The Correlation between Surface Integrity and Operating Behaviour of Slide Burnished Components—A Review and Prospects
Abstract
:1. Introduction
2. Investigations of SB—General Overview and Statistics
- A.
- Deforming Element
- B.
- Materials Processed by SB
- C.
- Type of the Burnished Surface
- D.
- Lubrication Conditions
- E.
- Investigation of the Effect of SB Basic and Additional Parameters
- F.
- Comparison Between SB and Roller Burnishing (Deep Rolling)
- G.
- Combination of SB and Other Impacts
- H.
- Method of the Study
3. SB as SE Process—Review and Discussion
3.1. An Integrated Approach of SE Referred to SB
3.2. Correlations in the Integrated SE Approach
3.2.1. Basic Concepts and Rationale of Correlations
3.2.2. Correlations in Studies Conducted
4. Conclusions and Future Research Perspectives
- Of the three components of SE (Figure 10), the least amount of research has been devoted to the physical nature of the SB process (Figure 11). There is a lack of research on the tribological behaviour of the pair of deforming element-machined surfaces, and, in particular, the wear (service life) of the deforming element, the material of which can be a type of diamond, hardened steel, or a type of hard alloy (Table 1). Such information is necessary to evaluate the cost/quality ratio when choosing finishing according to set criteria. All other aspects being equal, the different materials of a deforming element will result in different friction coefficients, and, consequently, different SI characteristics will be obtained, and thus the component will have a different OB. Such comparative studies are lacking for both simple correlations SB–SI and SB–OB. In addition to the above, the development of new diamonds and other structures as materials for deforming elements in SB processes is also a relevant, justified direction for future research.
- Figure 11 shows that four times less research has been devoted to the OB of SBed components compared to the SI, which explains the significantly less studied SB–OB correlation and especially the SI–OB correlation (Figure 14). Therefore, deepening the research on these two simple correlations is a necessary condition to obtain a complete and balanced picture along the axis SB–SI–OB.
- The majority of studies (Table 5) are devoted to individual characteristics of SI and do not give a complete picture of its condition for a given processed material, resulting from a specific SB process. At the same time, very little attention has been paid to the SB of promising structural materials such as titanium-, magnesium-, and nickel-based alloys (see Figure 5). No information was found on the SB of cast iron. Therefore, the study of the SB–SI–OB correlation for these materials is a promising direction.
- Only 9% of research was devoted to SB of complex surfaces and cylindrical holes (Figure 6). The development of suitable mixed SB processes will significantly improve the tribological behaviour of holes in austenitic stainless steel ‘cylinder’-type structural elements widely used in various industrial applications. In general, a promising direction for future research is the SB of holes in structural elements, the service life of which is limited by the wear of these holes. A challenge is to develop methods, devices, and deforming elements for the SB of small holes.
- The SB–OB correlation has been studied the least in terms of corrosion behaviour. Only two publications [90,93] are dedicated to individual aspects of this problem. Future research can be aimed at distinguishing and evaluating the influence of individual main characteristics of SI resulting from DB on the corrosion resistance of austenitic stainless steels. Thus, by having information on the SI of a given component, its corrosion behaviour can be predicted.
- A particularly promising direction is the development of combined finishing processes, in which the application of SB before or after another type of impact provides a synergistic effect for modifying SL. The literature survey shows that the possibilities for the development of combined processes with the application of SB are insufficiently explored. An example in this regard is the research conducted by Tobola et al. [40,41,42,44] and Marquez-Herrera et al. [93]. The combination of SB with thermo-chemical diffusion processes looks like a promising direction. Processes in which SB is combined with electron or laser beam treatment have significant potential for achieving a synergistic effect. The localised heat effect with a high concentration over a very small area, inherent in electron/laser beam techniques, results in an inhomogeneous structure of the SL. This inhomogeneity is correlated with the used scan trajectory of the treated surface and the overlapping effect of the heated zones. In this aspect, the application of a suitable SB process on coatings (or layers) obtained from metal powders by electron/laser beam techniques can increase to a certain extent the homogeneity and density of the material, and generally improve the SI. Also of interest is the use of SB prior to electron/laser beam techniques when the processed material is structural carbon steel. For appropriately chosen parameters of both processes, a synergistic effect due to strain hardening at greater depth after SB and transformation hardening (due to martensitic transformation) near the surface after electron beam treatment can be expected.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DB | Diamond burnishing |
FEM | Finite element method |
MQL | Minimum quantity lubrication |
MST | Mechanical surface treatment |
OB | Operational behaviour |
PCD | Polycrystalline diamond |
SB | Slide burnishing |
SCW | Surface cold working |
SE | Surface engineering |
SI | Surface integrity |
SL | Surface layers |
References
- Dwivedi, D.K. Surface Engineering: Enhancing Life of Tribological Components; Springer: New Delhi, India, 2018; ISBN 978-81-322-3779-2. [Google Scholar]
- Griffith, A.A. Philosophical transactions of the Royal Society of London. Ser. A Contain. Pap. A Math. Phys. Character 1921, 221, 163–198. [Google Scholar]
- Segal, V. Severe plastic deformation: Simple shear versus pure shear. Mater. Sci. Eng. A 2002, 338, 331–344. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Islamgaliev, R.K.; Alexandrov, I.V. Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 2000, 45, 103–189. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Estrin, Y.; Horita, Z.; Langdon, T.G.; Zeherbauer, M.J.; Zhu, Y.T. Producing bulk ultrafine-graded materials by severe plastic deformation. JOM 2006, 58, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Valiev, R.Z.; Langdon, T.G. Principles of equal-chanel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 2006, 51, 881–981. [Google Scholar] [CrossRef]
- Valiev, R.; Krasilnikov, N.; Tsenev, N. Plastic deformation of alloys with submicron-grained structure. Mater. Sci. Eng. A 1991, 137, 35–40. [Google Scholar] [CrossRef]
- Astankhov, V.P. Surface integrity—Definition and inportance in functional performance. In Surface Integrity in Mashining; Davim, J., Ed.; Springer: London, UK, 2010; ISBN 978-1-84-882-974-2. [Google Scholar]
- M’Saoubi, R.; Outeiro, J.C.; Chandrasekaran, H.; Dillon, O.W., Jr.; Jawahir, I.S. A review of surface integrity in machining and its impact on functional performance and life of machined products. Int. J. Sustain. Manuf. 2008, 1, 203–236. [Google Scholar] [CrossRef]
- Liao, Z.; la Monaca, A.; Murray, J.; Speidel, A.; Ushmaev, D.; Clare, A.; Axinte, D.; M’Saoubi, R. Surface integrity in metal machining—Part I: Fundamentals of surface characteristics and formation mechanisms. Int. J. Mach. Tools Manuf. 2020, 162, 103687. [Google Scholar] [CrossRef]
- Zhang, J.; Pei, Z.J. Characterization Methods for Surface Integrity. Surface Integrity in Mashining; Paulo, J., Ed.; Springer: London, UK, 2010; ISBN 978-1-84-882-974-2. [Google Scholar]
- Sedlaček, M.; Podgornik, B.; Vižintin, J. Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces. Tribol. Int. 2012, 48, 102–112. [Google Scholar] [CrossRef]
- Korzynski, M.; Dudek, K.; Kruczek, B.; Kocurek, P. Equilibrium surface texture of valve stems and burnishing method to obtain it. Tribol. Int. 2018, 124, 195–199. [Google Scholar] [CrossRef]
- Labanowski, J.; Ossowska, A. Influence of burnishing on stress corrosion cracking susceptibility of duplex steel. J Achiev. Mater. Manuf. Eng. 2006, 19, 46–52. [Google Scholar]
- Konefal, K.; Korzynski, M.; Byczkowska, Z.; Korzyńska, K. Improved corrosion resistance of stainless steel X6CrNiMoTi17-12-2 by slide diamond burnishing. J. Mater. Process. Technol. 2013, 213, 1997–2004. [Google Scholar] [CrossRef]
- Hamadache, H.; Laouar, L.; Zeghib, N.; Chaoui, K. Characteristics of Rb40 steel superficial layer under ball and roller burnishing. J. Mater. Process. Technol. 2006, 180, 130–136. [Google Scholar] [CrossRef]
- Toboła, D.; Brostow, W.; Czechowski, K.; Rusek, P. Improvement of wear resistance of some cold working tool steels. Wear 2017, 382, 29–39. [Google Scholar] [CrossRef]
- Korzynski, M.; Lubas, J.; Swirad, S.; Dudek, K. Surface layer characteristics due to slide diamond burnishing with a cylindrical-ended tool. J. Mater. Process. Technol. 2011, 211, 84–94. [Google Scholar] [CrossRef]
- Korzynski, M.; Pacana, A.; Cwanek, J. Fatigue strength of chromium coated elements and possibility of its improvement with slide diamond burnishing. Surf. Coat. Technol. 2009, 203, 1670–1676. [Google Scholar] [CrossRef]
- Swirad, S. The effect of burnishing parameters on steel fatigue strength. Nonconv. Technol. Rev. 2007, 1, 113–118. [Google Scholar]
- Fouad, Y.; Mhaede, M.; Wagner, L. Effects of mechanical surface treatments on fatigue performance ofextruded ZK60 alloy. Fatigue Fract. Eng. Mater. Struct. 2010, 34, 403–407. [Google Scholar] [CrossRef]
- Wagner, L. Mechanical surface treatments on titanium, aluminum and magnesium alloys. Mater. Sci. Eng. A 1999, 263, 210–216. [Google Scholar] [CrossRef]
- Altenberger, I.; Nalla, R.K.; Sano, Y.; Wagner, L.; Ritchie, R.O. On the effect of deep rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behaviour of Ti–6Al–4V at elevated temperatures up to 550 °C. Int. J. Fatigue 2012, 44, 292–302. [Google Scholar] [CrossRef]
- Nalla, R.K.; Altenberger, I.; Noster, U.; Lin, G.Y.; Scholtes, B.; Ritchie, R.O. On the influence of mechanical surface treatments —Deep rolling and laser shock peening—On the fatigue behaviour of Ti–6Al–4V at ambient and elevated temperatures. Mater. Sci. Eng. A 2003, 355, 216–230. [Google Scholar] [CrossRef]
- Burakowski, T.; Wierzchon, T. Surface Engineering of Metals: Principles, Equipment, Technologies; Tyrkiel, E.A., Dearnley, P., Eds.; CRC Press: London, UK, 1998. [Google Scholar]
- la Monaca, A.; Murray, J.; Liao, Z.; Speidel, A.; Robles-Linares, J.A.; Axinte, D.A.; Hardy, M.C.; Clare, A.T. Surface integrity in metal machining—Part II: Functional performance. Int. J. Mach. Tools Manuf. 2021, 164, 103718. [Google Scholar] [CrossRef]
- Plaster, H.J. A Tribute to Benjamin Chew Tilghman. In Proceedings of the 5th International Conference on Shot Peening, Oxford, UK, 13–17 September 1993; pp. 2–9. [Google Scholar]
- Scibner, I.A. Burnishing Tool. U.S. Patent 1,171,146, 8 February 1916. [Google Scholar]
- Stadnicka, D. Fatigue strength of the steel after the percussive burnishing process. In Proceedings of the 9th International Conference on Shot Peening (ICSP 9), Paris, Name la Vallee, France, 6–9 September 2005; pp. 280–285. [Google Scholar]
- Galda, L.; Koszela, W.; Pawlus, P. Surface geometry of slide bearings after percussive burnishing. Tribol. Int. 2007, 40, 1516–1525. [Google Scholar] [CrossRef]
- Tao, N.R.; Sui, M.L.; Lu, J.; Lua, K. Surface nanocrystallization of iron induced by ultrasonic shot peening. Nanostruct. Mater. 1999, 11, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Maximov, J.T.; Duncheva, G.V.; Anchev, A.P.; Ichkova, M.D. Slide burnishing—Review and prospects. Int. J. Adv. Manuf. Technol. 2019, 104, 785–801. [Google Scholar] [CrossRef]
- Raza, A.; Kumar, S. A critical review of tool design in burnishing process. Tribol. Int. 2022, 174, 107717. [Google Scholar] [CrossRef]
- Hull, E.H.; Nerad, A.J. Irregular diamond burnishing tool. U.S. Patent 2,966,722, 3 January 1961. [Google Scholar]
- Maximov, J.T.; Anchev, A.P.; Duncheva, G.V.; Ganev, N.; Selimov, K.F. Influence of the process parameters on the surface roughness, micro-hardness, and residual stresses in slide burnishing of high-strength aluminum alloys. J. Braz. Soc. Mech. Sci. Eng. 2016, 39, 3067–3078. [Google Scholar] [CrossRef]
- Dzierwa, A.; Gałda, L.; Tupaj, M.; Dudek, K. Investigation of wear resistance of selected materials after slide burnishing process. Eksploat. Niezawodn. 2020, 22, 432–439. [Google Scholar] [CrossRef]
- Zielecki, W.; Bucior, M.; Trzepiecinski, T.; Ochał, K. Effect of slide burnishing of shoulder fillets on the fatigue strength of X19NiCrMo4 steel shafts. Int. J. Adv. Manuf. Technol. 2019, 106, 2583–2593. [Google Scholar] [CrossRef]
- Kluz, R.; Antosz, K.; Trzepieciński, T.; Bucior, M. Modelling the influence of slide burnishing parameters on the surface roughness of shafts made of 42CrMo4 heat-treatable steel. Materials 2021, 14, 1175. [Google Scholar] [CrossRef]
- Kluz, R.; Trzepiecinski, T.; Bucior, M.; Antosz, K. Modelling of the effect of slide burnishing on the surface roughness of 42CrMo4 steel shafts. In Advances in Design, Simulation and Manufacturing IV; Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2021; pp. 415–424. [Google Scholar] [CrossRef]
- Toboła, D. Impact of mechanical processes as a pre-sulphonitriding treatment on tribology properties of selected p/m tool steels. Materials 2019, 12, 3431. [Google Scholar] [CrossRef] [Green Version]
- Toboła, D.; Morgiel, J.; Maj, Ł. TEM analysis of surface layer of Ti-6Al-4V ELI alloy after slide burnishing and low-temperature gas nitriding. Appl. Surf. Sci. 2020, 515, 145942. [Google Scholar] [CrossRef]
- Toboła, D.; Liskiewicz, T.; Yang, L.; Khan, T.; Boroń, Ł. Effect of mechanical and thermochemical tool steel substrate pre-treatment on diamond-like carbon (DLC) coating durability. Surf. Coatings Technol. 2021, 422, 127483. [Google Scholar] [CrossRef]
- Toboła, D.; Łętocha, A. Influence of combined mechanical processes on tribological properties of tool steels vanadis 8 and vancron 40 with a similar hardness. Front. Mech. Eng. 2021, 7, 775059. [Google Scholar] [CrossRef]
- Toboła, D. Influence of sequential surface treatment processes on tribological performance of vanadis 6 cold work tool steel. Wear 2021, 488, 204106. [Google Scholar] [CrossRef]
- Zaleski, K.; Skoczylas, A. Effect of slide burnishing on the surface layer and fatigue life of titanium alloy parts. Adv. Mater. Sci. 2019, 19, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Skoczylas, A.; Zaleski, K.; Matuszak, J.; Ciecieląg, K.; Zaleski, R.; Gorgol, M. Influence of slide burnishing parameters on the surface layer properties of stainless steel and mean positron lifetime. Materials 2022, 15, 8131. [Google Scholar] [CrossRef]
- Skoczylas, A.; Zaleski, K. Study on the surface layer properties and fatigue life of a workpiece machined by centrifugal shot peening and burnishing. Materials 2022, 15, 6677. [Google Scholar] [CrossRef] [PubMed]
- Ferencsik, V.; Varga, G. Examination of the change in surface roughness of burnished low alloyed aluminium external cylindrical pieces. Cut. Tools Technol. Syst. 2019, 91, 200–206. [Google Scholar] [CrossRef]
- Ferencsik, V.; Varga, G. Analysis of surface microhardness on diamond burnished cylindrical components. Cut. Tools Technol. Syst. 2019, 90, 151–157. [Google Scholar] [CrossRef]
- Ferencsik, V.; Varga, G. Examination of 3D surface topography of diamond burnished C45 workpieces. Cut. Tools Technol. Syst. 2019, 90, 158–167. [Google Scholar] [CrossRef]
- Ferencsik, V.; Varga, G. Investigation of shape correctness of diamond burnished low alloyed aluminium components. Cut. Tools Technol. Syst. 2020, 92, 179–187. [Google Scholar] [CrossRef]
- Varga, G.; Ferencsik, V. Experimental examination of surface micro-hardness improvement ratio in burnishing of external cylindrical workpieces. Cut. Tools Technol. Syst. 2020, 93, 114–121. [Google Scholar] [CrossRef]
- Ferencsik, V.; Varga, G. Examination of surface state-change on diamond burnished aluminium components. In International Symposium for Production Research 2019; Lecture Notes in Mechanical Engineering; Springer: Cham, Switzerland, 2020; pp. 535–544. [Google Scholar] [CrossRef]
- Felhő, C.; Varga, G. CAD and FEM modelling of theoretical roughness in diamond burnishing. Int. J. Precis. Eng. Manuf. 2022, 23, 375–384. [Google Scholar] [CrossRef]
- Varga, G.; Dezső, G.; Szigeti, F. Surface roughness improvement by sliding friction burnishing of parts produced by selective laser melting of Ti6Al4V titanium alloy. Machines 2022, 10, 400. [Google Scholar] [CrossRef]
- Ferencsik, V.; Varga, G. The Influence of diamond burnishing process parameters on surface roughness of low-alloyed aluminium workpieces. Machines 2022, 10, 564. [Google Scholar] [CrossRef]
- Felhő, C.; Varga, G. 2D FEM investigation of residual stress in diamond burnishing. J. Manuf. Mater. Process. 2022, 6, 123. [Google Scholar] [CrossRef]
- Dezső, G.; Szigeti, F.; Varga, G. Surface hardness modification of selective laser melted Ti6Al4V parts by sliding friction diamond burnishing. Period. Polytech. Mech. Eng. 2023, 67, 59–69. [Google Scholar] [CrossRef]
- Tesfom, F.; Pásztor, I.; Felhő, C. Flat diamond sliding burnishing surface roughness investigation. Multidiszcip. Tudományok 2022, 12, 186–195. [Google Scholar] [CrossRef]
- Sachin, B.; Narendranath, S.; Chakradhar, D. Effect of working parameters on the surface integrity in cryogenic diamond burnishing of 17-4 PH stainless steel with a novel diamond burnishing tool. J. Manuf. Process 2019, 38, 564–571. [Google Scholar]
- Sachin, B.; Narendranath, S.; Chakradhar, D. Enhancement of surface integrity by cryogenic diamond burnishing toward the improved functional performance of the components. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 396. [Google Scholar] [CrossRef]
- Sachin, B.; Narendranath, S.; Chakradhar, D. Selection of optimal process parameters in sustainable diamond burnishing of 17-4 PH stainless steel. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 219. [Google Scholar] [CrossRef]
- Sachin, B.; Narendranath, S.; Chakradhar, D. Application of desirability approach to optimize the control factors in cryogenic diamond burnishing. Arab. J. Sci. Eng. 2020, 45, 1305–1317. [Google Scholar] [CrossRef]
- Sachin, B.; Rao, C.M.; Naik, G.M.; Puneet, N.P. Influence of slide burnishing process on the surface characteristics of precipitation hardenable steel. SN Appl. Sci. 2021, 3, 1–13. [Google Scholar] [CrossRef]
- Kuznetsov, V.P.; Skorobogatov, A.S.; Gorgots, V.G. Impact of indentor sliding velocity and loading repetition factor on shear strain and structure dispersion in nanostructuring burnishing. Facta Univ. Ser. Mech. Eng. 2019, 17, 161. [Google Scholar] [CrossRef]
- Kuznetsov, V.; Makarov, A.; Skorobogatov, A.; Skorinina, P.; Luchko, S.; Sirosh, V.; Chekan, N. Influence of normal force on smoothing and hardening of the surface layer of steel 03X16N15M3T1 during dry diamond smoothing with a spherical indenter. Met. Process. 2022, 24, 6–22. [Google Scholar]
- Maximov, J.T.; Duncheva, G.V.; Anchev, A.P.; Amudjev, I.M. New method and tool for increasing fatigue life of a large number of small fastener holes in 2024-T3 Al alloy. J. Braz. Soc. Mech. Sci. Eng. 2019, 41, 203. [Google Scholar] [CrossRef]
- Maximov, J.T.; Duncheva, G.V.; Anchev, A.P.; Dunchev, V.P. Slide burnishing versus deep rolling—A comparative analysis. Int. J. Adv. Manuf. Technol. 2020, 110, 1–17. [Google Scholar] [CrossRef]
- Maximov, J.T.; Duncheva, G.V.; Anchev, A.P.; Dunchev, V.P.; Ichkova, M.D. Improvement in fatigue strength of 41Cr4 steel through slide diamond burnishing. J. Braz. Soc. Mech. Sci. Eng. 2020, 42, 1–20. [Google Scholar] [CrossRef]
- Maximov, J.T.; Duncheva, G.V.; Anchev, A.P.; Dunchev, V.P. Smoothing, deep or mixed diamond burnishing of low-alloy steel components—Optimization procedures. Int. J. Adv. Manuf. Technol. 2020, 106, 1917–1929. [Google Scholar] [CrossRef]
- Maximov, J.T.; Duncheva, G.V.; Dunchev, V.P.; Anchev, A.P. Different strategies for finite element simulations of static mechanical surface treatment processes—A comparative analysis. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 1–18. [Google Scholar] [CrossRef]
- Maximov, J.T.; Duncheva, G.V.; Anchev, A.P.; Dunchev, V.P.; Capek, J. A cost-effective optimization approach for improving the fatigue strength of diamond-burnished steel components. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 1–13. [Google Scholar] [CrossRef]
- Maximov, J.; Duncheva, G.; Anchev, A.; Dunchev, V.; Argirov, Y. Effect of diamond burnishing on fatigue behaviour of AISI 304 chromium-nickel austenitic stainless steel. Materials 2022, 15, 4768. [Google Scholar] [CrossRef]
- Maximov, J.; Duncheva, G.; Anchev, A.; Dunchev, V.; Argirov, Y.; Todorov, V.; Mechkarova, T. Effects of heat treatment and severe surface plastic deformation on mechanical characteristics, fatigue, and wear of Cu-10Al-5Fe bronze. Materials 2022, 15, 8905. [Google Scholar] [CrossRef] [PubMed]
- Duncheva, G.V.; Maximov, J.T.; Anchev, A.P.; Dunchev, V.P.; Argirov, Y.B.; Ganev, N.; Capek, J. Fatigue strength improvement in CuAl8Fe3 bronze via diamond burnishing. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 1–12. [Google Scholar] [CrossRef]
- Duncheva, G.V.; Maximov, J.T.; Anchev, A.P.; Dunchev, V.P.; Argirov, Y.B.; Ganev, N.; Drumeva, D.K. Improvement in surface integrity of CuAl8Fe3 bronze via diamond burnishing. Int. J. Adv. Manuf. Technol. 2022, 119, 5885–5902. [Google Scholar] [CrossRef]
- Duncheva, G.V.; Maximov, J.T.; Anchev, A.P.; Dunchev, V.P.; Argirov, Y.B. Improvement in wear resistance performance of CuAl8Fe3 single-phase aluminum bronze via slide diamond burnishing. J. Mater. Eng. Perform. 2021, 31, 2466–2478. [Google Scholar] [CrossRef]
- Duncheva, G.V.; Maximov, J.T.; Anchev, A.P.; Dunchev, V.P.; Argirov, Y.B. Multi-objective optimization of the internal diamond burnishing process. Mater. Manuf. Process. 2021, 37, 428–436. [Google Scholar] [CrossRef]
- Duncheva, G.; Maximov, J.; Anchev, A.; Dunchev, V.; Argirov, Y.; Kandeva-Ivanova, M. Enhancement of the wear resistance of CuAl9Fe4 sliding bearing bushings via diamond burnishing. Wear 2022, 510, 204491. [Google Scholar] [CrossRef]
- Bourebia, M.; Bouri, A.; Hamadache, H.; Achouri, S.; Laouar, L.; Gharbi, A.; Ghelloudj, O.; Bouhamla, K. Study of the effect burnishing on superficial hardness and hardening of S355JR steel using experimental planning. Energy Procedia 2019, 157, 568–577. [Google Scholar] [CrossRef]
- Hamadache, H.; Bourebia, M.; Taamallah, O.; Laouar, L. Surface hardening of 36 NiCrMo 6 steel by ball burnishing process. Mater. Res. Express 2019, 6, 106538. [Google Scholar] [CrossRef]
- Dyl, T.; Wijata, M.; Kuśmierska-Matyszczak, W. The slide broaching burnishing and the influence of deformation on roughness of 314L stainless steel sleeves. Sci. J. Gdyn. Marit. Univ. 2020, 116, 15–28. [Google Scholar] [CrossRef]
- Kato, H.; Yamamoto, K.; Yasunaga, K. Nano-crystallization of steel surface by slide-burnishing. Key Eng. Mater. 2020, 841, 48–53. [Google Scholar] [CrossRef]
- Shi, Y.-L.; Shen, X.-H.; Xu, G.-F.; Xu, C.-H.; Wang, B.-L.; Su, G.-S. Surface integrity enhancement of austenitic stainless steel treated by ultrasonic burnishing with two burnishing tips. Arch. Civ. Mech. Eng. 2020, 20, 1–17. [Google Scholar] [CrossRef]
- Uhlmann, E.; Polte, M.; Polte, J.; Kuche, Y.; Wendorf, S.; Siebel, D. Development of a machining strategy for diamond slide burnishing tools made of polycrystalline diamond (PCD). In Proceedings of the 20th International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN 2020, Virtual, 8–12 June 2020; pp. 433–434. [Google Scholar]
- Vyshnepolskyi, Y.; Pavlenko, D.; Tkach, D.; Dvirnyk, Y. Parts diamond burnishing process regimes optimization made of INCONEL 718 alloy via selective laser sintering method. In Proceedings of the IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP), Sumy, Ukraine, 9–13 November 2020. 02SAMA01-1–02SAMA01-5. [Google Scholar] [CrossRef]
- Shvetsov, A.N.; Skuratov, D.L. Influence of diamond smoothing on the surface layer of a 30XГCH2A-BД high-strength steel workpiece. Russ. Eng. Res. 2020, 40, 658–662. [Google Scholar] [CrossRef]
- Borysenko, D.; Welzel, F.; Karpuschewski, B.; Kundrák, J.; Voropai, V. Simulation of the burnishing process on real surface structures. Precis. Eng. 2020, 68, 166–173. [Google Scholar] [CrossRef]
- Kato, H.; Hirokawa, W.; Todaka, Y.; Yasunaga, K. Improvement in surface roughness and hardness for carbon steel by slide burnishing process. Mater. Sci. Appl. 2021, 12, 171–181. [Google Scholar] [CrossRef]
- Okada, M.; Terada, S.; Kataoka, Y.; Kihara, T.; Miura, T.; Otsu, M. Burnishing characteristics of sliding burnishing process with active rotary tool targeting stainless steel. J. Adv. Mech. Des. Syst. Manuf. 2021, 15, 1–11. [Google Scholar] [CrossRef]
- Lehmann, J.; Chen, H.; Kruse, M.; Ben Khalifa, N. Introducing residual stresses on sheet metals by slide hardening under stress superposition. Key Eng. Mater. 2021, 883, 143–150. [Google Scholar] [CrossRef]
- Fedorovich, V.; Pyzhov, I.; Kundrak, J.; Pupan, L.; Voloshkina, I. Simulation methodology of diamond burnishing. In Advances in Design, Simulation and Manufacturing IV; Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D., Eds.; Springer: Cham, Switzerland, 2021; pp. 363–372. [Google Scholar] [CrossRef]
- Márquez-Herrera, A.; Saldaña-Robles, A.; Zapata-Torres, M.; Reveles-Arredondo, J.; la Peña, J.D.-D. Duplex surface treatment on ASTM A-36 steel by slide burnishing and powder pack boriding. Mater. Today Commun. 2022, 31, 103703. [Google Scholar] [CrossRef]
- Nguyen, T.-T.; Van, A.-L. Machining and optimization of the external diamond burnishing operation. Mater. Manuf. Process. 2022, 1–15. [Google Scholar] [CrossRef]
- Sachin, B.; Rao, C.M.; Naik, G.M.; Prasad, C.D.; Hebbale, A.M.; Vijeesh, V.; Rao, M. Minimum quantity lubrication and cryogenic for burnishing of difficult to cut material as a sustainable alternative. In Sustainable Machining Strategies for Better Performance; Lecture Notes in Mechanical Engineering; Springer: Singapore, 2021; pp. 61–69. [Google Scholar] [CrossRef]
- Schubnell, J.; Farajian, M. Fatigue improvement of aluminium welds by means of deep rolling and diamond burnishing. Weld. World 2021, 66, 699–708. [Google Scholar] [CrossRef]
- Bobrovskij, I.; Bobrovskij, N.; Khaimovich, A.; Travieso-Rodriguez, J.A. Impacts of surface texture and nature of friction on energy-force efficiency of surface plastic deformation during burnishing. Metals 2022, 12, 1568. [Google Scholar] [CrossRef]
- Cagan, S.C.; Tasci, U.; Pruncu, C.I.; Bostan, B. Investigation of the effects of eco-friendly MQL system to improve the mechanical performance of WE43 magnesium alloys by the burnishing process. J. Braz. Soc. Mech. Sci. Eng. 2022, 45, 1–15. [Google Scholar] [CrossRef]
- Kluz, R.; Bucior, M.; Dzierwa, A.; Antosz, K.; Bochnowski, W.; Ochal, K. Effect of diamond burnishing on the properties of FSW joints of EN-AW-2024 aluminium alloys. Appl. Sci. 2023, 13, 1305. [Google Scholar] [CrossRef]
- Maximov, J.T.; Anchev, A.P.; Duncheva, G.V.; Ganev, N.; Selimov, K.F.; Dunchev, V.P. Impact of slide diamond burnishing additional parameters on fatigue behaviour of 2024-T3 Al alloy. Fatigue Fract. Eng. Mater. Struct. 2018, 42, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Ecoroll Catalogue. Tools and Solutions for Metal Surface Improvement; Ecoroll Corporation Tool Technology: Milford, OH, USA, 2006. [Google Scholar]
Indicators | Subindicators | References |
---|---|---|
A. Deforming element | A.1. Material | |
A.1.1. Diamond | ||
A.1.1.1 Artificial | [37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,68,69,70,71,72,73,74,75,76,77,78,79,80,81,85,86,87,88,91,92,93,94,95,96,99] | |
A.1.1.2. Natural | [66] | |
A.1.2. Hardened steel | [67,82,98] | |
A.1.3. Hard alloy | [36,38,83,84,89,90,97] | |
A.2. Working surface | ||
A.2.1. Spherical | [36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,68,69,70,71,72,73,74,75,76,77,78,79,80,81,83,84,85,86,87,88,89,90,91,92,93,94,95,96,98,99] | |
A.2.2. Cylindrical | [67,82,97] | |
B. Materials processed by SB | B.1. Steels | |
B.1.1. Unhardened | ||
B.1.1.1. Carbon constructional | [47,49,50,59,80,83,89,92,93,97] | |
B.1.1.2. Low-alloy constructional | [36,37,38,39,54,68,69,70,71,72,81,87,94] | |
B.1.1.3. Tool | [40,42,43,44] | |
B.1.1.4. Stainless | [46,52,57,60,61,62,63,64,65,66,73,82,84,90,95] | |
B.1.2. Hardened | [40,42,43,44,49] | |
B.2. Nickel-based alloys | [86] | |
B.3. Aluminium alloys | [48,51,53,56,67,88,91,92,96,99] | |
B.4. Titanium alloys | [41,45,55,58] | |
B.5. Magnesium alloys | [98] | |
B.6. Aluminium bronzes | [74,75,76,77,78,79,92] | |
C. Type of the burnished surface | C.1. Outer cylindrical | [38,39,45,46,47,48,49,50,51,52,53,55,56,57,60,61,62,63,64,65,68,69,70,71,72,73,74,75,76,77,80,81,84,86,87,94,95,97,98] |
C.2. Holes | [67,78,79,82] | |
C.3. Flat surfaces | [36,40,41,42,43,44,54,59,66,83,88,89,90,91,92,93,96,99] | |
C.4. Complex surfaces | [37,91] | |
D. Lubrication conditions | D.1. Conventional | [45,46,49,54,57,68,69,70,71,72,73,74,75,76,77,79,80,82,84,90,91] |
D.2. Dry friction | [60,66,89,95,97,98] | |
D.3. MQL | [52,53,56,60,62,94,95,97,98] | |
D.4. Cryogenic | [60,61,63,64,95] | |
D.5. It is not commented | [36,37,38,39,40,41,42,43,44,47,48,55,58,59,65,67,78,81,83,86,87,88,93,96,99] | |
E. Investigation of the effect of SB basic and additional parameters | E.1. Radius of the deforming element | [69,70,72,73,76,78,86,87,89] |
E.2. Burnishing force | [36,37,38,39,42,46,48,49,50,51,52,53,55,56,57,58,59,60,61,62,63,64,66,69,70,71,72,73,76,78,80,86,87,89,95,96,97,98,99] | |
E.3. Feed rate | [38,39,46,48,49,50,51,52,53,54,55,56,58,59,60,61,62,63,64,67,69,73,76,78,86,87,89,95,96,98,99] | |
E.4. Burnishing velocity | [38,39,49,50,51,52,55,56,58,60,61,62,63,64,65,67,69,71,73,87,89,95] | |
E.5. Number of tool passes | [48,53,56,59,73,76,78,79,80,98] | |
E.6. Working scheme | [76] | |
E.7. Lubricant | [45,50,60,94,95,97,98] | |
F. Comparison between SB and roller burnishing (deep rolling) | [68,96] | |
G. Combination of SB with other impacts (e.g., chemical-heat treatment) | [40,41,42,44,74,93] | |
H. Method of the study | H.1. Analytical | [65] |
H.2. Finite element method | [46,54,57,67,68,69,71,84,88,92] | |
H.3. Natural experiment | [36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,86,87,88,89,90,91,93,94,95,96,97,98,99] | |
H.4. Combined approach | [46,54,57,65,67,68,69,71,84,88] |
Apex of the Triangle | Characteristic | References |
---|---|---|
1. Physical nature of the SB process | 1.1. Generated heat | [68,69,97] |
1.2. Study of the process thermo-mechanical nature | [68,69] | |
1.3. Friction coefficient | [71] | |
1.4. Stressed state of the DB insert | [92] | |
2. SI of SBed surface | 2.1. Roughness ) | [37,38,39,41,42,45,46,47,48,54,55,56,57,59,60,61,62,63,64,66,67,68,70,72,73,74,75,76,77,78,79,82,84,86,88,89,90,94,95,98,99] |
2.2. Accuracy of the form | [51] | |
2.3. Surface stereometric structure (topography) | [36,37,40,41,42,43,45,46,47,50,55,60,61,75,76,77,78,79,84,90,95] | |
2.4. Micro-hardness | [36,37,40,41,42,44,45,46,47,49,52,53,58,60,61,62,63,64,66,68,72,73,74,75,76,77,78,79,80,81,84,86,87,89,90,93,95,96,97,98,99] | |
2.5. Residual stresses | [36,37,46,47,53,57,60,61,67,68,69,71,72,73,74,75,76,79,84,87,91,95,96,99] | |
2.6. Microstructure | [36,40,41,42,43,47,65,67,68,72,73,74,75,76,79,81,83,93,94] | |
3. Operating behaviour of the slide burnished surface | 3.1. Wear resistance | [36,40,42,43,44,77,79] |
3.2. Corrosion resistance | [90,93] | |
3.3. Fatigue behaviour | [37,45,47,67,68,69,70,72,73,74,75,81,96] | |
3.4. Bending properties | [90] |
Methods | References |
---|---|
X-ray diffraction | [36,37,53,57,60,61,67,68,69,71,72,73,74,75,76,79,95,96,99] |
Hole drilling | [91] |
Deflection etching technique | [47] |
FEM | [46,57,67,69,71,84] |
Not specified | [87] |
Methods | References |
---|---|
Optical microscope | [40,43,47,67,68,72,73,76,77,78,81,93,97] |
SEM analysis | [36,37,40,41,42,43,44,58,74,75,77,78,79,81,90,94,95,98] |
TEM analysis | [41,65] |
Alloys | Surface Micro-Hardness Improvement 0, % | Residual Stresses 00, MPa | References | ||||
---|---|---|---|---|---|---|---|
Hoop | Axial | ||||||
Surface | Max (In Depth) | Surface | Max (In Depth) | ||||
Carbon steels | |||||||
S355JR | 45 | [80] | |||||
C45 | 0.3 | 31 | −350 | [47] | |||
C45 | 0.19 1 | [50] | |||||
Normalized C45 | 0.18 | [89] | |||||
Low-alloy steels | |||||||
42CrMo4 | −349.4 2 | [36] | |||||
42CrMo4 | 0.137 3 | [38,39] | |||||
X19NiCrMo4 | 0.242 4 | 32 | −600 | −1144 | [37] | ||
41Cr4 | 0.1 | [70,72] | |||||
37Cr4 | −695 | −695 | [71] | ||||
40XC | 0.25 | [94] | |||||
Stainless steels (SS) | |||||||
X6CrNiTi18 | 0.10 1 | 42.74 | [46] | ||||
AISI 304 | 23.5 | [52] | |||||
AISI 304 | 0.34 | −1138 | [57] | ||||
AISI 304 | 0.097 | 66.4 5 | 0 6 −171 7 −746 7,8 | −566 6 −474 7 −926 7,8 | −737 6 −875 7 −1598 7,8 | −737 6 −968 7 −1598 7,8 | [73] |
17-4 PH | 0.03 | −356 | [60] | ||||
03X16N15M3T1 | 0.10 | 31–43 | [66] | ||||
Martensitic SS | <0.1 | [90] | |||||
Non-ferrous alloys | |||||||
Ti-6Al-4V | 0.22 9 | 1.3 | [41] | ||||
Ti-6Al-2Mo-2Cr | 0.4 | 11.7 | [45] | ||||
AW-2011 AA | 0.3 | [56] | |||||
Cu-10Al-5Fe 10 | 0.1–0.15 | 7.7 | −116 | −136 | −191 | −231 | [74] |
Cu-8Al-3Fe | 0.082 11 | −51 11 −200 12 | −452 11 −495 12 | −287 11 −509 12 | −693 11 −810 12 | [76] | |
Cu-9Al_4Fe 13 | 0.139 | 2 | −81 | −123 | −310 | −322 | [79] |
WE43 Mg alloy | 0.187 | [98] | |||||
INCONEL 718 | 0.47 | [86] |
Characteristics of SI | Method of Research | Optimization | Refer. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ra (Sa) | Surface Topog. | Form accu-racy | HV | Res. Stress | Micro- Struct. | One- Factor- at- a-Time | Planned Experiment | One- obj. | Multi- obj. | ||
Regression Model | ANOVA | ||||||||||
• | • | • | [38,39] | ||||||||
• | • | • | [41] | ||||||||
• | • | • | • | [46] | |||||||
• | • | • 1 | [48,56] | ||||||||
• | • | • 1 | [49,52,58] | ||||||||
• | • | • | • 1 | [50] | |||||||
• | • | • 1 | [51] | ||||||||
• | • | • | • 1 | [53] | |||||||
• | [54] | ||||||||||
• | • | • 1 | [55] | ||||||||
• | • | [57] | |||||||||
• | • 2 | • 1 | [59] | ||||||||
• | • | • | • | • | • | [60] | |||||
• | • | • | • | • | • | [61] | |||||
• | • | • | • | [62,63,64] | |||||||
• | [65] | ||||||||||
• | • | • | • | [66] | |||||||
• | • | [71] | |||||||||
• | • | • | • | • | • | • | • | • | [76] | ||
• | • | • | • | • | [78] | ||||||
• | • | [80] | |||||||||
• | • | [81] | |||||||||
• | • | [82] | |||||||||
• | [83] | ||||||||||
• | • | [84] | |||||||||
• | • | • | • | [86] | |||||||
• | • | [87] | |||||||||
• | [88] | ||||||||||
• 3 | [89] | ||||||||||
• | • | [91] | |||||||||
• 4 | • | • | [92] | ||||||||
• | • | • | • | [94] | |||||||
• | • | • | • | • | [95] | ||||||
• | • | [97] | |||||||||
• | • | • 5 | [98] | ||||||||
• | • | • | • | • | • | • | [99] |
Characteristics of SI | Method of Research | One-Objective Optimization | Refer. | ||||||
---|---|---|---|---|---|---|---|---|---|
Ra (Sa) | Surface Topogr. | HV | Res. Stress | Micro- Struct. | One- Factor-at- a-Time | Planned Experiment | |||
Regression Model | ANOVA | ||||||||
• | • | • | • | [45] | |||||
• | • | • | • | • | [47] 1 | ||||
• | • | • | • | • | • | • | • | [67] 1 | |
• | • | • | • | • | [68] | ||||
• | • | [69] | |||||||
• | • | • | • | • | • | [73] | |||
• | • | • | [74] 1,2 | ||||||
• | • | • | • | • | [75] | ||||
• | • | • | • | • | [77] | ||||
• | • | • | • | • | [79] | ||||
• | • | • | • | [90] | |||||
• | • | [93] 1,3 | |||||||
• | • | • | [96] | ||||||
Characteristics of OB | Method of Study | One-Objective Optimization | Refer. | ||||||
Fatigue | Wear | Corrosion Resist. | Bending prop. | One- Factor- at-a-Time | Planned Experiment | ||||
Life | Limit | S-N | |||||||
• | [45] 1 | ||||||||
• | [47] 1 | ||||||||
• | • | • | [67] 1 | ||||||
• | [68] 1,4 | ||||||||
• | • | • | [69] | ||||||
• | • | [73] | |||||||
• | [74] 1,2 | ||||||||
• | • | [75] | |||||||
• | • | [77] | |||||||
• | • | [79] | |||||||
• | • | • | [90] | ||||||
• | [93] 1,3 | ||||||||
• | [96] 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maximov, J.; Duncheva, G. The Correlation between Surface Integrity and Operating Behaviour of Slide Burnished Components—A Review and Prospects. Appl. Sci. 2023, 13, 3313. https://doi.org/10.3390/app13053313
Maximov J, Duncheva G. The Correlation between Surface Integrity and Operating Behaviour of Slide Burnished Components—A Review and Prospects. Applied Sciences. 2023; 13(5):3313. https://doi.org/10.3390/app13053313
Chicago/Turabian StyleMaximov, Jordan, and Galya Duncheva. 2023. "The Correlation between Surface Integrity and Operating Behaviour of Slide Burnished Components—A Review and Prospects" Applied Sciences 13, no. 5: 3313. https://doi.org/10.3390/app13053313
APA StyleMaximov, J., & Duncheva, G. (2023). The Correlation between Surface Integrity and Operating Behaviour of Slide Burnished Components—A Review and Prospects. Applied Sciences, 13(5), 3313. https://doi.org/10.3390/app13053313