A Research on Fault Diagnosis of a USV Thruster Based on PCA and Entropy
Abstract
:1. Introduction
- (1)
- In this study, data on vibration, current consumption, rotational speed and input voltage from the water-tank experiment and actual ship data were selected as fault features.
- (2)
- A new study of applying the fault diagnosis method for multiple thruster data correlation under fault conditions using a visualization scheme.
- (3)
- A fault diagnosis method is introduced that classifies fault types and is accessible for tuning in unstable-environment field practice.
- (4)
- The performance of the proposed fault diagnosis algorithm for an unmanned surface vehicle’s thruster was verified by analyzing the results of each fault condition.
2. USV Thruster Fault Feature
2.1. USV Thruster Fault Condition
2.2. Analysis of Thruster Fault Features
2.2.1. Vibration
2.2.2. Consumed Current and Rotation Speed
2.2.3. Input Voltage
3. Experimental Validation of Selected Fault Features
3.1. Configuration of a USV Fault Diagnosis System
3.2. Water-Tank Experiment
3.3. Results of the Water-Tank Experiment
4. Methods
4.1. PCA
4.2. Shannon Entropy
4.3. Data Preprocessing
5. Analysis of the Fault Diagnosis Algorithm
5.1. Fault Diagnosis Algorithm
5.2. PCA and Entropy-Based Fault Detection
5.3. Fault Diagnosis through Visualization
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, S.; Shen, C.; Fang, H.; Li, H. Advanced Control in Marine Mechatronic Systems: A Survey. IEEE ASME Trans. Mechatron. 2017, 22, 1121–1131. [Google Scholar] [CrossRef]
- Thomson, F.; Guihen, D. Review of mission planning for autonomous marine vehicle fleets. J. Field Robot. 2019, 36, 333–354. [Google Scholar] [CrossRef]
- Gao, Z.; Cecati, C.; Ding, S.X. A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis with Model-Based and Signal-Based Approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [Google Scholar] [CrossRef] [Green Version]
- Nabissi, G.; Longhi, S.; Bonci, A. ROS-Based Condition Monitoring Architecture Enabling Automatic Faults Detection in Industrial Collaborative Robots. Appl. Sci. 2022, 13, 143. [Google Scholar] [CrossRef]
- Liu, F.; Tang, H.; Qin, Y.; Duan, C.; Luo, J.; Pu, H. Review on fault diagnosis of unmanned underwater vehicles. Ocean. Eng. 2022, 243, 110290. [Google Scholar] [CrossRef]
- Chu, Z.; Chen, Y.; Zhu, D.; Zhang, M. Observer-based fault detection for magnetic coupling underwater thrusters with applications in jiaolong HOV. Ocean. Eng. 2020, 210, 107570. [Google Scholar] [CrossRef]
- Alessandri, A.; Caccia, M.; Veruggio, G. Fault detection of actuator faults in unmanned underwater vehicles. Control. Eng. Pract. 1999, 7, 357–368. [Google Scholar] [CrossRef]
- Zanoli, S.M.; Astolfi, G.; Bruzzone, G.; Bibuli, M.; Caccia, M. Application of Fault Detection and Isolation Techniques on an Unmanned Surface Vehicle(USV). In Proceedings of the IFAC Conference on Maneuvering and Control of Marine Craft, Arenzano, Italy, 19–21 September 2012. [Google Scholar] [CrossRef]
- Raanan, B.Y.; Bellingham, J.; Zhang, Y.; Kemp, M.; Kieft, B.; Singh, H.; Girdhar, Y. Detection of unanticipated faults for autonomous underwater vehicles using online topic models. J. Field Robot. 2018, 35, 705–716. [Google Scholar] [CrossRef] [Green Version]
- Ji, D.; Yao, X.; Li, S.; Tang, Y.; Tian, Y. Model-free fault diagnosis for autonomous underwater vehicles using sequence Convolutional Neural Network. Ocean. Eng. 2021, 232, 108874. [Google Scholar] [CrossRef]
- Wang, H.; Chai, T.Y.; Ding, J.L.; Brown, M. Data Driven Fault Diagnosis and Fault Tolerant Control: Some Advances and Possible New Directions. Acta Autom. Sin. 2009, 35, 739–747. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Yang, J.; Cai, W. Analysis of integrated health management system for unmanned surface vehicle. Chin. J. Ship Res. 2021, 16, 69–76. [Google Scholar]
- Yang, H.; Cho, S.; Tac, C.S.; Zaheeruddin, M. Sequential rule based algorithms for temperature sensor fault detection in air handling units. Energy Convers. Manag. 2008, 49, 2291–2306. [Google Scholar] [CrossRef]
- Xu, X.; Yan, X.; Sheng, C.; Yuan, C.; Xu, D.; Yang, J. A Belief Rule-Based Expert System for Fault Diagnosis of Marine Diesel Engines. IEEE Trans. Systems. Man Cybern. Syst. 2022, 50, 656–672. [Google Scholar] [CrossRef]
- Isermann, R. Model-based fault-detection and diagnosis—Status and applications. Annu. Rev. Control 2005, 29, 71–85. [Google Scholar] [CrossRef]
- Zhang, C.; Cao, C.; Guo, C.; Li, T.; Guo, M. Navigation Multisensor Fault Diagnosis Approach for an Unmanned Surface Vessel Adopted Particle-Filter Method. IEEE Sens. J. 2021, 21, 27093–27105. [Google Scholar] [CrossRef]
- Wang, Y.; Han, Q.L. Network-Based Fault Detection Filter and Controller Coordinated Design for Unmanned Surface Vehicles in Network Environments. IEEE Trans. Ind. Inform. 2016, 12, 1753–1765. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Yuan, C.; Luo, J. Adaptive Path Following Control of Unmanned Surface Vehicles Considering Environmental Disturbances and System Constraints. IEEE Trans. Syst. Man Cybern. Syst. 2021, 51, 339–353. [Google Scholar] [CrossRef]
- Nor, N.M.; Hassan, C.C.; Hussain, M. A review of data-driven fault detection and diagnosis methods: Applications in chemical process systems. Rev. Chem. Eng. 2020, 36, 513–553. [Google Scholar] [CrossRef]
- Gonzalez-Jimenez, D.; Del-Olmo, J.; Poza, J.; Garramiola, F.; Madina, P. Data-Driven fault diagnosis for electric drives: A review. Sensors 2021, 21, 4024. [Google Scholar] [CrossRef]
- Mushtaq, S.; Islam, M.M.M.; Sohaib, M. Deep learning aided data-driven fault diagnosis of rotatory machine: A comprehensive review. Energies 2021, 14, 5150. [Google Scholar] [CrossRef]
- Tsai, C.M.; Wang, C.S.; Chung, Y.J.; Sun, Y.D.; Perng, J.W. Multi-Sensor Fault Diagnosis of Underwater Thruster Propeller Based on Deep Learning. Sensors 2021, 21, 7187. [Google Scholar] [CrossRef]
- Abed, W.; Sharma, S.K.; Sutton, R.; Khan, A. An unmanned marine vehicle thruster fault diagnosis scheme based on OFNDA. J. Mar. Eng. Technol. 2017, 16, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Choi, H.S.; Kim, H.J.; Nam, K.S.; Ryu, J.D.; Ha, K.N. Feature Selection for Unmanned Surface Vehicle Fault Diagnosis Research and Experimental Verification. J. Inst. Control. Robot. Syst. 2022, 28, 542–550. [Google Scholar] [CrossRef]
- Kemp, M. Underwater Thruster Fault Detection and Isolation. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 1959. [Google Scholar] [CrossRef]
- Isermann, R. Fault-Diagnosis Applications: Model-Based Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems; Springer: London, UK, 2011; Available online: https://link.springer.com/book/10.1007/978-3-642-12767-0 (accessed on 1 March 2023).
- Xul, J.; Zheng, X.; Zhang, J.; Liu, X. Vibration Characteristics of Unbalance Response for Motorized Spindle System. Procedia Eng. 2017, 174, 331–340. [Google Scholar] [CrossRef]
- Fossen, T.I. Guidance and Control of Ocean Vehicle; John Wiley & Sons Ltd.: New York, NY, USA, 1994; Available online: https://www.wiley.com/en-kr/Guidance+and+Control+of+Ocean+Vehicles-p-9780471941132 (accessed on 1 March 2023).
- Iwasaki, M.; Matusi, N. Robust speed control of IM with torque feed forward control. IEEE Trans. Ind. Electron. 1993, 40, 553–560. [Google Scholar] [CrossRef]
- Abdi, G.; Williams, L. Principal component analysis. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Ringner, M. What is principal component analysis? Nat. Biotechnol. 2008, 26, 303–304. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.; Zhao, D.; Zhang, Y. The Entropy and PCA Based Anomaly Prediction in Data Streams. Procedia Comput. Sci. 2016, 96, 139–146. [Google Scholar] [CrossRef] [Green Version]
Data | DAQ Module | Sensor |
---|---|---|
Thruster current | NI-9215 | CR Magnetics CR5210S-150 |
Thruster input voltage | NI-9215 | - |
Battery voltage | NI-9230 | - |
Vibration | NI-9234 | PCB piezotronics 607A11 |
Thruster RPM | NI-9423 | Monarch Instruments RLS |
Fault Conditions | Case | Battery Voltage (V) | Input Voltage (V) | Consumed Current (A) | RPM | Vibration (g) |
---|---|---|---|---|---|---|
Normal | Case 1 | 28.10 | 18.87 | 16.46 | 821 | −0.1231~0.1327 |
Case 2 | 28.76 | 19.21 | 17.03 | 843 | −0.1359~0.1487 | |
1 cm breakage | Case 1 | 28.06 | 18.58 | 16.78 | 811 | −0.2103~0.2062 |
Case 2 | 28.65 | 19.11 | 17.43 | 829 | −0.2041~0.1995 | |
2 cm breakage | Case 1 | 28.42 | 18.58 | 16.11 | 822 | −0.3053~0.3010 |
Case 2 | 28.55 | 18.77 | 16.58 | 835 | −0.2665~0.2751 | |
3 cm breakage | Case 1 | 28.02 | 18.53 | 14.71 | 842 | −0.2290~0.2685 |
Case 2 | 28.48 | 18.74 | 15.13 | 850 | −0.2463~0.2774 | |
Thin rope | Case 1 | 28.65 | 19.07 | 19.36 | 643 | −0.1738~0.1686 |
Case 2 | 28.33 | 18.71 | 22.66 | 752 | −0.2106~0.2307 | |
Thick rope | Case 1 | 28.49 | 18.50 | 27.36 | 706 | −0.5724~0.5654 |
Case 2 | 28.22 | 18.13 | 30.61 | 658 | −0.4944~0.4510 | |
Net | Case 1 | 28.43 | 18.36 | 28.23 | 692 | −0.2012~0.1951 |
Case 2 | 28.09 | 17.64 | 41.11 | 483 | −0.3771~0.3737 |
Case 1 | Case 2 | |||
---|---|---|---|---|
Range | Average | Range | Average | |
Normal | 0.8649~0.9301 | 0.9035 | 0.8484~0.8991 | 0.8837 |
1 cm breakage | 1.6153~1.3526 | 1.3355 | 1.3078~1.3385 | 1.3263 |
2 cm breakage | 1.4818~1.5010 | 1.4908 | 1.4822~1.5334 | 1.5204 |
3 cm breakage | 1.3711~1.4173 | 1.3861 | 1.3349~1.3752 | 1.3542 |
Thin rope | 1.4682~1.5381 | 1.5028 | 1.2010~1.3204 | 1.2718 |
Thick rope | 1.8853~2.0438 | 1.9488 | 2.0706~2.0794 | 2.0758 |
Net | 1.7219~2.0934 | 1.9448 | 1.6069~1.6595 | 1.6379 |
1st PC Axis | 2nd PC Axis | 3rd PC Axis | |
---|---|---|---|
Normal | RPM | Current | Input voltage |
1 cm breakage | RPM | Current | Vibration |
2 cm breakage | RPM | Vibration | Current |
3 cm breakage | RPM | Current | Vibration |
Thin rope | Current | RPM | Vibration |
Thick rope | Vibration | Current | Input voltage/RPM |
Net | Current | Vibration | Input voltage/RPM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choo, K.-B.; Cho, H.; Park, J.-H.; Huang, J.; Jung, D.; Lee, J.; Jeong, S.-K.; Yoon, J.; Choo, J.; Choi, H.-S. A Research on Fault Diagnosis of a USV Thruster Based on PCA and Entropy. Appl. Sci. 2023, 13, 3344. https://doi.org/10.3390/app13053344
Choo K-B, Cho H, Park J-H, Huang J, Jung D, Lee J, Jeong S-K, Yoon J, Choo J, Choi H-S. A Research on Fault Diagnosis of a USV Thruster Based on PCA and Entropy. Applied Sciences. 2023; 13(5):3344. https://doi.org/10.3390/app13053344
Chicago/Turabian StyleChoo, Ki-Beom, Hyunjoon Cho, Jung-Hyeun Park, Jiafeng Huang, Dongwook Jung, Jihyeong Lee, Sang-Ki Jeong, Jongsu Yoon, Jinhun Choo, and Hyeung-Sik Choi. 2023. "A Research on Fault Diagnosis of a USV Thruster Based on PCA and Entropy" Applied Sciences 13, no. 5: 3344. https://doi.org/10.3390/app13053344
APA StyleChoo, K. -B., Cho, H., Park, J. -H., Huang, J., Jung, D., Lee, J., Jeong, S. -K., Yoon, J., Choo, J., & Choi, H. -S. (2023). A Research on Fault Diagnosis of a USV Thruster Based on PCA and Entropy. Applied Sciences, 13(5), 3344. https://doi.org/10.3390/app13053344