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Abstract: Since machine learning is applied in medicine, more and more medical data for prediction
has been produced by monitoring patients, such as symptoms information of diabetes. This paper
establishes a frame called the Diabetes Medication Bayes Matrix (DTBM) to structure the relationship
between the symptoms of diabetes and the medication regimens for machine learning. The eigenvec-
tor of the DTBM is the stable distribution of different symptoms and medication regimens. Based
on the DTBM, this paper proposes a machine-learning algorithm for completing missing medical
data, which provides a theoretical basis for the prediction of a Bayesian matrix with missing medical
information. The experimental results show the rationality and applicability of the given algorithms.

Keywords: medical data; machine learning; bayesian matrix; eigenvector

1. Introduction

In daily life, the doctor judges the patient’s disease according to the symptoms moni-
toring and then formulates a medication plan for the patient based on the curative effect
of different medication regimens. However, this process is mainly based on the statistical
data of past cases [1–3]. The accuracy of the medication regimen directly affects the de-
velopment of the patient’s condition and is the most critical link in the treatment process,
while due to the diversity of diabetes complications and the diversity of diabetes-related
drugs, the statistics from clinical tests often include missing values [4–6]. Completing
these missing values based on the rules of the datasets can greatly enhance the accuracy of
doctors’ judgments. The research on missing value completion in the existing literature
mainly focuses on the low-rank matrix completion methods: Trever Hastie et al. applied
low-rank SVD to advance the current matrix completion algorithms and developed a new
algorithm that can deal with the Netflix competition data [7]. Gerome Vivar et al. used ma-
trix completion to provide full data available for Computer Aided Diagnosis using machine
learning [8]. Chen et al. proposed a Matrix Completion for Planning Diabetes Treatment by
using nonlinear convex optimization to generate information [9]. Bhattacharya proposed
two new estimators, based on singular value threshold and nuclear norm minimization,
to recover the sparse matrix under this assumption [10]. However, in medical cases, the
causal relationship between different symptoms and multiple medication regimens forms
a full-rank Bayesian matrix, so the previous low-rank matrix completion methods are no
longer applicable. Therefore, this paper develops a different matrix completion algorithm
assuming the matrix has a full rank to provide better support for the choice of diabetes
medication plan. This article establishes a method to complete a probabilities matrix by
one eigenvector. Through actual case statistics, we find that it is easier to obtain the eigen-
vector with the DTBM eigenvalue of 1, that is, the probability of different symptoms in
diabetic patients and the probability of each medication regimen being used. The data is
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obtained from medical tests after decades of sample statistics, which are the stable prob-
ability distributions of the symptoms and medication regimens in people with diabetes,
and it mathematically conforms to the stable state theory of the Markov matrix. Based
on the above information, we give the matrix completion algorithm for the DTBM, which
accurately completes the 56 missing values by one eigenvector in Section 6. At the same
time, the 56 completed values can be fixed into the two blocks of the DTBM, one block is
the probabilities of medications given multiple symptoms, and another is the probabilities
of symptoms given medications.

The new algorithm can complete an empty matrix from one eigenvector which can help
doctors make a medication plan with limited information. This original work completes a
DTBM with 56 missing data representing relations between symptoms and medications
to support doctors making medical plans. The remainder of this article is organized as
follows. In the second Section, this paper will introduce and explain two types of sample
data about diabetic symptoms and regimens. Also, the article mentions the collecting and
processing of these two kinds of sample data that are separated into causes and effects in
one matrix. Section 3 will analyze the properties of the principle eigenvector of the DTBM
for computing missing data in the sample data. Section 4 will demonstrate the method for
completing missing data of one column in the DTBM using the principal eigenvector of
the DTBM. In Section 5, an optimization algorithm is presented to deal with the situation
that all the sample data is missed, and the eigenvector is the only information we know;
Section 6 uses the proposed algorithms to complete an empty matrix about diabetes with
56 missing sample data; Section 7 discusses what the results we obtained in Section 6
mean and the differences between existed matrix completion methods and the method we
proposed; Section 8 summarizes the main contributions and inadequacies of this paper.

2. Sample Data and Bayesian Matrix

In the case data of diabetes [11], we mainly analyze the relationship between symptoms
and medication. Assume that the medication regimens are written as T = (t1, t2, . . . , tm),
and the symptoms are written as S = (s1, s2, . . . , sn). We write the two sets of events in a
comparison matrix:

B =

(
0 p(t|s)

p(s|t) 0

)
, t =

 t1
. . .
tm

, s =

 s1
. . .
sn

 (1)

Matrix B uses posterior probability (given the symptom, the probability of using
different medications) and likelihood estimates (given the medication and the curative effect
to different symptoms) to describe the relationship between symptoms and medications
completely, which we call the Diabetes Medication Bayes Matrix (DTBM). The DTBM is a
block matrix that contains four parts, among which the elements are represented by Bq

ij,

q = 1, 2, 3, 4. B1
ij represents the Probability of correlation between medication regimens,

i = 1, 2, . . . , m, j = 1, 2, . . . , m. B2
ij indicated the probability of different medication regimens

received by patients with different symptoms. The elements in B3
ij represent the effects of

different medications on different symptoms in the case data, expressed by conditional
probability, where i = m + 1, m + 2, . . . , m + n, j = 1, 2, . . . , m; B4

ij represents the probability
of correlation between different diseases, where i = m + 1, m + 2, . . . , m + n, j = m + 1, m + 2,
. . . , m + n. Assuming that the medication regimens are independent and the symptoms of
diabetic patients are independent. Therefore, B1

ij = 0, B4
ij = 0.

The DTBM fully demonstrates how should diabetic patients with certain symptoms
choose medication regimens. Doctors can also directly recommend medication regimens
for patients based on the probability in B2

ij. However, in the actual sampling and statistics
process, due to the diversity and complexity of patient symptoms, there will be one or more
missing columns. Currently, we need to do the completion.
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3. The Eigenvector of the DTBM

Since Bq
ij indicates the conditional probability value, each element in the DTBM is

between [0, 1]. And when a certain condition is given, the sum of its conditional proba-
bilities is equal to 1. Therefore, the sum of each column in the DTBM is 1, which means
that the DTBM is a Markov matrix. According to the characteristics of the Markov ma-
trix, the DTBM has a principle eigenvector whose eigenvalue is equal to 1. So, what is
this eigenvector?

The “0” in the matrix represents that there is no correlation between the occurrence of
independent events set X Y, which is consistent with Bayes’ theorem’s assumption. At this
time, the probability of the presence of X under events Y is expressed as P(X|Y) , and the
likelihood of the occurrence of Y under events set X is shown as P(Y|X) .

According to Bayes’ theorem and the formula of total probability, we get p(T), p(S).

p(T|S)p(S) =


t1|s1 t1|s2 . . . t1|sm
t2|s1 t2|s2 . . . t2|sm

...
...

...
...

tn|s1 tn|s2 . . . tn|sm




s1
s2
...

sm



=



m
∑

j=1
t1|sm

m
∑

j=1
t2|sm

...
m
∑

j=1
tn|sm


=


t1
t2
...

tn

 = p(T)

p(S|T)p(T) =


s1|t1 s1|t2 . . . s1|tn
s2|t1 s2|t2 . . . s2|tn

...
...

...
...

sm|t1 sn|t2 . . . sn|tn




t1
t2
...

tn



=



n
∑

i=1
s1|ti

n
∑

i=1
s2|ti

...
n
∑

i=1
sm|ti


=


s1
s2
...

sm

 = p(S)

Since P(X), P(Y), and p(Y|X ) are used to get p(X|Y ), p(X|Y ) can be expressed by the
eigenvalue equation: (

0 p(X|Y )
p(Y|X ) 0

)(
p(X)
p(Y)

)
=

(
p(X)
p(Y)

)

(
0 P(t|s)

P(s|t) 0

)(
P(t)
P(s)

)
=



∑m
j=1 P(t1

∣∣∣sj)

. . .

∑m
j=1 P(tm

∣∣∣sj)

∑m
i=1 P(s1|ti)

. . .
∑m

i=1 P(sn|ti)


=

(
P(t)
P(s)

)
(2)

It is not difficult to see that
(

P(t)
P(s)

)
is the eigenvector of the DTBM when the eigen-

value equals 1. The eigenvector with an eigenvalue of 1 expresses a stable state of the DTBM.
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After decades of medication research and practice, diabetes complications can be treated
with a certain drug, and the proportion of different drugs used for certain complications
is stable. Meanwhile, in a relatively stable environment, the proportion of people with
various diabetes symptoms also tends to stabilize. This eigenvector represents this stability,
where p(t) and p(s) can be obtained through data statistics. Therefore, we need to find the
missing column vectors in the DTBM based on its eigenvector.

4. DTBM Completion Algorithm for One Missing Column

We aim for a specific algorithm to fill in the missing value in the Diabetes medication
Bayesian matrix when only the missing suggested proportion of each treatment plan under
one specific symptom is missing (that is, when one column B2

ij is missing). Since the
eigenvector of the DTBM (Markov) matrix with an eigenvalue of 1 has m + n elements, we
set the eigenvector as e, where the element is e1, e2, . . . , em+n.

We can get Formula (1) according to the eigenvector’s property Be = 1e:

m,n

∑
i=1, j=1

Di(m+j)em+j = ei (3)

Assuming that the column r is null, then:

m

∑
i=1

Di(m+r−1)em+r−1 + Di(m+r)em+r +
m

∑
i=1

Di(m+r+1)em+r+1 = ei (4)

Di(m+r) =
ei −∑m

i=1 Di(m+r−1)em+r−1 −∑m
i=1 Di(m+r+1)em+r+1

em+r
(5)

A certain missing value in B2
ij can be obtained by Formula (3).

Or represented by the column vector of the matrix:

→
b r =

→
e −∑m+r−1

j=1

→
b jej −∑m+n

j=m+r+1

→
b jej

er
(6)

This model derives a matrix through its eigenvectors, and the elements in the matrix
are the curative effects of different drug combinations on diabetic complications. The upper
part of the eigenvector represents the probability of patients using a different medication
(regimen) in the sample data, and the lower part represents the probability of patients
having different indications in the sample data.

5. Missing Multiple Vectors
5.1. Only Missing Posterior Probability

In some real cases, there may be no statistics on the medications under multiple
symptoms. In the second block of matrix B, not only one column could be missing, but
multiple columns or even the entire block is empty. On the other hand, the likelihood
estimate in the matrix is known and can be queried from existing research. Therefore, we
can find each missing value according to Bayes’ theorem. Now taking two cases and two
medication regimens as an example, the specific methods are as follows:

0 0 p(t1|s1) p(t1|s2)
0 0 p(t2|s1) p(t2|s2)

p(s1|t1) p(s1|t2) 0 0
p(s2|t1) p(s2|t2) 0 0




p(t1)
p(t2)
p(s1)
p(s2)

 =


p(t1)
p(t2)
p(s1)
p(s2)
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Assuming that B2 is unknown, we can get the elements in according to Bayes’ theorem:

P
(
Tj
∣∣Sj
)
=

P(Sj
∣∣Ti)P(Ti)

P
(
Sj
) (7)

5.2. Both the Posterior and the Likelihood Estimate Have Missing Values

In the cases when there is a great number of missing values in both B2
ij and B3

ij (for
example, the case when only the possibility of the first drug used for each symptom is
known, and other likelihood estimates and posterior probabilities are unknown.), To fill
in the missing values, we need to make use of the eigenvalue and eigenvector of the
Markov matrix.

First, the eigenvector of the Markov matrix is known, i.e., e =
(

p(T)
p(S)

)
. The eigenvalue

λ corresponding to e is equal to 1, and it is also the maximum eigenvalue of matrix B (other
eigenvalues are less than 1). Therefore, we can calculate eT Be

eTe according to Formula (6):

eT Be
eTe

=
eT(Be)

eTe
=

eTλe
eTe

= λ (8)

e in Formula (6) is the eigenvector of the final stable state matrix, so its corresponding
eigenvalue is the maximum eigenvector.

Maximize
∥∥∥∥ eT Be

eTe

∥∥∥∥
2

subject to :
0 ≤ bij ≤ 1

m+n

∑
i=1

bij = 1;

b3
ijej = b2

jiei

According to this optimization model, a matrix can be optimized by eigenvectors,
where the elements are the curative effects of different medication regimens on compli-
cations. The upper part of the eigenvector is the probability of patients using different
medications (regimens) in the sample data, and the lower part is the probability of patients
having different indications in the sample data.

However, when there is little data, we can only fit an approximate matrix. Specifically,
since matrix B is a Markov matrix, the limit state of B after it is multiplied by n times is:

lim
n→∞

Bn = E = (e, e, . . . e), e =

 e1
...

em+n

 (9)

And:

BE = EB = E (10)

This leads to:
eT BEBe

eTe
=

eTEe
eTe

= λ (11)

So, we can build a maximization optimization model of an energy matrix:

Maximize
eT BEBe

eTe
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subject to :
0 ≤ bij ≤ 1;

m+n

∑
i=1

bij = 1;

b3
ijej = b2

jiei

In conclusion, we can find a matrix B based on the known eigenvector e and a few ma-
trix elements to satisfy all the requirements. According to the obtained posterior probability,
doctors can provide more accurate medication plans.

6. Experiments
6.1. Single Column Missing

Among 5076 residents in 83 long-term facilities, 863 patients with diabetes (17%, mean
age 82.9 ± 2.1 years) were identified. Table 1 contains a list of the main medications given
based on the symptoms of these patients:

Table 1. Main medications.

Medication Full Title Abbreviation

Metformin M
Sulphonylureas S

Insulin I
Metformin + Sulphonylureas M + S

Metformin + Insulin M + I
Insulin + Sulphonylureas S + I

Metformin + Sulphonylureas + Insulin M + S + I

In the sample data [12,13], the overall probability of patients using the above seven
medication regimens is shown in the Table 2. In addition, the main symptoms of dia-
betic patients in this sample case: Obesity recorded as O, HbA1C (>7) recorded as H,
Cardiovascular recorded as C, and Dementia recorded as D.

Table 2. The overall probability of patients using the medication regimens.

Medication Regimens Abbreviation Probability of Being Used

M 25.4%
S 13.6%
I 35.3%

M + S 2%
M + I 5.5%
S + I 3%

M + S + I 0.4%

Suppose that one of the seven probabilities of medication is xi, i = 1, 2, . . . , m; the
probabilities of having one of the four symptoms are yj, j = 1, 2, . . . , n. We separately stan-
dardized the probability of seven medication regimens and four symptoms by Formula (12)
and formed one vector:

er =



xi
7
∑

i=1
xi

, when 1 ≤ r ≤ m

yj
4
∑

j=1
yi

, when m + 1 ≤ r ≤ m + n
(12)

According to formula (12), the eigenvector of the Bayesian matrix based on the sample
data is e = (0.298, 0.16, 0.414, 0.023, 0.065, 0.035, 0.005, 0.098, 0.389, 0.196, 0.317)T .
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Our work is completing the DTBM with this eigenvector by the method we proposed
before. The specific steps are given below.

In the statistics of medications for diabetes symptoms, it is assumed that there is no
mutual influence between medications [12], and the symptoms also occur independently,
as shown in Figure 1.
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The elements in B1
ij and B4

ij are 0, and the elements in B2
ij and B3

ij can be determined
by statistics of cases. However, due to information protection measures or other reasons,
it is difficult to count the medication use of a certain symptom. There is often no known
statistical data on the medication use of a certain symptom in the sample, as shown in
Figure 2.
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6.2. Posterior Columns Missing

Furthermore, if there are multiple or all missing columns in A, we need to follow
Bayesian inference and supplement the entire data set according to Formula (7), as follows:

6.3. Both the Posterior and the Likelihood of Missing

Due to the low level of digitization in many areas, not only the statistics of drug
therapies under various symptoms are missing, but also the statistics of the efficacy of
various drugs or drug combinations on different symptoms are also missing.

What we have done is: First, establish a whole null matrix with 56 unknown elements
we need; second, realize the constraint corresponds to the matrix consisting of the variable
coefficient of the second and third blocks matrix A; third, build the maximize function we
presented in Section 5 to approximate the 56 elements.

Finally, all unknown elements are obtained, and the distribution diagrams are shown
in Figures 4–6.
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The feasible region of the solution space, as shown in Figure 4, is defined by the linear
equality constraints. These constraints are represented in the form of a matrix, and they set
the boundaries for the possible values that the solution can take. The constraints ensure that
the solution satisfies all the necessary requirements and conditions for it to be considered a
valid solution.
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Figure 5 shows the matrix derivatives for searching solutions of the optimization
model. By analyzing the numbers in the Hessian matrix, we can determine whether a given
point is a local minimum, maximum, or saddle point. This information is crucial in finding
the optimized solution, as it helps to identify the optimal point in the solution space.

Finally, all the missing probabilities we completed, shown in Figure 4, are the solutions
of the maximization optimization model we mentioned before.

Programming steps:
Each of the following functions, except for the main function code2, is the function

written according to various parameters required in MATLAB’s fmincon package:
Step 1. For the function boundary, the return values are beq (the value on the right side

of the linear constraint equation), ub (the upper bound of the variable), lb (the lower bound
of the variable), X0 (the initial value of the variable, which defaults to 0). It can be observed
that the variables in each column of matrix A add up to one, and there are m + n columns
in total, so there are m + n 1 s on the right side of the equation. In addition, according to the
multiple constraints between variables (the relationship between variables in the lower left
part and the upper right part of the matrix A), there are m× n constraints in total, so there
are m× n 0 s on the right side of all equations. Thus, use a1 and a2, respectively, to realize
m + n 1 s (m + n rows and 1 column), m× n 0 s (m× n rows and 1 column), and vertically
superimpose the two columns to form the return value beq (m + n + m× n rows and 1
column). For each variable, the lb is 0, and the ub is 1, and there are 2×m× n variables in
total, so the lb values are all 0 (2×m× n rows and 1 column), and the ub values are all 1
(2×m× n rows 1 column).

Step 2. For the function mat1, the purpose is to realize the constraints that the sum
of the variables in each column of the matrix A is 1. Firstly, generate a zero matrix with
m + n rows and 2×m× n columns. It can be observed that in the first m columns of matrix
A, each column has n variables that add up to 1, and in the last n columns, each column
has m variables that add up to 1. Thus, using the for loop and if statement, assume that
i represents the row and a acts as a positioning function with the initial value 1, which
represents the first column. From row 1 to row m + n, start with row 1; if i<= m, then
assign n elements the value of 1 and move a forward n positions; if i > m, then assign m
elements the value of 1 and move a forward m positions.

Step 3. For the function mat2, the purpose is to realize the constraints that aij × xj = aji × xi,
where aij corresponds to the lower left part of the matrix A, and aji corresponds to the upper
right part of matrix A. The return value of Mat2 corresponds to the matrix with m× n rows and
m× n columns, which is formed by the variable coefficient xj in the lower left part of the matrix,
A. i is the number of rows, and j is the number of columns; when i =j, assign xj, respectively.

Step 4. For the function mat3, the purpose is to realize the constraints that aij × xj = aji × xi,
where aij corresponds to the lower left part of the matrix A, and aji corresponds to the upper
right part of matrix A. The return value of Mat2 corresponds to the matrix with m× n rows
and m× n columns, which is formed by the variable coefficient xj in the lower left part of the
matrix, A. i is the number of rows, and j is the number of columns; when j = b + (a− 1)×m,
assign 10xj, respectively.

Step 5. For the function myfun, the purpose is to construct the objective function, and
the purpose of the nested function obj is to generate the target matrix A. Firstly, generate a
zero matrix with m + n rows and m + n columns, and k acts as a positioning function with
the initial value 1, which represents the first variable, j is the number of columns, and i is
the number of rows. When j<= m and i > m, the positions on the corresponding matrix
are variables from x1 to xm×n. When j> m and i <= m, the positions on the corresponding
matrix are variables xm×n+1) to x2×m×n . Objective function f = x × A × B × A × x′ or
f = x× A× x′. Among them, each column of B is x, and there are m+ columns in total.

Step 6. For the main function code2, the values of x, m, and n need to be changed each
time; x is the eigenvector, m is the first m elements of x, and n is the last n elements of x. A
is a nonlinear constraint matrix, which is not involved this time. Thus, A and b are empty,
mat1, mat2, and mat3 jointly generate linear constraint matrices Aeq, beq, xo, ub, and lb,
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and call the corresponding functions, where fun = @(X)myfun(X, x, m, n). The purpose
of this processing is: the original function fun is limited to only passing in the variable
parameter X, and other parameters can be passed in under the current method. Finally,
bring all the parameters into fmincon to get the result; x is the variable value, and fval is
the optimal value which is defaulted as the minimum value.

The results we obtained complete a whole matrix only with one eigenvector according
to high-rank assumption. The completed elements are the probabilities of symptoms and
medications that can support doctors in planning their treatments for diabetic patients.

7. Discussion

The results complete a probabilities matrix by one eigenvector. Fifty-six probabilities
are obtained by the optimizing program. The 28 results in block 2 of the DTBM represent
the conditional probabilities of each medical regimen under each symptom, while the
other 28 results in block 3 of DTBM represent conditional probabilities of each symptom
under each medical regimen. All the completed elements follow Bayes’ rule [14] that
the eigenvector of the completed matrix is exactly what we assumed. The completed
conditional probabilities can reveal the relationship between diabetes symptoms and
medication regimens.

Due to the crude nature of the previous data, it is difficult to find the symptoms of
each patient in the early stages of diabetes and the treatment plan given by the doctor for
each characteristic. However, statistics are more readily available on the overall proportion
of treatment options allocated to the case and the probability distribution of the occurrence
of each symptom. The accuracy of the treatment recommendation can be significantly
improved if the treatment plan for each case for each symptom is completed with known
outcome information from successful treatment cases. Current research in the literature
on missing value completion focuses on low-rank matrix completion methods such as
alternating least squares. Alternating Least Square is doing a pretty good job at solving the
scalability and sparseness of the rating data, and it’s simple and scales well to very large
datasets. But Alternating Least Square or other matrix completion methods are based on
matrix factorization algorithms like SVD that need to have parts of the matrix. That can not
be useful in the problem of this paper that the information of matrix was all lost. Comparing
the existing methods, such as alternative least squares [15], this model produced more
information from less.

The produced information we found respected Shannon’s theorem [16], but at the
same time, the relations between symptoms and regimens are dug out of overall links
due to the eigenvectors! These relations can be used to support doctors, especially the
completed conditional probabilities of regimens under each symptom. Doctors can make a
medical plan according to these probabilities.

The restricted condition of our model is the probability of different symptoms in
diabetic patients, and the probability of each medication regimen being used are the stable
probability distributions of the symptoms and medication regimens in people with diabetes,
and it mathematically conforms to the stable state theory of the Markov matrix. Based on
the above information, the sum of the completed values in each column must be one, which
limits this model to apply specific problems.

8. Conclusions

This article establishes a method to complete a probabilities matrix in that all the
elements are missed, and it is a full rank matrix only by using one eigenvector. We assumed
probabilities of symptoms and regimens given by statistic as a principle eigenvector of
the DTBM, which separates symptoms and regimens as causes and effects set in block
2 and block 3 of the matrix. The Following properties of the Markov matrix, the model
we proposed completed the whole matrix when it is totally missed by optimizing the
eigenvalue and constraining the range of each probability [14]. The results obtained by
this model satisfied Bayes’ rule and let the eigenvalue be 1 [15]. That met our assumed
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condition, and we finished the completed work. This work is different from the other
matrix completion assuming the matrix has a low rank and musted be given parts of the
completed elements in this matrix [16]. The limitation of the model is that the missing data
must be probabilities of causes and effects, and it cannot be used in other kinds of problems.
We assumed the data obtained from medical institutions after decades of sample statistics
are the stable probability distributions of the symptoms and medication regimens.
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