26,506.9 27,646.2
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The actual coal mine image in Figure 9a has a darker background compared to the
unevenly illuminated corridor image in Figure 8a. Subjectively, the images enhanced
by each algorithm are enhanced in terms of image brightness. The brightness of the
image enhanced by MSR is the most obvious, but there is over-enhancement in the belt
brightness illumination region, which leads to the loss of belt edge contour information. The
enhanced images after CLAHE and the algorithm based on common PSO show insignificant
brightness enhancement in the regions with large brightness changes and still have noise
interference. The image after HF enhancement focuses too much on the contrast between
light and dark and loses the detailed information of the images.

As shown in Figure 13, compared with the original image, ALSD, AG, IE and contrast
of the image enhanced by the proposed algorithm improve by 50.9%, 31.8%, 30.2% and
11.6%, respectively.

3.3. Test in Yale Dataset

Through the above analysis, the proposed algorithm has good enhancement effects in
both natural scenes and coal mines. To test the enhancement effect of the proposed algo-
rithm for unevenly illuminated face images, face images subjected to different illumination
conditions are selected from the extended Yale face dataset for testing experiments, and the
images enhanced by the competitive algorithm are shown in Figure 14 below.
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As can be seen from the above image, compared with other images, the face image
enhanced by the proposed algorithm has uniform brightness, clear face contour and rich
detail features. For the analysis of the Yale face images, the specific evaluation data are
shown in Table 3 below.
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Table 3. Comparison of Yale face image enhancement algorithms.

Metrics Original Image MSR CLAHE HF PSO Proposed Algorithm

ALSD 27.74 33.34 41.95 49.05 39.21 59.09
AG 5.16 5.62 6.38 7.46 6.88 8.45
IE 6.19 7.05 6.98 6.97 6.91 7.60

Contrast 20,573.5 21,367.4 23,320.5 24,335.1 227,426 25,523.1

As shown in Table 3, compared with the original image, ALSD, AG, IE and contrast
of the image enhanced by the proposed algorithm improve by 113.1%, 63.8%, 22.8% and
24.1%, respectively.

4. Application in Simulated Coal Mine Environment

The experiment in a simulated coal mine environment is used to verify the feasibility
of the proposed image enhancement algorithm, and the part of facial images with coal ash
is shown in Figure 15 below. The miner face dataset contains 840 images from 40 people, of
which 756 are used as training sets, and the remaining 84 are used as test sets.
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The experiment is carried out in the underground garage of the School of Mechanical
and Electrical Engineering. A surveillance camera is set up above the corner to obtain
images, and an LED light source is selected to adjust the light intensity. The equipment
involved in the experiment is shown in Figure 16 below.
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After the experimental bench is built, the face image dataset is imported into the face
recognition system, and a face recognition test is conducted. The recognition result column
will output the number of recognized faces and the corresponding identity. The specific
software interface is shown in Figure 17 below.
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Figure 17. Experimental scene test.

The face recognition network, VGG-16, is trained on the original image dataset and
the enhanced facial image dataset, respectively. The precision, recall and F1-score of the
face recognition system are calculated, and the specific experimental results are shown in
Table 4 below.

Table 4. Experimental results of face recognition.

Dataset
Metrics

Precision Recall F1-Score

Original image 89.89% 90.07% 89.47%
Enhanced image 92.44% 93.44% 92.44%
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As shown in Table 4, the evaluation indexes of the face recognition system, including
accuracy, recall and F1-score, are improved by about 3% after the image enhancement. It
can be proved that the proposed image enhancement algorithm is useful for improving the
face recognition rate in underground coal mine environments.

5. Conclusions and Future Work

In this paper, a gamma transformation and fractional order image enhancement algo-
rithm based on particle swarm optimization are proposed. By analyzing the characteristics
of coal mine images, median filtering is selected for image denoising. The gamma function
is introduced to correct images with too high or too low grayscale, and image detail fea-
tures are enhanced by the fractional order operator. In addition, the proposed algorithm is
applied to the face images with uneven lighting in the extended Yale face dataset, and the
obtained enhanced images have a better visual effect, significant brightness enhancement
and clearer face contour. Compared with the original image, the various evaluation indi-
cators of the Yale face images enhanced by the proposed improved algorithm, including
ALSD, AG, IE and contrast, are improved by 113.1%, 63.8%, 22.8% and 24.1%, respectively,
which are better than other classical algorithms such as MSR, CLAHE and HF. Finally, this
work conducts face recognition experiments in a simulated coal mine environment and
achieves very superior experimental results.

This paper verifies the effectiveness of the proposed image enhancement algorithm
for coal mine images. However, this work has only been carried out in a simulated coal
mine environment, and no experimental validation has been carried out in an actual coal
mine, and the next step is to carry out experiments in the working areas of a coal mine.
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