Effect of Different Nuts Oil Consumption on Morphological Features and Some Biomarkers of Inflammation in Adjuvant-Induced Arthritis (AIA) Rat Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Oils
2.2. Animals
2.3. Adjuvant-Induced Arthritis (AIA) Rat Model
2.4. Experimental Diet
2.5. Experimental Groups
- Control group: normal rats + normal diet;
- AIA-RA model group: RA rats + normal diet;
- AIA + walnut oil: RA rats + diet with walnut oil;
- AIA + peanut oil: RA rats + diet with peanut oil;
- AIA + cashew oil: RA rats + diet with cashew oil;
- AIA + hazelnut oil: RA rats + diet with hazelnut oil.
- DFC (g) = Food provided (g) − Food remaining (g)
- TFC (g) = Σ DFC
- WG (g) = Final wt. (g) − Initial wt. (g)
- FE = WG ÷ TFC
2.6. Evaluation of Body Weights and Arthritis
2.7. Blood Collection
2.8. Measurement of the Inflammatory Indicators in the Blood
2.8.1. Rheumatoid Factor (RF) Level
2.8.2. Measurement of Tumor Necrosis Factor-α
2.8.3. Measurement of Interleukin-6
2.8.4. Measurement of Interleukin-1β
2.8.5. Measurement of Prostaglandin E2
2.9. Statistical Analysis
3. Results
3.1. Effect of Different Nuts’ Oil on Food Consumption and Growth Indicators in Adjuvant-Induced Arthritis (AIA) Rat Model
3.2. Effect of Different Nuts’ Oil on the Morphological Appearance in Adjuvant-Induced Arthritis (AIA) Rat Model
3.3. Effect of Different Nuts' Oil on Arthritis Score and Rheumatoid Factors (RFs) in Adjuvant-Induced Arthritis (AIA) Rat Model
3.4. Effect of Different Nuts’ Oil on Serum Levels of Pro-Inflammatory Cytokines in Adjuvant-Induced Arthritis (AIA) Rat Model
3.5. Effect of Different Nuts’ Oil on Serum Levels of Prostaglandin E2 in Adjuvant-Induced Arthritis (AIA) Rat Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DFC | daily food consumption |
TFC | total food consumption |
WG | weight gain |
FE | food efficiency |
PBS | phosphate-buffered saline |
TBS | tris-buffered saline |
EPA | eicosapentaenoic acid |
DHA | docosahexaenoic acid |
ALA | alpha-linolenic acid |
ARA | arachidonic acid |
MMPs | matrix metalloproteinases |
LTs | leukotrienes |
TNF-α | tumor necrosis factor-α |
IL-6 | interleukin-6 |
IL-1β | interleukin-1β |
ICAM-1 | intercellular adhesion molecule 1 |
TXA2 | thromboxane A2 |
COX | cyclooxygenase |
LOX | lipoxygenase |
LB4 | leukotriene B4 |
TMB | 3,3′,5,5′-Tetramethylbenzidine |
iNOS | inducible nitric oxide |
HRP | horseradish peroxidase |
ELISA | enzyme-linked immunosorbent assay |
PGE2 | prostaglandin E2 |
SABC | strept avidin biotin–peroxidase complex |
CFA | complete Freund’s adjuvants |
CRP | C-reactive protein |
TNFR2 | tumor necrosis factor receptor 2 |
BMI | body mass index |
DMARDs | disease-modifying antirheumatic drugs |
NF-κB | nuclear factor kappa B |
MMPs | matrix metalloproteinases |
References
- Trouw, L.A.; Huizinga, T.W.J.; Toes, R.E.M. Autoimmunity in rheumatoid arthritis: Different antigens—Common principles. Ann. Rheum. Dis. 2013, 72 (Suppl. 2), ii132–ii136. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tak, P.P.; Kalden, J.R. Advances in rheumatology: New-targeted therapeutics. Arthritis. Res. Ther. 2011, 13, S5. [Google Scholar] [CrossRef] [Green Version]
- Klarenbeek, N.B.; Güler-Yüksel, M.; van der Heijde, D.M.F.M.; Hulsmans, H.M.J.; Kerstens, P.J.S.M.; Molenaar, T.H.E.; de Sonnaville, P.B.J.; Huizinga, T.W.J.; Dijkmans, B.A.C.; Allaart, C.F. Clinical synovitis in a particular joint is associated with progression of erosions and joint space narrowing in that same joint, but not in patients initially treated with infliximab. Ann. Rheum. Dis. 2010, 69, 2107–2113. [Google Scholar] [CrossRef]
- Mauri, C.; Menon, M. Human regulatory B cells in health and disease: Therapeutic potential. J. Clin. Investig. 2017, 127, 772–779. [Google Scholar] [CrossRef] [Green Version]
- Park, M.J.; Lee, S.H.; Kim, E.K.; Lee, E.J.; Baek, J.A.; Park, S.H.; Kwok, S.K.; Cho, M.L. Interleukin-10 produced by myeloid-derived suppressor cells is critical for the induction of Tregs and attenuation of rheumatoid inflammation in mice. Sci. Rep. 2018, 8, 3753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farrugia, M.; Baron, B. The role of TNF-α in rheumatoid arthritis: A focus on regulatory T cells. J. Clin. Transl. Res. 2016, 2, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Volker, D.H.; FitzGerald, P.E.B.; Garg, M.L. The eicosapentaenoic to docosahexaenoic acid ratio of diets affects the pathogenesis of arthritis in Lew/SSN rats. J. Nutr. 2000, 130, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Tański, W.; Świątoniowska-Lonc, N.; Tabin, M.; Jankowska-Polańska, B. The relationship between fatty acids and the development, course and treatment of rheumatoid arthritis. Nutrients 2022, 14, 1030. [Google Scholar] [CrossRef] [PubMed]
- Kostoglou-Athanassiou, I.; Athanassiou, L.; Athanassiou, P. The Effect of Omega-3 Fatty Acids on Rheumatoid Arthritis. Mediterr. J. Rheumatol. 2020, 31, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Gioxari, A.; Kaliora, A.C.; Marantidou, F.; Panagiotakos, D.P. Intake of omega-3 polyunsaturated fatty acids in patients with rheumatoid arthritis: A systematic review and meta-analysis. Nutrition 2018, 45, 114–124.e114. [Google Scholar] [CrossRef]
- Navarini, L.; Afeltra, A.; Gallo Afflitto, G.G.; Margiotta, D.P.E. Polyunsaturated fatty acids: Any role in rheumatoid arthritis? Lipids Health Dis. 2017, 16, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health implications of high dietary ω-6 polyunsaturated Fatty acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Evolutionary aspects of diet, the ω-6/ω-3 ratio and genetic variation: Nutritional implications for chronic diseases. Biomed. Pharmacother. 2006, 60, 502–507. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, P. Monounsaturated fats and immune function. Braz. J. Med. Biol. Res. 1998, 31, 453–465. [Google Scholar] [CrossRef] [Green Version]
- Donahue, K.E.; Jonas, D.E.; Hansen, R.A.; Roubey, R.; Jonas, B.; Lux, L.J.; Gartlehner, G.; Harden, E.; Wilkins, T.; Peravali, V.; et al. Drug Therapy for Rheumatoid Arthritis in Adults: An Update; Comparative Effectiveness Review No. 55; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2012. [Google Scholar]
- Ros, E. Health benefits of nut consumption. Nutrients 2010, 2, 652–682. [Google Scholar] [CrossRef] [Green Version]
- Salas-Salvadó, J.; Casas-Agustench, P.; Murphy, M.; López-Uriarte, P.; Bulló, M. The effect of nuts on inflammation. Asia Pac. J. Clin. Nutr. 2008, 17, 333–336. [Google Scholar]
- De Souza, R.; Schincaglia, R.M.; Pimentel, G.D.; Mota, J.F. Nuts and human health outcomes: A systematic review. Nutrients 2017, 9, 1311. [Google Scholar] [CrossRef] [Green Version]
- Blanco Mejia, S.; Kendall, C.W.C.; Viguiliouk, E.; Augustin, L.S.; Ha, V.; Cozma, A.I.; Mirrahimi, A.; Maroleanu, A.; Chiavaroli, L.; Leiter, L.A.; et al. Effect of tree nuts on metabolic syndrome criteria: A systematic review and meta-analysis of randomized controlled trials. BMJ Open 2014, 4, e004660. [Google Scholar] [CrossRef]
- Canales, A.; Sánchez-Muniz, F.J.; Bastida, S.; Librelotto, J.; Nus, M.; Corella, D.; Guillen, M.; Benedi, J. Effect of walnut-enriched meat on the relationship between VCAM, ICAM, and LTB4 Levels and PON-1 activity in ApoA4 360 and PON-1 allele carriers at increased cardiovascular risk. Eur. J. Clin. Nutr. 2011, 65, 703–710. [Google Scholar] [CrossRef] [Green Version]
- Lozano, A.; Perez-Martinez, P.; Marin, C.; Tinahones, F.J.; Delgado-Lista, J.; Cruz-Teno, C.; Gomez-Luna, P.; Rodriguez-Cantalejo, F.; Perez-Jimenez, F.; Lopez-Miranda, J. An acute intake of a walnut-enriched meal improves postprandial adiponectin response in healthy young adults. Nutr. Res. 2013, 33, 1012–1018. [Google Scholar] [CrossRef]
- Cordaro, M.; Siracusa, R.; Fusco, R.; D’Amico, R.; Peritore, A.F.; Gugliandolo, E.; Genovese, T.; Scuto, M.; Crupi, R.; Mandalari, G.; et al. Cashew (Anacardium occidentale L.) nuts counteract oxidative stress and inflammation in an acute experimental model of carrageenan-induced paw edema. Antioxidants 2020, 9, 660. [Google Scholar] [CrossRef] [PubMed]
- Fusco, R.; Siracusa, R.; Peritore, A.F.; Gugliandolo, E.; Genovese, T.; D’Amico, R.; Cordaro, M.; Crupi, R.; Mandalari, G.; Impellizzeri, D.; et al. The Role of Cashew (Anacardium occidentale L.) Nuts on an experimental model of painful degenerative joint disease. Antioxidants 2020, 9, 511. [Google Scholar] [CrossRef] [PubMed]
- Stoner, L.; Lucero, A.A.; Palmer, B.R.; Jones, L.M.; Young, J.M.; Faulkner, J. Inflammatory biomarkers for predicting cardiovascular disease. Clin. Biochem. 2013, 46, 1353–1371. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Malik, V.S.; Keum, N.; Hu, F.B.; Giovannucci, E.L.; Stampfer, M.J.; Willett, W.C.; Fuchs, C.S.; Bao, Y. Associations between nut consumption and inflammatory biomarkers. Am. J. Clin. Nutr. 2016, 104, 722–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, R.; Jacobs, D.R., Jr.; Mayer-Davis, E.; Szklo, M.; Herrington, D.; Jenny, N.S.; Kronmal, R.; Barr, R.G. Nut and seed consumption and inflammatory markers in the multi-ethnic study of atherosclerosis. Am. J. Epidemiol. 2006, 163, 222–231. [Google Scholar] [CrossRef] [Green Version]
- Sokoła-Wysoczańska, E.; Wysoczański, T.; Wagner, J.; Czyż, K.; Bodkowski, R.; Lochyński, S.; Patkowska-Sokoła, B. Polyunsaturated fatty acids and their potential therapeutic role in cardiovascular system disorders—A review. Nutrients 2018, 10, 1561. [Google Scholar] [CrossRef] [Green Version]
- Ablin, J.N.; Entin-Meer, M.; Aloush, V.; Oren, S.; Elkayam, O.; George, J.; Barshack, I. Protective effect of eotaxin-2 inhibition in adjuvant-induced arthritis. Clin. Exp. Immunol. 2010, 161, 276–283. [Google Scholar] [CrossRef]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C., Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 1993, 123, 939–951. [Google Scholar] [CrossRef] [Green Version]
- Reeves, P.G. Components of the AIN-93 diets as improvements in the AIN-76A diet. J. Nutr. 1997, 127, 838S–841S. [Google Scholar] [CrossRef] [Green Version]
- Lucke, V. Laboratory Animal Medicine; Fox, J.G., Cohen, B.J., Loew, F.M., Eds.; Academic Press Inc.: San Diego, CA, USA, 1984; ISBN 0-12-263620-1. [Google Scholar]
- National Research Council (US) Subcommittee on Laboratory Animal Nutrition. Nutrient Requirements of Laboratory Animals, 4th ed.; National Academies Press (US): Washington, DC, USA, 1995. [Google Scholar]
- Cuzzocrea, S.; Mazzon, E.; Paola, R.D.; Genovese, T.; Muià, C.; Caputi, A.P.; Salvemini, D. Effects of combination M40403 and dexamethasone therapy on joint disease in a rat model of collagen-induced arthritis. Arthritis Rheum. 2005, 52, 1929–1940. [Google Scholar] [CrossRef]
- Laferriere, C.A.; Pang, D.S. Review of intraperitoneal injection of sodium pentobarbital as a method of euthanasia in laboratory rodents. J. Am. Assoc. Lab. Anim. Sci. 2020, 59, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.S.; Hosney, M.; Bassiony, H.; Hassanein, A.S.; Soliman, A.M.; Fahmy, S.R.; Gaafar, K. Sodium pentobarbital dosages for exsanguination affect biochemical, molecular and histological measurements in rats. Sci. Rep. 2020, 10, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, E.D., Jr. Rheumatoid arthritis: Pathophysiology and implications for therapy. N. Engl. J. Med. 1990, 322, 1277–1289. [Google Scholar] [PubMed]
- Hochberg, M.C. Adult and juvenile rheumatoid arthritis: Current epidemiologic concepts. Epidemiol. Rev. 1981, 3, 27–44. [Google Scholar] [CrossRef]
- American College of Rheumatology Subcommittee on Rheumatoid Arthritis Guidelines. Guidelines for the management of rheumatoid arthritis: 2002 Update. Arthritis Rheum. 2002, 46, 328–346. [Google Scholar] [CrossRef] [PubMed]
- Kvien, T.K.; Uhlig, T.; Ødegård, S.; Heiberg, M.S. Epidemiological aspects of rheumatoid arthritis: The sex ratio. Ann. N. Y. Acad. Sci. 2006, 1069, 212–222. [Google Scholar] [CrossRef]
- Chancay, M.G.; Guendsechadze, S.N.; Blanco, I. Types of pain and their psychosocial impact in women with rheumatoid arthritis. Womens Midlife Health 2019, 5, 3. [Google Scholar] [CrossRef]
- Tuncel, J.; Haag, S.; Hoffmann, M.H.; Yau, A.C.; Hultqvist, M.; Olofsson, P.; Bäcklund, J.; Nandakumar, K.S.; Weidner, D.; Fischer, A.; et al. Animal Models of Rheumatoid Arthritis (I): Pristane-Induced Arthritis in the Rat. PLoS ONE 2016, 11, e0155936. [Google Scholar] [CrossRef]
- Song, D.; DuBois, D.C.; Almon, R.R.; Jusko, W.J. Modeling Sex Differences in Anti-inflammatory Effects of Dexamethasone in Arthritic Rats. Pharm. Res. 2018, 35, 203. [Google Scholar] [CrossRef]
- Shamlan, G.; Al-Nouri, D.M.; Alathbah, A.A.; Arzoo, S.; Habibullah, M.M. Antiarthritic, anti-inflammatory activity of Moringa peregrina seed oil and leaves in Freund’s complete adjuvant-induced arthritis in rats. J. King Saud Univ. Sci. 2021, 33, 101350. [Google Scholar] [CrossRef]
- Ellis, P.R.; Kendall, C.W.; Ren, Y.; Parker, C.; Pacy, J.F.; Waldron, K.W.; Jenkins, D.J. Role of cell walls in the bioaccessibility of lipids in almond seeds. Am. J. Clin. Nutr. 2004, 80, 604–613. [Google Scholar] [CrossRef] [Green Version]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and inflammation: The linking mechanism and the complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Ziccardi, P.; Nappo, F.; Giugliano, G.; Esposito, K.; Marfella, R.; Cioffi, M.; D’Andrea, F.; Molinari, A.M.; Giugliano, D. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation 2002, 105, 804–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauner, H. Secretory factors from human adipose tissue and their functional role. Proc. Nutr. Soc. 2005, 64, 163–169. [Google Scholar] [CrossRef] [Green Version]
- Stępień, M.; Stępień, A.; Wlazeł, R.N.; Paradowski, M.; Banach, M.; Rysz, J. Obesity indices and inflammatory markers in obese non-diabetic normo and hypertensive patients: A comparative pilot study. Lipids Health Dis. 2014, 13, 29. [Google Scholar] [CrossRef] [Green Version]
- Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 2006, 444, 860–867. [Google Scholar] [CrossRef]
- Warnberg, J.; Moreno, L.A.; Mesana, M.I.; Marcos, A.; The AVENA Group. Inflammatory mediators in overweight and obese Spanish adolescents. The AVENA Study. Int. J. Obes. 2004, 28, S59–S63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, E.A.; Silveira, L.S.; Masi, L.N.; Crisma, A.R.; Davanso, M.R.; Souza, G.I.; Santamarina, A.B.; Moreira, R.G.; Martins, A.R.; de Sousa, L.G.; et al. Macadamia oil supplementation attenuates inflammation and adipocyte hypertrophy in obese mice. Mediat. Inflamm. 2014, 2014, 870634. [Google Scholar] [CrossRef] [Green Version]
- Terzo, S.; Caldara, G.F.; Ferrantelli, V.; Puleio, R.; Cassata, G.; Mulè, F.; Amato, A. Pistachio consumption prevents and improves lipid dysmetabolism by reducing the lipid metabolizing gene expression in diet-induced obese mice. Nutrients 2018, 10, 1857. [Google Scholar] [CrossRef] [Green Version]
- Tindall, A.M.; Petersen, K.S.; Lamendella, R.; Shearer, G.C.; Murray-Kolb, L.E.; Proctor, D.N.; Kris-Etherton, P.M. Tree nut consumption and adipose tissue mass: Mechanisms of action. Curr. Dev. Nutr. 2018, 2, nzy069. [Google Scholar] [CrossRef] [Green Version]
- Abdulrazaq, M.; Innes, J.K.; Calder, P.C. Effect of ω-3 polyunsaturated fatty acids on arthritic pain: A systematic review. Nutrition 2017, 39, 57–66. [Google Scholar] [CrossRef]
- Yau, A.C.Y.; Holmdahl, R. Rheumatoid arthritis: Identifying and characterizing polymorphisms using rat models. Dis. Model. Mech. 2016, 9, 1111–1123. [Google Scholar] [CrossRef] [Green Version]
- Bugatti, S.; Vitolo, B.; Caporali, R.; Montecucco, C.; Manzo, A. β cells in rheumatoid arthritis: From pathogenic players to disease biomarkers. BioMed Res. Int. 2014, 2014, 681678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalliolias, G.D.; Ivashkiv, L.B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. 2016, 12, 49–62. [Google Scholar] [CrossRef]
- Dinarello, C.A. Historical insights into cytokines. Eur. J. Immunol. 2007, 37 (Suppl. 1), S34–S45. [Google Scholar] [CrossRef] [Green Version]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016, 14, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayhew, A.J.; de Souza, R.J.; Meyre, D.; Anand, S.S.; Mente, A. A systematic review and meta-analysis of nut consumption and incident risk of CVD and all-cause mortality. Br. J. Nutr. 2016, 115, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Afshin, A.; Micha, R.; Khatibzadeh, S.; Mozaffarian, D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2014, 100, 278–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C.; Yaqoob, P.; Harvey, D.J.; Watts, A.; Newsholme, E.A. Incorporation of fatty acids by concanavalin A-stimulated lymphocytes and the effect on fatty acid composition and membrane fluidity. Biochem. J. 1994, 300, 509–518. [Google Scholar] [CrossRef] [Green Version]
- Rees, D.; Miles, E.A.; Banerjee, T.; Wells, S.J.; Roynette, C.E.; Wahle, K.W.; Calder, P.C. Dose-related effects of eicosapentaenoic acid on innate immune function in healthy humans: A comparison of young and older men. Am. J. Clin. Nutr. 2006, 83, 331–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meydani, S.N.; Endres, S.; Woods, M.M.; Goldin, B.R.; Soo, C.; Morrill-Labrode, A.; Dinarello, C.A.; Gorbach, S.L. Oral (n-3) fatty acid supplementation suppresses cytokine production and lymphocyte proliferation: Comparison between young and older women. J. Nutr. 1991, 121, 547–555. [Google Scholar] [CrossRef]
- Von Schacky, C.; Kiefl, R.; Jendraschak, E.; Kaminski, W.E. N-3 fatty acids and cysteinyl-leukotriene formation in humans in vitro, ex vivo, and in vivo. J. Lab. Clin. Med. 1993, 121, 302–309. [Google Scholar]
- Calder, P.C. N-3 fatty acids, inflammation and immunity: New mechanisms to explain old actions. Proc. Nutr. Soc. 2013, 72, 326–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C.; Grimble, R.F. Polyunsaturated fatty acids, inflammation and immunity. Eur. J. Clin. Nutr. 2002, 56, S14–S19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundrarjun, T.; Komindr, S.; Archararit, N.; Dahlan, W.; Puchaiwatananon, O.; Angthararak, S.; Chuncharunee, S. Effects of n-3 fatty acids on serum interleukin-6, tumour necrosis factor-α and soluble tumour necrosis factor receptor p55 in active rheumatoid arthritis. J. Int. Med. Res. 2004, 32, 443–454. [Google Scholar] [CrossRef]
- Caughey, G.E.; Mantzioris, E.; Gibson, R.A.; Cleland, L.G.; James, M.J. The effect on human tumor necrosis factor alpha and interleukin 1 beta production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am. J. Clin. Nutr. 1996, 63, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Kelley, D.S.; Branch, L.B.; Love, J.E.; Taylor, P.C.; Rivera, Y.M.; Iacono, J.M. Dietary α-linolenic acid and immunocompetence in humans. Am. J. Clin. Nutr. 1991, 53, 40–46. [Google Scholar] [CrossRef]
- Poggetti, L.; Ferfuia, C.; Chiabà, C.; Testolin, R.; Baldini, M. Kernel oil content and oil composition in walnut (Juglans regia L.) accessions from north-eastern Italy. J. Sci. Food Agric. 2018, 98, 955–962. [Google Scholar] [CrossRef] [Green Version]
- Gharibzahedi, S.M.T.; Mousavi, S.M.; Hamedi, M.; Khodaiyan, F. Determination and characterization of kernel biochemical composition and functional compounds of Persian walnut oil. J. Food Sci. Technol. 2014, 51, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Miles, E.A.; Calder, P.C. Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br. J. Nutr. 2012, 107 (Suppl. 2), S171–S184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ros, E.; Izquierdo-Pulido, M.; Sala-Vila, A. Beneficial effects of walnut consumption on human health: Role of micronutrients. Curr. Opin. Clin. Nutr. Metab. Care 2018, 21, 498–504. [Google Scholar] [CrossRef]
- Sato, K.; Takayanagi, H. Osteoclasts, rheumatoid arthritis, and osteoimmunology. Curr. Opin. Rheumatol. 2006, 18, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Platt, I.D.; Josse, A.R.; Kendall, C.W.; Jenkins, D.J.; El-Sohemy, A. Postprandial effects of almond consumption on human osteoclast precursors-an ex vivo study. Metabolism 2011, 60, 923–929. [Google Scholar] [CrossRef]
- Papoutsi, Z.; Kassi, E.; Chinou, I.; Halabalaki, M.; Skaltsounis, L.A.; Moutsatsou, P. Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br. J. Nutr. 2008, 99, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Erdinest, N.; Shmueli, O.; Grossman, Y.; Ovadia, H.; Solomon, A. Anti-inflammatory effects of alpha linolenic acid on human corneal epithelial cells. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4396–4406. [Google Scholar] [CrossRef]
- Ren, J.; Chung, S.H. Anti-inflammatory effect of alpha-linolenic acid and its mode of action through the inhibition of nitric oxide production and inducible nitric oxide synthase gene expression via NF-kappaB and mitogen-activated protein kinase pathways. J. Agric. Food Chem. 2007, 55, 5073–5080. [Google Scholar] [CrossRef]
- Fukuda, T.; Ito, H.; Yoshida, T. Antioxidative polyphenols from walnuts (Juglans regia L.). Phytochemistry 2003, 63, 795–801. [Google Scholar] [CrossRef]
- Chauhan, A.; Chauhan, V. Beneficial Effects of Walnuts on Cognition and Brain Health. Nutrients 2020, 12, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonku, R.; Yu, J. Health aspects of peanuts as an outcome of its chemical composition. Food Sci. Hum. Wellness 2020, 9, 21–30. [Google Scholar] [CrossRef]
- Dias, C.; Madruga, M.S.; Pintado, M.; Almeida, G.; Alves, A.; Dantas, F.A.; Bezerra, J.; de Melo, M.; Viera, V.B.; Soares, J. Cashew nuts (Anacardium occidentale L.) decrease visceral fat, yet augment glucose in dyslipidemic rats. PLoS ONE 2019, 14, e0225736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siracusa, R.; Fusco, R.; Peritore, A.F.; Cordaro, M.; D’Amico, R.; Genovese, T.; Gugliandolo, E.; Crupi, R.; Smeriglio, A.; Mandalari, G.; et al. The Antioxidant and Anti-Inflammatory Properties of Anacardium occidentale L. Cashew Nuts in a Mouse Model of Colitis. Nutrients 2020, 12, 834. [Google Scholar] [CrossRef] [Green Version]
- Di Renzo, L.; Cioccoloni, G.; Bernardini, S.; Abenavoli, L.; Aiello, V.; Marchetti, M.; Cammarano, A.; Alipourfard, I.; Ceravolo, I.; Gratteri, S. A hazelnut-enriched diet modulates oxidative stress and inflammation gene expression without weight gain. Oxidative Med. Cell. Longev. 2019, 2019, 4683723. [Google Scholar] [CrossRef]
- Di Renzo, L.; Merra, G.; Botta, R.; Gualtieri, P.; Manzo, A.; Perrone, M.A.; Mazza, M.; Cascapera, S.; de Lorenzo, A. Post-prandial effects of hazelnut-enriched high fat meal on LDL oxidative status, oxidative and inflammatory gene expression of healthy subjects: A randomized trial. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 1610–1626. [Google Scholar]
- Tey, S.L.; Brown, R.C.; Chisholm, A.W.; Delahunty, C.M.; Gray, A.R.; Williams, S.M. Effects of different forms of hazelnuts on blood lipids and α-tocopherol concentrations in mildly hypercholesterolemic individuals. Eur. J. Clin. Nutr. 2011, 65, 117–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fattahi, M.J.; Mirshafiey, A. Prostaglandins and Rheumatoid Arthritis. Arthritis 2012, 2012, 239310. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T. Lipid mediators in health and disease: Enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 2009, 49, 123–150. [Google Scholar] [CrossRef] [Green Version]
- McCoy, J.M.; Wicks, J.R.; Audoly, L.P. The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. J. Clin. Investig. 2002, 110, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Hata, A.N.; Breyer, R.M. Pharmacology and signaling of prostaglandin receptors: Multiple roles in inflammation and immune modulation. Pharmacol. Ther. 2004, 103, 147–166. [Google Scholar] [CrossRef]
- Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.; Burgos-Vargas, R.; Davis, B.; Day, R.; Ferraz, M.B.; Hawkey, C.J.; Hochberg, M.C.; et al. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. N. Engl. J. Med 2000, 343, 1520–1528. [Google Scholar] [CrossRef]
- Abedi, E.; Sahari, M.A. Long chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. Food Sci. Nutr. 2014, 2, 443–463. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C. Polyunsaturated fatty acids, inflammatory processes and inflammatory bowel diseases. Mol. Nutr. Food Res. 2008, 52, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Blomhoff, R.; Carlsen, M.H.; Andersen, L.F.; Jacobs, D.R., Jr. Health benefits of nuts: Potential role of antioxidants. Br. J. Nutr. 2006, 96 (Suppl. 2), S52–S60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alasalvar, C.; Bolling, B.W. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 2015, 113 (Suppl. 2), S68–S78. [Google Scholar] [CrossRef]
FAs | Walnut Oil | Peanut Oil | Hazelnut Oil | Cashew Oil |
---|---|---|---|---|
C(14:0) | 2.7 | 0.0 | - | 0.70 |
C(16:0) | 7.2 | 8.9 | 5.6 | 0.53 |
C(16:1) | 0.2 | 0.1 | 0.2 | 0.05 |
C(17:0) | 0.1 | 0.1 | 0.1 | - |
C(17:1) | 0.0 | 0.1 | 0.1 | - |
C(18:0) | 2.7 | 2.6 | 2.5 | 4.88 |
C(18:1), n-9 | 15.2 | 51.3 | 72.7 | 84.36 |
C(18:1), n-7 | 1.3 | 1.3 | 2.4 | - |
C(18:2), trans | 0.3 | 0.2 | 0.1 | - |
C(18:2), n-6 | 57.1 | 23.5 | 12.9 | 8.68 |
C(18:3), trans | 0.5 | - | - | - |
C(18:3), n-6 | - | - | - | - |
C(18:3), n-3 | 11.9 | 0.2 | 0.4 | 0.13 |
C(20:0) | 0.1 | 1.2 | 0.2 | 0.36 |
C(20:1), n-9 | 0.2 | 1.5 | 0.2 | - |
C(20:2), n-6 | - | - | - | - |
C(22:0) | 0.1 | 2.5 | 0.0 | 0.14 |
C(22:1), n-9 | - | 0.1 | - | - |
C(24:0) | - | 1.4 | - | 0.52 |
SFA | 12.9 | 16.7 | 8.4 | 7.13 |
MUFA | 16.9 | 54.4 | 75.6 | 84.41 |
PUFA | 69.8 | 23.9 | 13.4 | 8.81 |
PUFA n-3 | 11.9 | 0.2 | 0.4 | 0.13 |
PUFA n-6 | 57.1 | 23.5 | 12.9 | 8.68 |
n6/n3 ratio | 4.8 | 117.5 | 32.25 | 66.77 |
trans-FA | 0.8 | 0.2 | 0.1 | - |
Total FA | 99.6 | 95 | 97.4 | 100.35 |
Ingredient | Control | Walnut | Peanut | Cashew | Hazelnut |
---|---|---|---|---|---|
(g/kg) | |||||
Corn starch | 465.692 | 465.692 | 465.692 | 465.692 | 465.692 |
Casein | 140 | 140 | 140 | 140 | 140 |
Maltodextrin | 145 | 145 | 145 | 145 | 145 |
Sucrose | 100 | 100 | 100 | 100 | 100 |
Soybean | 50 | - | - | - | - |
Walnut oil | - | 50 | - | - | - |
Peanut oil | - | - | 50 | - | - |
Cashew oil | - | - | - | 50 | - |
Hazelnut oil | - | - | - | - | 50 |
Cellulose | 50 | 50 | 50 | 50 | 50 |
Minerals mix1 | 35 | 35 | 35 | 35 | 35 |
Vitamin mix2 | 10 | 10 | 10 | 10 | 10 |
L-Cystine | 1.8 | 1.8 | 1.8 | 1.8 | 1.8 |
Choline Bitartrate | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 |
TBHQ **, antioxidant | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shammari, S.K.; Al-Nouri, D.M.; Arzoo, S.; Al-Harbi, L.N. Effect of Different Nuts Oil Consumption on Morphological Features and Some Biomarkers of Inflammation in Adjuvant-Induced Arthritis (AIA) Rat Model. Appl. Sci. 2023, 13, 3318. https://doi.org/10.3390/app13053318
Al-Shammari SK, Al-Nouri DM, Arzoo S, Al-Harbi LN. Effect of Different Nuts Oil Consumption on Morphological Features and Some Biomarkers of Inflammation in Adjuvant-Induced Arthritis (AIA) Rat Model. Applied Sciences. 2023; 13(5):3318. https://doi.org/10.3390/app13053318
Chicago/Turabian StyleAl-Shammari, Samiyah K., Doha M. Al-Nouri, Shaista Arzoo, and Laila Naif Al-Harbi. 2023. "Effect of Different Nuts Oil Consumption on Morphological Features and Some Biomarkers of Inflammation in Adjuvant-Induced Arthritis (AIA) Rat Model" Applied Sciences 13, no. 5: 3318. https://doi.org/10.3390/app13053318
APA StyleAl-Shammari, S. K., Al-Nouri, D. M., Arzoo, S., & Al-Harbi, L. N. (2023). Effect of Different Nuts Oil Consumption on Morphological Features and Some Biomarkers of Inflammation in Adjuvant-Induced Arthritis (AIA) Rat Model. Applied Sciences, 13(5), 3318. https://doi.org/10.3390/app13053318