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Abstract: Insufficiently labeled samples and low-generalization performance have become significant
natural language processing problems, drawing significant concern for few-shot text classification
(FSTC). Advances in prompt learning have significantly improved the performance of FSTC. How-
ever, prompt learning methods typically require the pre-trained language model and tokens of the
vocabulary list for model training, while different language models have different token coding
structures, making it impractical to build effective Chinese prompt learning methods from previous
approaches related to English. In addition, a majority of current prompt learning methods do not
make use of existing unlabeled data, thus often leading to unsatisfactory performance in real-world
applications. To address the above limitations, we propose a novel Chinese FSTC method called
CIPLUD that combines an improved prompt learning method and existing unlabeled data, which are
used for the classification of a small amount of Chinese text data. We used the Chinese pre-trained
language model to build two modules: the Multiple Masks Optimization-based Prompt Learning
(MMOPL) module and the One-Class Support Vector Machine-based Unlabeled Data Leveraging
(OCSVM-UDL) module. The former generates prompt prefixes with multiple masks and constructs
suitable prompt templates for Chinese labels. It optimizes the random token combination problem
during label prediction with joint probability and length constraints. The latter, by establishing an
OCSVM model in the trained text vector space, selects reasonable pseudo-label data for each category
from a large amount of unlabeled data. After selecting the pseudo-label data, we mixed them with
the previous few-shot annotated data to obtain brand new training data and then repeated the steps
of the two modules as an iterative semi-supervised optimization process. The experimental results
on the four Chinese FSTC benchmark datasets demonstrate that our proposed solution outperformed
other prompt learning methods with an average accuracy improvement of 2.3%.

Keywords: Chinese few-shot text classification; prompt learning; unlabeled data; pre-trained
language model

1. Introduction

Text classification is a vital task of natural language processing (NLP) that involves
assigning text data to predefined categories or labels, such as emotions, topics, and other
types [1]. It is widely used in practical applications such as sentiment analysis [2–4], in-
formation retrieval [5–7], and question-answering [8]. However, the traditional text classi-
fication models require large, well-labeled datasets, which can be challenging to obtain
in practice. Insufficiently labeled samples and low-generalization performance becomes
in-creasingly serious as the text label types grow. To tackle this challenge, researchers
have turned to the few-shot text classification (FSTC), which aims to solve the problem by
limiting the number of labeled data.

To extract useful semantic information from few-shot data, the pre-trained language
model (PLM) is usually adopted. Recently, a technique known as prompt learning [9–11]
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has shown impressively in FSTC tasks. This method utilizes natural language prompts
and the PLM and converts downstream tasks into masked language modeling problems.
Compared to traditional approaches, prompt learning has proven to be particularly effective
in extreme scenarios where there is only one training sample per type. Although much
research has been conducted on prompt learning for English FSTC, its application in
Chinese FSTC is still in the early stages, given the language disparity between Chinese
and English. Prompt learning methods require a pre-trained language model and token of
the vocabulary list for training, and various language models have varying token coding
structures, making it difficult to adopt previous English-related approaches for effective
Chinese prompt learning. For example, the label “computer” requires three tokens in
Chinese, while it only needs a single token in English. This is because Chinese is a highly
context-dependent language. Meaningful labels often require multiple tokens to express the
full meaning and context of the label, whereas, in English, a single token can often convey
the same meaning. Thus, how to design a generic prompt template for Chinese labels has
become the first problem to be solved. In addition, the Chinese language characteristic
results in the mask tokens being expanded to more than one when prompt learning is used.
This may be a random token composition problem with the prediction labels obtained
by mask decoding. Random token composition does not belong to a predefined label set,
which produces an output result that is difficult to accept. Hence, how to deal with a
random token composition when predicting Chinese labels is the second problem to be
solved. Additionally, with the unprecedented volume of unlabeled data generated from
the practice environment, recent research on how to effectively utilize existing, unlabeled
datasets within prompt learning has attracted significant attention. On the one hand,
unlabeled data are easier to obtain than labeled data; on the other hand, overfitting from
classification previously can be avoided to a significant extent. Semi-supervised learning
using unlabeled data has emerged as an important approach to classification, data mining,
and information retrieval. Pseudo-label paradigms that assign labels with high confidence
to unlabeled data based on a trained model have been increasingly investigated [12]. With
more unlabeled data, better classification performance can be expected by increasing the
size of the trainable data. However, the convergence of prompt learning and unlabeled
data is a challenging research topic that has not been extensively studied.

For the issues discussed above, we propose a Chinese few-shot text classification
method called CIPLUD that combines an improved prompt learning method and existing
unlabeled data for Chinese FSTC. The CIPLUD model is composed of two modules, in-
cluding the Multiple Masks Optimization-based Prompt Learning (MMOPL) module and
the One-Class Support Vector Machine-based Unlabeled Data Leveraging (OCSVM-UDL)
module. As part of the MMOPL module, our method designs universal prompt templates
with multiple masks for different tasks. We then built a text classification model using
universal prompt templates and a Chinese pre-trained language model. Afterward, we
optimized the predicted label of the model using joint probability and length constraints,
effectively eliminating the problem of a random token composition. In the OCSVM-UDL
module, our method assigns pseudo-labels to the unlabeled data through a one-class
support vector machine model [13] inspired by anomaly detection. With the help of
few-shot-labeled data, the OCSVM model can obtain spherical constraint boundaries for
different classes in the feature space through training. Then, these constraint boundaries are
used to filter the unlabeled data. The unlabeled samples that do not fall into any boundary
are considered low-confidence anomaly data, and the unlabeled samples that fall into
multiple constraint boundaries are considered ambiguous data. This filtering approach can
filter noise data from the unlabeled data and effectively screen out pseudo-labeled data
with high confidence and disambiguation. Finally, the new training data are created by
blending the pseudo-labeled data with the few-shot-labeled data. The flow of the above-
mentioned two modules is repeated until the performance of the text classification model
stabilizes, signaling the end of the iteration. The experimental results on the few-shot text
classification datasets, FewCLUE [14], demonstrate the effectiveness of our approach. The
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proposed model is referred to as the CIPLUD model. The main contributions of our paper
are summarized as follows:

• According to our best knowledge, this is the first study to combine the prompt learn-
ing method and unlabeled data for Chinese FSTC. The proposed CIPLUD model
de-signs a universal prompt template for different Chinese FSTC tasks. It uses the
joint probability and length-constrained decoding method to solve the random token
composition problem caused by the multiple masks’ prompt templates;

• To design a pseudo-label candidate method using the OCSVM model and conduct
semi-supervised training using the pseudo-labels, resulting in improved performance;

• We conducted experiments and evaluated a series of Chinese FSTC datasets. The
experimental results demonstrate that the proposed CIPLUD model can gain signifi-
cant improvement over other prompt learning methods.

The rest of the paper is organized as follows. We review some representative work on
the few-shot text classification and prompt learning in Section 2. In Section 3, we describe
the architecture of the proposed model in detail. Sections 4 and 5 introduce the experiments
on the FewCLUE dataset and present the experimental results and analysis to demonstrate
the competitiveness of the proposed method compared to the most advanced prompt
learning models for the few-shot text classification. Finally, we provide conclusions and
discuss some future research directions in Section 6.

2. Related Work

In this section, we review some representative work on the few-shot text classification,
pre-trained language models, and prompt learning methods.

2.1. Few-Shot Text Classification

Few-shot text classification aims to build a classifier using a limited number of an-
notated resources. Traditional text classification methods, such as the Support Vector Ma-
chine (SVM), Multi-Layer Perceptron (MLP), and Transformers, are not well suited for this
scenario as they require a large number of labeled samples for model convergence [15–19].
For the past few years, the meta-learning approach has emerged as a popular framework for
few-shot text classification, which aims to help us solve tasks by learning a set of universal
“meta-tasks” with few samples. There are two main ways to leverage meta-learning for
target tasks: (1) the optimization-based method and (2) the metric-based method. The
former treats the meta-task as a universal parameter optimization process and its modifi-
cation in a large number of similar tasks. The latter focuses on measuring the similarity
between the query and support samples by generating sample representations with better
clustering properties, which are then used to model the classification probability of the
query samples [20].

Several studies have demonstrated the effectiveness of these meta-learning ap-proaches
in few-shot text classification [21]. Metric-based meta-learning, especially, can outperform
traditional text classification models trained from scratch. For example, Koch et al. [22]
proposed Siamese Neural Networks, a neural network model containing two identical
neural networks, to solve single-sample learning problems by discriminating whether
the query and support samples belong to the same class. Inspired by the twin networks,
Vinyals et al. [23] proposed matching networks, which use global information within each
episode to represent the query samples and then use an attention mechanism to weigh the
aggregated label information of the support samples to model the classification probability
of the query samples. Snell et al. [24] proposed a simple and effective few-shot learning al-
gorithm called the Prototype Network to form a circular representation of this category and
then measure the class works, averaging the sample representations of the same category
in the support samples’ classification probability of the query samples by their similarity to
each prototype representation. Furthermore, Sung et al. [25] proposed a Relation Network
to model the similarity metric function using deep neural networks to replace the tradi-
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tional fixed distance calculation methods, such as the L1 distance, L2 distance, and cosine
similarity.

Although metric-based meta-learning creates insufficiently labeled sample scenarios
for each meta-task through clustering characteristics and text similarity, they still need
to filter and retain a large amount of representative annotation data for training and
debugging.

2.2. Pre-Trained Language Model

Pre-trained language models play a pivotal role in text classification, serving as the
backbone for models in both sufficient data and few-shot scenarios. There are two promi-
nent examples of this type of model: masked language models (MLM) and left-to-right
(LTR) language models [26]. Masked language models use a technique called “masking”,
which means that a certain percentage of words in a given sentence is randomly replaced
with a placeholder symbol, such as BERT [27] and ERNIE [28]. This type of model attempts
to use the surrounding context to predict what the missing word could be. Left-to-right
language models are designed to assign a probability to a sequence of words and can be
applied to generate more natural language, such as GPT [29]. By leveraging these powerful
pre-trained models, text classification models can be rapidly adapted to new tasks with
only a minimal amount of annotated data.

2.3. Prompt Learning

Prompt learning is a popular approach in text classification that leverages the power
of pre-trained language models [30]. In this approach, a model is fine-tuned using manu-
ally crafted or automatically generated prompt sentences with mask tokens added to the
original text. The goal is to use the pre-trained model to predict the tokens at the mask
lo-cations, which are associated with the labels in the text classification task. According
to different prompt designs, there are two main types of prompt learning: discrete and
con-tinuous prompts. In discrete prompt learning, a set of natural language prompt tokens
is used to classify the text, such as PET [31]. For example, given an input text, the input
em-bedding sequence can be formulated with the input text and the prompt tokens, such as
“It is a [MASK] subject”. However, the discrete prompt is a locally optimal process because
the neural network is continuous, and the search is conducted in a discrete space. In
contrast, continuous prompt learning considers that the prompt templates can be trainable
and optimized for continuous prompt embeddings. This method trains the input sequence
with the input text, a series of trainable, continuous embeddings, and is a placeholder for
the model to predict the mask token. For instance, the EFL [32] approach uses the T5 model
to generate optimal discrete prompt templates, eliminating the need for a manual search.
Another method, P-tuning [33,34], considers that the prompt templates can be trainable
and optimized for continuous prompt embeddings, achieving comparable performance to
the BERT fine-tuning in a supervised learning process.

Prompt learning methods often make use of a mask token in their templates, linking
each label to a verbalization token to predict label categories. Despite its effectiveness, it is
rarely suitable for tasks with complex label spaces and labels of varying lengths, especially
Chinese labels that need multiple tokens to convey meaning.

3. Chinese Few-Shot Text Classification Method with Improved Prompt Learning and
Unlabeled Data

In this section, we describe the proposed CIPLUD model, which can be broken down
into two components: the Multiple Masks Optimization-based Prompt Learning (MMOPL)
module and the One-Class Support Vector Machine-based Unlabeled Data Leveraging
(OCSVM-UDL) module. In Section 3.1, we discuss the MMOPL module, highlighting
how it formulates a general prompt learning template and optimizes predictive labels for
superior performance in text classification tasks. Section 3.2 delves into the workings of
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the OCSVM-UDL module, demonstrating how these two modules collaborate to achieve
improved outcomes in text classification.

3.1. Multiple Masks Optimization-Based Prompt Learning Module

Prompt learning is an exciting development in the field of natural language processing,
offering great promise in few-shot text classification tasks. At our lab, we have endeavored
to enhance the effectiveness of prompt learning in the context of Chinese text classifica-
tion by introducing the Multiple Masks Optimization-based Prompt Learning (MMOPL)
module, as depicted in Figure 1.
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In prompt learning, there are two primary engineering steps, namely prompt engineer-
ing and answer engineering. Prompt engineering involves designing a prompt function,
Fprompt(X), that elicits the most optimal performance in downstream tasks. In the past,
discrete prompts that are created through a painstaking manual process have been used.
However, this approach is both time-consuming and requires considerable expertise, and
even experienced prompt designers may not be able to create the best prompt [35]. To
overcome this limitation, we propose the use of continuous prompts that are automatically
learned by the model. These prompts are tensors designed to enable the effective execution
of the tasks by the language model, and they do not necessarily have to be limited to
human-understandable natural language. Continuous prompts are advantageous because
they eliminate the need for extensive time and effort spent on manual searches and the
adjustment of discrete prompts [36].

To further enhance the effectiveness of prompt learning for Chinese text classification
tasks, we have introduced the use of multiple masks in the MMOPL module. This approach
involves creating a set of learnable tensors, [U1, . . . , Um], where “m” refers to the number
of learnable tensors for each original text, X, as continuous prompts. We then concatenate
the mask token, which corresponds to the label that requires classification. By formalizing
this into a prompt template, [U1, . . . , Um, E(“[MASK]”)], we enable the creation of a prompt
that is effective for the specific task at hand.

To achieve optimal results in prompt learning, we have improved the mask token and
answer engineering. Specifically, we have developed an adaptive method for expanding
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the mask token to the required number when generating the input sequence. To achieve
this, we first calculate the maximum length value, n, of the label text in the label set. This
value is then used as the number of MASK tokens. For labels with lengths that are less
than n, we use the [PAD] placeholder to fill in the gaps. By concatenating the continuous
prompts with multiple masks and the original sentence, E(x), we create an embedded input
sequence, = [U1, . . . , Ui, E(“[MASK]1”) . . . E(“[MASK]n”), E(X)]. Here, E(“[MASK]1”)
. . . E(“[MASK]n”) are mask tokens that are adaptively expanded according to the label,
and E(X) is the original text. An important aspect to consider about the prompt template
is its placement concerning the original text, which is contingent on the choice of a pre-
trained model. In our case, we have chosen to use ERNIE, the pre-trained model that has a
maximum input length of 512 characters. To ensure that the prompt is not truncated, we
have opted to employ the prefix concatenation method.

During the training stage, assuming the output of the Chinese pre-trained language
model is O ∈ R|X|∗d, the text data are fed into the Chinese pre-trained model.

v = Fprompt(X) = [U1, . . . , Ui, E(“[MASK]1”) . . . E(“[MASK]n”), E(X)] (1)

O[mi] = PLM(v) (2)

where v is the input text representation. The label probability distribution of the [MASK]
tokens can be obtained by using a full-connection layer with the activation function:

Pm = so f tmax
(

O[m] ∗Wm + bm

)
(3)

where bm is a bias of the weight of the full-connection layer, and Wm ∈ Rd∗|V| is the weight
of the full-connection layer. d is the hidden layer size of the pre-trained language model,
and |V| is the vocab size of the pre-trained language model. O[m] refers to the selection of a
tensor based on the indices of the label tokens. Then, we use the Cross-Entropy (CE) as
the target loss function and exclude the loss from the [PAD] in the calculation of the loss
function, which can be written as follows:

L =

 1
|N|

|N|
∑

i=1
[ti = j] log

(
Pm(i,j)

)
, |j 6= [PAD]

0, |j = [PAD]

(4)

where ti is the ground truth label of Sample i, and j denotes the category of the label. N is
the number of samples, and Pm(i,j) is the probability that the ith sample in the prediction
probability distribution belongs to category j.

During the inference stage, effective answer engineering is crucial for developing an
accurate prediction model. Unlike prompt engineering, which is focused on ensuring the
appropriate input for prompt learning, answer engineering is responsible for mapping the
answer space, Z, to the original output, Y. In many cases, the answer space includes all
tokens in the pre-trained vocabulary. Typically, a mask token is mapped to a label token
with the highest probability score in the pre-trained vocabulary. This method works well
in scenarios where there is only a single mask token in the prompt learning. However,
when the mask token is expanded to multiple tokens, mapping each mask token to the
token with the highest probability score can lead to random token combinations. This is
because there is no semantic connection or constraint between the output tokens during
this process, which makes it difficult to accept in actual prediction scenarios. When the
mask token is expanded to multiple tokens, it may lead to random token combinations if
we use the traditional approach of mapping each mask token to the token with the highest
probability score. To address this problem, we use joint probability to calculate the overall
probability score of each label token corresponding to the mask position. We then select
the label with the highest overall probability score as the final result, Y, thereby completely
avoiding the issue of random token combinations.
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In addition to solving the issue of random token combinations, we must also tackle
the challenge of longer labels struggling to compete in the probability due to the problem
of probability vanishing. In Chinese text, labels do not have a fixed length, and longer text
often leads to smaller joint probabilities, making it difficult for lengthy labels to emerge as
winners in the probability competition. To address this issue, we introduce the use of the
geometric mean to constrain the joint probability calculation of the labels. The root of the
joint probability is then taken to the M-power, resulting in the constrained joint probability,
as shown in the function Formula (5), which includes length constraints.

PM = M

√√√√ M

∏
i=1

P
(

E[MASK]i | E[MASK]1 · · · E[MASK]i−1
)

(5)

Lastly, we perform length constraint processing on all the joint probability labels and
use an activation function to normalize the probability. The predicted label with the highest
joint probability value is selected as the final result, Y, ensuring that the answer engineering
process is both efficient and accurate.

3.2. One-Class Support Vector Machine-based Unlabeled Data Leveraging Module

Numerous studies have demonstrated that utilizing unlabeled data can effectively
enhance the few-shot text classification [37]. Previous methods utilized trained models to
provide pseudo-labels to unlabeled data, and high thresholds were used to avoid noisy
data. However, this approach was time-consuming, and there was a risk of model overcon-
fidence. Inspired by anomaly detection [38,39], we consider the potential overconfidence
in unlabeled data as an anomalous phenomenon. To solve this problem, we use the One-
Class Support Vector Machine (OCSVM) algorithm to create multiple spherical constraint
boundaries for existing samples with different labels. These constraint boundaries are
used to filter out anomalous unlabeled data and assign appropriate pseudo-labels. The
spherical shape boundary is superior for text classification [40]. As shown in Figure 2, we
have developed an OCSVM-based unlabeled data utilization module (OCSVM-DL).
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The OCSVM algorithm is designed specifically for one-class classification, and it only
needs to be trained on data from a single class. Unlike the standard SVM algorithm, which
aims to construct a generalized optimal classification plane that maximizes the margin between
the two classes, the OCSVM seeks to find a hyper-sphere in the feature space that contains all
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the data and has the smallest possible volume, maximizing the margin between the inlier data
and the outliers. The OCSVM optimization problem can be formulated as follows:

min
ξ ∈ Ri, ρ ∈ R

1
2
‖ω2‖+ 1

µl ∑1
i=1 ξi − ρ (6)

s.t. Φ(Oi)ω ≥ ρ− ξi, ξi ≥ 0 (7)

where Oi is the input text feature vector, l is the number of trained samples, Φ is the feature
map function that maps the input to the feature space, ω and ρ are the normal vector and
offset of the hyper-sphere, ξi are the slack variables that denote the coefficient of the regular
term, and µ ∈ (0, 1) is a hyper-parameter that controls the upper bound of the error sample
ratio in the total sample. If ω and ρ are the solutions to the optimization problem, the
decision function is:

f(x) = sgn( Φ(x)ω− ρ) (8)

where, for most of the feature vector points in the data set, the value should be positive,
and ω is relatively small. Thus, by adjusting the hyper-parameter, µ, we can control the
compactness of the constraint boundaries, which is crucial in the process of assigning suit-
able pseudo-labels to the unlabeled data. To assign suitable pseudo-labels to the unlabeled
data, we establish two filtering rules to identify the data with low-confidence pseudo-labels
due to model overconfidence. The first rule considers unlabeled samples outside of any
boundary as low-confidence anomaly data. The second rule considers unlabeled samples
within multiple constraint boundaries as ambiguous data. These filtering methods can
effectively eliminate noise from the unlabeled data, screening out high-confidence and
unambiguous pseudo-labeled data.

After assigning the pseudo-labels to the unlabeled data, we mix the new pseudo-
labeled data with the original labeled data and repeat the training of the MMOPL text
classification model. We stop the iteration when the performance of the model no longer
changes. The purpose of the iterative training process is to learn more monitoring signals
that combine fast learning methods and unlabeled data. In Algorithm 1, we describe the
iterative training process for easier understanding. First, we treat the mixed training set as
the training set (Line 1). Then, we leverage improved prompt learning to obtain an optimal
text classification model (Lines 3–8). Subsequently, we filter the unlabeled data to obtain
the pseudo-labels (Lines 9–12). Finally, we update the mixed training set and iterate until
the text classification model converges (Lines 13–14).

Algorithm 1 The iterative training process of the OCSVM-UDL

Input: Training set D, validation set D’, Unlabeled set U, Mixed Training set F, MMOPL model
M1, OCSVM model M2.
1: Initialize F = D // Mixed Training set equal Training set
2: repeat
3: repeat
4: Load a batch size of instances B belong F and add a prompt template
5: Generate input embedding vector using the M1 for each instance in B
6: Update parameter by minimizing L
7: Save the best model M1′ according to the average performance on D’
8: until no more batches
9: Load a batch size of instances B belong F and add a prompt template
10: Generate input embedding vector using the M1′ for each instance in B
11: Generate a constrained boundary for each label using the M2.
12: Filtering a batch size of instances u belong U and get pseudo-label data P
13: Update mixed training set F = D + P and duplicate removal
14: until M1 convergence
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4. Experiments

In this section, we first describe the large few-shot datasets, FewCLUE. We then report
the evaluation results and compare the performance of CIPLUD with several state-of-the-art
prompt learning methods.

4.1. Experiment Datasets

The FewCLUE datasets, a Chinese few-shot learning evaluation benchmark, was
chosen for this study. It contains nine natural language understanding tasks in Chinese,
including four single sentence tasks, three sentence pair tasks, and two reading compre-
hension tasks. The focus of this study was on the single sentence tasks, and the detailed
dataset statistics are shown in Table 1. The following datasets were used:

• EPRSTMT, an e-commerce product review dataset for sentiment analysis, with the
task of predicting whether the user of the reviews is positive or negative;

• CSLDCP, a Chinese scientific literature subject classification dataset, includes 67 cat-
egories of literature labels. There are 13 broad categories, ranging from the social
sciences to the natural sciences, and the task is to assign a separate category to each
piece of literature through Chinese abstracts;

• TNEWS, a Toutiao short text categorized news dataset, comes from the news section
of Today of Headlines. There are 15 news categories, and it is the goal of this task to
categorize news titles based on their headlines;

• IFLYTEK, a long text classification dataset that collects descriptive information on
various application topics related to daily life, with 119 categories. The task is to
pre-dict application categories from application description information.

Table 1. Task description and statistics of the FewCLUE datasets.

Subtask Task Train Dev Test Public Unlabeled Num Num Labels

EPRSTMT SentimentAnalysis 32 32 610 19565 2
CSLDCP LongTextClassify 536 536 1784 18111 67
TNEWS ShortTextClassify 240 240 2010 20000 15
IFLYTEK ShortTextClassify 928 690 1749 7558 119

In this study, the quality of the classification results was evaluated using accuracy
from the text classification domain. This metric was also employed in the FewCLUE report.
To ensure a fair comparison with the baseline set by the FewCLUE benchmark, the same
data partitioning method was followed. Specifically, each subtask features a public test set
and five different sets for training and validation. The model was trained on the training
sets, with the best-performing model saved based on its validation set performance. Finally,
the public test sets were used to evaluate the performance, with the average of the five
evaluations computed as the final result.

4.2. Baseline Models

We re-implemented four baseline models for the FSTC and compared their perfor-
mance with the proposed CIPLUD model. These are the descriptions of the baseline models.

• Fine-tuning is a Chinese pre-trained language model that adopts;
• Pattern-Exploiting Training (PET) employs hand-crafted templates and label words

to form the prompt, along with an ensemble model to annotate an unlabeled dataset,
which can be considered as a text augmentation;

• EFL uses the T5 model to generate the best discrete prompt template, eliminating the
need for a manual search;

• P-tuning proposes to learn continuous prompts by inserting trainable variables into
the embedded input.
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To ensure the correctness of the performance measures, we used Ernie-1.0 from the
FewCLUE report as the pre-trained model for all the baseline models. This allowed us to
compare CIPLUD with the fine-tuning paradigm and several other recently proposed com-
peting approaches, including PET, P-tuning, and EFL. We have summarized the differences
between each method and listed them in Table 2.

Table 2. The difference between the baseline methods.

Method
Prompt Designing

Prompt Style Use Unlabeled
Templates Mask Number

Fine-tuning — — — No
PET Hand-craft Single Discrete YES

P-tuning Auto Single Continuous No
EFL Hand-craft Single Discrete No
Ours Auto Multiple Continuous YES

4.3. Implementation Details

In our empirical study, we used Ernie 1.0 to implement our proposed model, CIPLUD.
The hyper-parameters and their values can be found in Table 3. The optimal values of
these hyper-parameters were set according to our best practices in the empirical study. A
detailed analysis of the influence of the hyper-parameters can be found in Section 5.3.

Table 3. Hyper-parameters and their value in our empirical study.

Task Hyper-Parameters Value Task Hyper-Parameters Value

EPRSTMT Max length 88 TNEWS Max length 33
Learning rate 3 × 10−4 Learning rate 4 × 10−5

µ 0.75 µ 0.65

CSLDCP Max length 278 IFLYTEK Max length 215
Learning rate 5 × 10−4 Learning rate 7 × 10−4

µ 0.70 µ 0.70

The experiments were run using PyTorch 1.8.0, Python 3.8, and Windows 10 running
on a desktop computer with an Intel(R) Core(TM) i5-10600KF CPU and GeForce RTX3060
with 11 GB memory.

5. Discussion
5.1. Overall Performance

Table 4 shows a comprehensive comparison of the proposed model, CIPLUD, and
the four baseline models (fine-tuning, PET, P-tuning, and EFL) in terms of accuracy on
the four FSTC tasks (EPRSTMT, CSLDCP, TNEWS, and IFLYTEK) in FewCLUE. The table
presents the accuracy percentage of each model on each dataset and the average accuracy.
The results show that CIPLUD has the highest accuracy among all the models, with an
85.4% accuracy on EPRSTMT, 60.4% on CSLDCP, 57.2% on TNEWS, 52.8% on IFLYTEK,
and 64.0% average accuracy. CIPLUD significantly outperforms all the baseline models in
terms of accuracy on all four datasets, showing its effectiveness and robustness in few-shot
text classification tasks.
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Table 4. The comparison results between our proposed model, CIPLUD, and the baselines. the
Human row refers to the performance of human annotators on the tasks, and the underlined values
indicate the second-best results achieved among the baseline methods. We bold-marked the highest
score in each column.

Method EPRSTMT
(Acc. %)

CSLDCP
(Acc. %)

TNEWS
(Acc. %)

IFLYTEK
(Acc. %)

Avg
(Acc. %)

Human 90.0 68.0 71.0 66.0 73.6
Fine-Tuning 66.5 57.0 51.6 42.1 54.3

PET 84.0 59.9 56.4 50.3 62.7
P-tuning 80.6 56.6 55.9 52.6 61.4

EFL 76.7 47.9 56.3 52.1 58.3
MMOPL 82.1 59.8 56.4 52.2 62.6
CIPLUD 85.4 60.4 57.2 52.8 64.0

Compared to the baseline models, the advantages of the CIPLUD model can be high-
lighted in four few-shot text classification tasks. Firstly, the majority of the prompt learning
methods demonstrate an enhanced level of performance when compared to the PLM fine-
tuning methods. However, a notable exception arises in the case of the CSLDCP data
sets, where the P-tuning and EFL methods are seen to be comparatively weaker than the
fine-tuning approaches. The underlying reasons for this discrepancy are rooted in the fact
that CSLDCP is a subject data set whose label text length is longer than that of the other
data sets, making it more difficult to simplify or map to shorter sequences. As a result,
P-tuning and EFL do not demonstrate the same exceptional performance. In particular,
the average accuracy of the CIPLUD model is 9.19% higher than that of the fine-tuning
method. Secondly, CIPLUD outperformed several representative prompt learning methods
on all the datasets, with a maximum improvement in an average accuracy of 5.7% over the
EFL method. This can be attributed to the fact that the CIPLUD model can use its special
prompt learning design to capture and encode the semantic information of the few-shot text
classification tasks. This allows it to better capture the underlying structure and semantic
relationships of the data, resulting in improved performance. Finally, the average accuracy
of the CIPLUD model is improved by 1.3% compared to the PET method, which also uses
unlabeled data. This enhanced accuracy is a result of CIPLUD’s ability to leverage unlabeled
data to better choose high-confidence samples, resulting in improved performance.

In conclusion, the results show that the proposed CIPLUD model has superior per-
formance in adapting to real-world few-shot text classification tasks. This highlights the
potential of utilizing PLM information, prompt learning, and unlabeled data to improve
the performance of few-shot text classification models.

5.2. Ablation Experiment

CIPLUD consists of two modules: the Multiple Masks Optimization-based Prompt
Learning (MMOPL) module and the One-Class Support Vector Machine-based Unlabeled
Data Leveraging (OCSVM-UDL) module. We conducted a detailed analysis of the effect of
the different varying components of the CIPLUD model. We further report the ablation
experiments on the four FSTC tasks (EPRSTMT, CSLDCP, TNEWS, and IFLYTEK), as shown
in Table 5.

Table 5. The comparison results between our proposed method with or without MMOPL and
OCSVM-UDL.

Method EPRSTMT
(Acc. %)

CSLDCP
(Acc. %)

TNEWS
(Acc. %)

IFLYTEK
(Acc. %)

w/o MMOPL 77.8 56.7 52.0 50.6
w/o OCSVM-UDL 82.1 59.8 56.4 52.2

CIPLUD 85.4 60.4 57.2 52.8



Appl. Sci. 2023, 13, 3334 12 of 15

For “w/o MMOPL”, we directly removed the multiple masks of the prompt template
and replaced two masks; a single mask is meaningless for Chinese labels; for “w/o OCSVM-
UDL”, we removed the iterative training process using unlabeled data. Our results indicate
that our approach degrades in performance without every module in most settings. This
means that when any of the modules are removed, our approach does not perform as
well as when all the modules are present. This indicates that individual modules are
highly interdependent, and the performance of our approach relies on the presence of all
the modules. Then, we found that deleting the MMOPL greatly decreased the classifier
performance, and deleting the OCSVM-UDL slightly reduced the classifier performance.
This is likely since MMOPL can capture more complex relationships between the prompt
information and label token, while OCSVM-UDL is limited to increasing the scale of
trainable data. By deleting the MMOPL, the classifier is not able to take advantage of its
more complex algorithm, resulting in a decrease in performance. On the other hand, the
OCSVM-UDL algorithm is limited to increasing the scale of trainable data, so deleting it will
only result in a slight decrease in performance. In addition, we found that OCSVM-UDL
classifiers have poor performance growth on data sets with more tag types (CSLDCP and
IFLYTEK). This may be the result of the OCSVM-UDL module having difficulty obtaining
uniform sampling when there are more than 50 label categories. This causes the number
of recalled pseudo-labels to be imbalanced, resulting in a decrease in the accuracy of the
prediction results. Overall, the results of this experiment show the importance of the
MMOPL and OCSVM-UDL modules in our approach.

5.3. Impact of Hyper-Parameter on Constraint Boundary

To study the effect of the compactness of the constraint boundary on the model per-
formance, we selected different values of the µ parameter in the range of [0.05, 0.95], with
a step size of 0.05. On the four tasks, the CIPLUD model was observed to perform under
different parameters, as shown in Figure 3. The results of the four datasets reveal that
the best performance was achieved when the value of µ was in the range of [0.6, 0.8].
Extreme values of µ, either too small or too large, produced negative effects on the model’s
performance. A low µ resulted in a constraint that was too strict, leading to a shortage
of possible pseudo-labels, while a high µ led to an overly loose constraint, which could
cause overlapping boundary issues and reduce the number of feasible pseudo-labels. The
research indicates that the tightness of the constraint boundary plays a substantial role in
the model’s performance. Hence, it is crucial to find an ideal µ that strikes a balance within
the limits of the constraint boundary.
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In our experiments, the optimal value of µ fluctuated frequently. As a result, we have
not discussed the impact of specific values. Instead, we have provided a rough estimation
interval for the optimal value of µ, which can be used as a reference for future research.
Taking into account the results of our investigation, we determined what value is best for
each task according to the findings.

6. Conclusions and Future Work

In this study, we propose a CIPLUD model for Chinese few-shot text classification
that utilizes improved prompt learning and unlabeled data. The model consists of two
modules, the Multiple Masks Optimization-based Prompt Learning (MMOPL) module and
the One-Class Support Vector Machine-based Unlabeled Data Leveraging (OCSVM-UDL)
module. The MMOPL module designs universal prompt templates with multiple masks
for different tasks and optimizes the predicted label of the model using joint probability
and length constraints. The OCSVM-UDL module assigns pseudo-labels to the unlabeled
data through a one-class support vector machine model and filters noise data from the
unlabeled data. The new training data are created by blending the pseudo-labeled data
with the few-shot-labeled data, and the process is repeated until the performance of the text
classification model stabilizes. The performance of the CIPLUD model has been effective,
as evidenced by the compared experimental results on the Chinese FSTC tasks. Moreover,
we also designed the experiments to justify the component setting’s rationality in CIPLUD.

For future work, we plan to refine the proposed model in several directions. As we did
find when the number of label categories in a task increases, the candidate pseudo-labels
obtained through semi-supervised training may be affected by imbalanced label categories.
It is expected that the CIPLUD model could be further improved with a more uniform
pseudo-label sampling method. We will further explore the potential of prompt learning in
Chinese FSTC tasks and investigate the effectiveness of combining prompt learning with
semi-supervised learning. We hope that our findings will inspire future research in the
prompt learning area and contribute to the advancement of prompt learning for Chinese
few-shot text classification tasks.
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