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Abstract: The aim of the present study was to assess the effect of the inoculation ratio between
Saccharomyces pastorianus strain SP2 and S. bayanus strain BCS103 on the enological properties and
aroma profile of Sauvignon Blanc wines. For that purpose, a total of eight different fermentation
trials on Sauvignon Blanc must took place. These included spontaneous fermentation as well as
inoculation with pure and mixed cultures of the S. pastorianus and S. bayanus strains. The mixed
cultures contained different proportions of the two strains (S. pastorianus SP2 to S. bayanus BCS103:
99-1%, 97-3%, 95-5%, 90-10% and 70-30% w/w). Classical oenological analyses were employed to
assess the course of fermentation and classical microbiological enumeration combined with inter-
delta sequence profile analysis was used for yeast population dynamics estimation. The volatile
compounds of each wine were analyzed with GC/MS. The fermentation was completed between
11 and 13 days, while the inoculation ratio significantly affected the chemical composition and the
sensorial evaluation of the resulting wines. Based on the sensory evaluation, the least-appreciated
Sauvignon Blanc wine was the one resulting from spontaneous fermentation, and the higher the ratio
of the S. bayanus strain in the inoculum, the higher the level of appreciation of the wine.

Keywords: species interaction; wine yeast; Sauvignon Blanc; wine typicity; Saccharomyces sensu
stricto group

1. Introduction

Wine quality depends on the inherent characteristics of the grape varieties, the pe-
doclimatic environment, the agricultural and winemaking practices as well as their inter-
action [1-8]. The outcome of the fine balance between these factors is the production of
wines with varietal typicity expressing the unique character of each region. This is also the
case of Sauvignon Blanc, a variety that is among the most preferred for the production of
aromatic white wines. Sauvignon Blanc wines are characterized by a very wide palette of
aromas and flavors. Among the most distinctive ones are grapefruit, passion fruit and box
tree notes, the occurrence of which has been attributed mainly to the presence of aromatic
volatile thiols, namely 3-mercaptohexan-1-ol, 3-mercaptohexyl acetate and 4-mercapto-4-
methylpentan-2-one, respectively [9-11]. Especially regarding the first two, their presence
and concomitantly, the intensity of the respective aromas seems to be largely dependent
upon the yeast strain carrying out alcoholic fermentation [12-14].
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In recent years, two additional factors have emerged that demanded specific attention
and proper adjustment of the winemaking practices, namely the modification of the climatic
conditions and consumer preferences [15-17]. The first resulted in a series of effects on vine
phenology and grape ripening, which significantly affected the microbial ecology of the
must and ultimately yeast metabolism and alcoholic fermentation [15]. At the same time,
a consumer trend towards increased aromatic complexity and modified varietal typicity
has also been noted [16,17]. Research has initially addressed this demand through the use
of non-Saccharomyces yeasts in combination with S. cerevisine. However, such coexistence
is not always feasible due to the antagonistic relationship that may develop [12,18-26].
Interestingly, such an issue has not yet been reported when strains within the Saccharomyces
sensu stricto group are combined.

Saccharomyces pastorianus and S. bayanus are interesting alternatives that have been
successfully employed to modulate Sauvignon Blanc typicity [27]. More specifically, the
wines fermented with S. pastorianus monoculture contained less acetic and malic acids,
while those fermented with the coculture of S. pastorianus and S. bayanus, at a ratio of 70/30
(w/w), were characterized by higher citrus fruit notes, compared to the wines fermented
with S. cerevisiae. In addition, the significance of the inoculation ratio between S. pastorianus
and S. cerevisize was also recently highlighted [28]. A series of inoculation ratios were
assessed and each of them significantly affected the enological properties and the aroma
profile of the produced Sauvignon Blanc wines. Therefore, the aim of the present study
was to further assess the effect of the inoculation ratio between S. pastorianus and S. bayanus
on the enological properties and aroma profile of Sauvignon Blanc wines. For that purpose,
five different inoculation ratios were employed for alcoholic fermentation and the resulting
wines were thoroughly assessed from a chemical and organoleptic perspective.

2. Materials and Methods
2.1. Microorganisms and Culture Conditions

Saccharomyces bayanus strain BCS103 (Fermentis, Marcq-En-Baroeul, France) and S. pas-
torianus strain SP2 [28] were used throughout this study. The first was stored in its commer-
cially available dry form, while the latter was stored in Nutrient Broth supplemented with
20% glycerol at —20 °C. Both strains were activated by cultivating twice in YM broth (1%
glucose, 0.5% peptone, 0.3% yeast extract, 0.3% malt extract) at 25 °C for 48 h.

2.2. Winemaking Conditions

Grapes of the Sauvignon Blanc variety, grown in Asprokampos (Nemea, Greece),
were harvested, manually destemmed and crushed, and 50 mg/L sodium metabisulfite
(Scharlab S.A, Barcelona, Spain) was added. The initial must density and total acidity
were determined at 11.87 °Be and 6 g tartaric acid /L, respectively. After cold clarification,
the must was decanted into 16 glass fermenters (30 L each) and inoculated with the yeast
strains at final populations of 10° CFU/mL. The cases that were assessed are presented
in Table 1.

The different inoculation ratios were achieved by mixing the appropriate serial dilu-
tions of the two yeast strains. Two fermentation vessels were inoculated for each case. The
addition of 200 mg/L SpringFerm™ (Fermentis, France) took place 24 h after inoculation.
Fermentation took place at 18 °C.
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Table 1. Inoculation strategies employed in the present study.

Code Inoculum

SP2 S. pastorianus strain SP2

BCS103 S. bayanus strain BCS103

70/30 S. pastorianus SP2—S. bayanus strain BCS103 70%-30% (w/w)
90/10 S. pastorianus SP2—S. bayanus strain BCS5103 90%-10% (w/w)
95/5 S. pastorianus SP2—S. bayanus strain BCS103 95%-5% (w/w)
97/3 S. pastorianus SP2—S. bayanus strain BCS103 97%-3% (w/w)
99/1 S. pastorianus SP2—S. bayanus strain BCS103 99%-1% (w/w)
spontaneous no inoculum

2.3. Chemical Analyses
2.3.1. Standard Enological Parameters

Alcoholic fermentation was monitored in daily intervals through the determination of
glucose and fructose; their depletion (less than 2 g/L) signified the end of fermentation.
Analysis of glucose/fructose, along with malic acid, acetic acid and glycerol as well as
initial and final pH value and total acidity were determined using enzymatic kits adapted
for Biosystems Auto-analyser (Barcelona, Spain). Determination of free and total SO,
was performed by titrimetric methods. NIR spectrometry was employed for ethanol
quantification [29].

2.3.2. Volatile Compounds Quantification

Head-Space Solid Phase Micro Extraction (HS-SPME) coupled with Gas Chromatography-
Mass Spectrometry (GC-MS) was employed to analyze wine volatile compounds. The
analysis was performed according to Dimopoulou et al. [27]. In brief, DVB/CAR/PDMS,
75 um fiber was used for volatile compounds absorption. Analysis was performed with an
Agilent 7890A GC (Santa Clara, CA, USA) equipped with an Agilent 5873C MS detector.
The DBWAX capillary column (30 m x 0.25 mmi.d., 0.25 um film thickness) was employed
for the separation of the volatile compounds using helium as a gas carrier at a flow rate
of 1.2 mL/min. The temperature of the injector and the MS-transfer line was 250 °C and
260 °C, respectively. The oven temperature was maintained at 30 °C for 5 min, then raised
to 220 °C at 4 °C/min and held at this temperature for 20 min.

2.3.3. Quantification of Varietal Thiols

The method described by Tominaga et al. [10] was employed for the quantification of
varietal thiols, namely 3-mercaptohexan-1-ol (3MH), 3-mercaptohexyl acetate (3MHA) and
4-methyl-4-methylpentan-2-one (4MMP).

2.4. Microbiological Analyses

Microbiological analyses were performed 48 h after inoculation, after completion of
approximately 2/3 of fermentation and at the end of fermentation. Since the speed of
fermentation differed between samples, the latter two corresponded to different days. The
enumeration of Saccharomyces and non-Saccharomyces yeasts population was performed
by plating serial dilutions on Wallerstein Laboratory Nutrient (WLN) agar and Lysine
medium agar, respectively. The latter was incubated at 28 °C for 48-72 h. Phenotypic
differentiation between S. bayanus and S. pastorianus was achieved by incubating the WLN
plates at elevated temperatures. More specifically, incubation at 37 °C for 24 h resulted in
the enumeration of the S. bayanus colonies due to the inability of S. pastorianus to provide
adequate growth at temperatures above 30 °C. Conversely, incubation of the WLN plates
at 28 °C for 48 h will result in the enumeration of colonies of both yeast strains. Verification
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of the yeast identity was performed by the inter-delta sequence profile analysis according
to Dimopoulou et al. [28].

2.5. Sensory Analysis

Sensory analysis was performed by a panel of eight trained and experienced judges,
according to Dimopoulou et al. [27]. The trained judges belonged to the age range from
25 to 55 years old, all working in the academic departments of the present study (affili-
ations 1 and 3). The descriptors assessed were grouped into four categories: 1. Visual;
2. Olfactory (aroma intensity, freshness feeling, floral, citrus, amylic, tropical fruits, vege-
tal/herbaceous, reduction, complexity); 3. Gustatory (acidity, body/roundness, sweetness,
balance, aftertaste/persistence); 4. Overall quality.

2.6. Statistical Analysis

Statistical analysis was performed using JMP version 3.1.5 software (SAS Institute Inc.,
Cary, NC, USA). The differences between the chemical parameters and sensorial descriptors
were assessed with a one-way analysis of variance (ANOVA) with Tukey’s post-hoc test
(p <0.05).

3. Results

Table 2 shows the concentration of glucose and fructose (in g/L) during the alcoholic
fermentation of Sauvignon Blanc must under the different inoculation cases assessed.
Alcoholic fermentation was considered as completed (glucose + fructose < 2 g/L) after
10 days, when fermentation was carried out by S. bayanus BC5103 as a monoculture and
in coculture with S. pastorianus SP2, with the population of the latter up to 95% of the
total inoculum. The fermentation was completed after 12 days when it was carried out
spontaneously by S. pastorianus SP2 as a monoculture and in coculture with S. bayanus
BCS103 at a ratio of 97/3. Finally, the fermentation was completed after 13 days when it
was carried out by the coculture of S. bayanus BCS103 with S. pastorianus SP2 at a ratio of
1/99.

Table 2. Concentration of glucose and fructose (in g/L) during alcoholic fermentation of Sauvignon
Blanc must.

Time Inoculum

(Days) ~Spontaneous BCS103 SP2 70/30 90/10 95/5 97/3 99/1
0 210.0(0.0)2  210.0(0.0)® 210.0(0.0)® 210.0(0.0)®  210.0(0.0)®  210.0(0.0)® 210.0 (0.0) 210.0 (0.0) ?
1 210.0(0.0)2  210.0(0.0)2 210.0(0.0)® 210.0(0.0)®  210.0(0.0)  210.0(0.0)® 210.0 (0.0)@ 210.0 (0.0) ?
2 204.0 (0.8)8  182.0(1.5)¢ 202.0(0.9)8 169.0(1.3)2 173.0(1.5)> 1940(1.4)¢ 188.0(1.3)¢ 199.0(1.0)f
3 189.0(1.2)8 1500 (2.9)¢ 186.0(1.3)8 125.0(27)® 1340200 17352.1)¢ 164.0(1.7)9 179.0(1.2)f
4 135.0(2.7)¢ 1200 (54)® 145.0(6.6)9 112.0(63)2 116.0(2.6)> 137.0(28)¢ 138.0(27)¢ 152.0(29)¢
5 75.0 (7.4) 2 78.0(2.3)2  110.0(1.0)¢  79.0(3.8)2 83.0(69)*  97.0(7.1)® 108.0(53)¢ 116.0(6.3)¢
6 450(22)° 376 (142 6.0012Ff 404@1)P 480114  618(03)¢ 73.0(16)8 78.0(1.3)"
7 27.3(1.4)¢ 185(0.8)2  384(0.2)¢  19.3(0.2)2 24.1(1.2)b 3510909  451(08)f 473(14)8
8 15.5(0.3) d 7.6 (0.1) P 294 (0.1)f  67(0.1)° 10.5 (0.1) 21.1(0.1)¢  31.8(0.1)%8  37.1(02)h
10 22(0.3) ¢ <0.1 8.4 (0.0) ¢ <0.1 0.1(0.0)2 1.5(0.2) P 6.9 (0.1) 4 129 (0.1)
12 0.2 (0.0)2 <0.1 1.6 (0.0) d <0.1 <0.1 0.4 (0.1)" 1.3 (0.0) € 21(0.1)¢
13 0.1(0.0)2 <0.1 0.3 <0.1 <0.1 <0.1 <0.1 0.4 (0.0)°

The average values are presented. Standard deviation is given in parenthesis. Different letters in each row
designate statistically significant differences (p < 0.05).
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3.1. Microbiological Analyses

A total of 250 colonies were randomly selected from the agar plates used for the
enumeration of the S. bayanus BCS103 and S. pastorianus SP2 strains and subjected to inter-
delta fingerprinting in order to verify their identity. The inability of the S. pastorianus strain
to grow adequately at 37 °C was verified in all cases; therefore, the temperature-based
differentiation that was employed in the present study was deemed accurate.

The evolution of Saccharomyces and non-Saccharomyces yeast populations during the al-
coholic fermentation of Sauvignon Blanc must under the different inoculation cases assessed
is presented in Figure 1. In all cases, alcoholic fermentation was driven by Saccharomyces
yeasts while the non-Saccharomyces kept a low population along the fermentation process.
Worth to mention the exception of the spontaneous one, in which the non-Saccharomyces
population prevailed at the 48th hour of fermentation (Figure 1A) while the indigenous
Saccharomyces dominated the rest of the process but in a lower population compared to the
inoculated conditions. (Figure 1B,C).
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Figure 1. Evolution of Saccharomyces and non-Saccharomyces populations (in log CFU/mL) during
alcoholic fermentation of Sauvignon Blanc must after 48 h (A), 2/3 of the process (B) and at the end
of fermentation (C). The must was fermented under different inoculation schemes using S. bayanus
BCS103 (BCS103) and S. pastorianus SP2 (SP2) as monoculture and co-inoculation of S. pastorianus
SP2 and S. bayanus BCS103 at a ratio of 90/10, 95/5,97/3,99/1 and 70/30. The condition with no
inoculation scheme was also tested (spontaneous).

In Figure 2, the evolution of S. bayanus BCS103 and S. pastorianus SP2 populations
during the alcoholic fermentation of Sauvignon Blanc must is shown. Despite the different
initial populations that were used when co-inoculation of S. bayanus BCS103 and S. pas-
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torianus SP2 was employed, at the 48th hour of fermentation, no statistically significant
differences between their populations were observed, and the fermentation seemed to be
driven by both strains (Figure 2A). This was also the case at the 2/3 of fermentation and
at the end of fermentation with the exception of the 90/10 and the 99/1 co-inoculation
experiments, in which the population of the S. bayanus strain was higher than the respective
of the S. pastorianus strain (p < 0.05) (Figure 2B,C).
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Figure 2. Evolution of S. bayanus BCS103 and S. pastorianus SP2 populations (in log CFU/mL)
during alcoholic fermentation of Sauvignon Blanc must after 48 h (A), 2/3 of the process (B) and
at the end of fermentation (C). The must was fermented under different inoculation schemes using
S. bayanus BCS103 (BCS103) and S. pastorianus SP2 (SP2) as monocultureg as well as co-inoculation of
S. pastorianus SP2 and S. bayanus BCS103 at a ratio of 90/10, 95/5,97/3,99/1 and 70/30.

3.2. Chemical Analyses

In Table 3, the standard enological parameters after the completion of alcoholic fermen-
tation are presented. The pH value ranged between 3.28 and 3.39, with the lowest value
observed in the wine made with the monoculture of S. bayanus BCS103 and the highest
observed in the wine made with the monoculture of S. pastorianus SP2. The total acidity of
the wines ranged between 5.78 and 6.04 g tartaric acid /L, without statistically significant
differences between them. The total SO, ranged between 18 and 40 mg/L. The lowest
concentration was observed in the wine made by spontaneous fermentation as well as the
one made with the monoculture of S. bayanus BCS103. The highest amount of total SO, was
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observed in the wine made with the co-culture of the two strains at a ratio of 99/1. No free
50, was detected in any wine. In all cases, the ethanol produced ranged between 12.5 and
12.8 % vol.

Table 3. Standard enological parameters at the beginning and the end of alcoholic fermentation of
Sauvignon Blanc must.

Inoculum pH Total SO; (mg/L) © F;‘;:; ﬁcci(:iig;L) Ethanol (% vol)
uninoculated must 3.23(0.02) 2 24 (1.8) be 6.18 (0.26) @ -

BCS103 3.28 (0.05) 2b 18 (2.5) 2 5.89 (0.32) 2 12.7 (0.01) be
SP2 3.39 (0.02) 4 39 (2.3)f 5.96 (0.33) 2 12.6 (0.00) @b
70/30 3.30 (0.06) bc 21 (1.7) b 5.78 (0.41) @ 12.8(0.02) €
90/10 3.30 (0.05) be 26 (2.4) o 5.89 (0.29) 2 12.6 (0.02) 2
95/5 3.33 (0.03) bed 28 (1.9) de 5.96 (0.35) @ 12.6 (0.03) @b
97/3 3.34 (0.04) bed 3121)¢ 6.00 (0.51) @ 12.6 (0.00) 2P
99/1 3.36 (0.02) <d 40 (2.6) f 6.04 (0.21) @ 12.6 (0.01) 2P
spontaneous 3.35 (0.04) «d 18(3.2)2 6.04 (0.57) 2 12.5(0.03) 2

The average values are presented. Standard deviation is given in parentheses. Different letters in each column
designate statistically significant differences (p < 0.05).

The volatile and non-volatile compounds quantified at the end of alcoholic fermenta-
tion of Sauvignon Blanc must, under the different inoculation cases studied, are exhibited in
Table 4. The wine produced by spontaneous fermentation presented significant differences
from those produced by inoculation; it contained the highest amounts of malic acid, acetic
acid and hexyl acetate and the lowest amounts of glycerol, ethyl 2-methyl butyrate, ethyl
isobutyrate, 2-phenyl ethanol, propanol and isoamyl alcohol. Similarly, the inoculation
strategy affected the concentration of the volatile and non-volatile compounds. More specif-
ically, the wine made with the monoculture of S. pastorianus SP2 had more ethyl octanoate,
ethyl hexanoate, ethyl butyrate, ethyl hydroxy propanoate, ethyl 3-hydroxy butanoate,
isobutanol, butanol, isoamyl alcohol, 3-sulfanylhexan-1-ol and 3-sulfanylhexan-1-ol ac-
etate and less ethyl 2-hydroxy isobutyrate, hexyl acetate, isoamyl acetate, 2-phenylethyl
acetate and 4-methyl-4-sulfanylpentan-2-one than the wine made with the monoculture of
S. bayanus BCS103. Co-inoculation of the two strains affected significantly the volatile and
non-volatile content of the produced wines, with the exception of glycerol and propanol,
the amount of which presented no statistically significant differences between the wines
produced with the monoculture of S. pastorianus SP2 and the ones produced with any co-
culture employed. The wines produced with any co-culture had less ethyl hexanoate, ethyl
butyrate, ethyl hydroxy propanoate and 3-sulfanylhexan-1-ol acetate than those produced
with the monoculture of S. pastorianus SP2. Such reduction was also observed in the case of
malic acid, ethyl octanoate, ethyl 3-hydroxy butanoate, hexyl acetate, isobutanol, butanol
and 3-sulfanylhexan-1-ol, but under different co-culture ratios. Conversely, an increase
in the amount of acetic acid, ethyl decanoate, ethyl 2-methyl butyrate, ethyl isobutyrate,
ethyl 2-hydroxy isobutyrate, isoamyl acetate, 2-phenyl ethanol and isoamyl alcohol was
observed, but not in all co-culture ratios. Interestingly, the amount of 2-phenylethyl acetate
and 4-methyl-4-sulfanylpentan-2-one increased at co-culture ratios of 70/30 and 90/10 but
decreased at ratios 97/3 and 99/1.
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Table 4. Volatile and non-volatile compounds at the end of alcoholic fermentation of Sauvignon Blanc must.

Monocultures Co-Cultures of SP2 with BCS103 at Ratio l?g_?:;z?:gsz
BCS103 SP2 70/30 90/10 95/5 97/3 99/1
Polyols (g/L)
glycerol 7.03 (0.34) ® 7.25 (0.32) be 7.36 (0.27) be 7.42 (0.23) be 7.85(0.42) 7.71(0.33) © 7.67 (0.18) 5.82(0.58) 2
Organic acids (g/L)
Malic acid 1 1.21 (0.02) © 1.20 (0.02) € 1.21 (0.04) © 1.10 (0.04) @ 1.12 (0.03) @ 1.16 (0.03) b 1.19 (0.02) € 1.30 (0.05) 4
Acetic acid 0.01 (0.00) @ 0.02 (0.00) @ 0.03 (0.01) 0.07 (0.01) € 0.1 (0.01) ¢ 0.18 (0.00) ¢ 0.03 (0.00) 0.35 (0.02)
Ethyl esters (mg/L)
Ethyl decanoate 557 (90.6) 2P 401 (100.3) 2 540 (104.7) 543 (95.8) P 715 (106.3) b 802 (110.6) © 799 (107.3) © 639 (102.8) b<
Ethyl octanoate 1533 (67.3) 2077 (89.4) © 1598 (47.1) 2 1717 (26.9) b 1827 (54.9) be 1934 (85.2) «d 1978 (56.9) de 1867 (63.1) <@
Ethyl hexanoate 1147 (27.6) 2 1617 (41.5) 1201 (32.5) 2 1239 (37.1) be 1304 (36.8) © 1419 (44.2) 4 1457 (39.3) 4 1266 (54.2) b
Ethyl butyrate 529 (6.3) 4 585 (7.2) f 501 (9.6) © 445 (8.1)2 461 (8.4)° 501 (9.7) © 547 (6.3) © 504 (8.2) ©
Ethyl hydroxy propanoate 9561 (215.3) @ 15024 (309.4) © 10034 (388.2) @ 12162 (406.2) ® 13159 (370.9) © 13875 (502.4) ¢ 14345 (429.7) 4 12358 (417.3)
ethyl 3-hydroxy butanoate 323 (13.5) 2 397 (21.6) © 345 (33.2) b 368 (30.5) b¢ 334 (26.9) 357 (24.7) 2bc 354 (23.1) 2be 360 (25.3) 2b¢
ethyl 2- methyl butyrate 11.3 (0.62) P 13.2 (1.23) be 13.4 (1.87) ¢ 16.1 (0.66) ¢ 17.2(1.75) ¢ 17.0 (1.24) © 14.8 (1.06) 5.2 (0.44) 2
ethyl isobutyrate 105 (3.1) ® 109 (2.8)® 109 (3.6) 139 (4.5) 4 129 (4.9) ¢ 141 (5.2) 4 123 (4.4) € 72(3.2)°
ethyl 2-hydroxyisobutyrate 38 (2.2) ¢ 24 (1.5)° 35 (3.5) «d 34 (2.4)<d 28 (2.8) 25(1.7)° 24(32)° 31 (2.4) b
Acetate esters (mg/L)
hexyl acetate 302 (11.7) © 198 (12.3) «d 220 (21.5) 4 179 (20.6) ¢ 150 (13.6) 120 (14.2) @ 110 (11.5) @ 338 (23.3) f
Isoamyl acetate 6026 (956.2) 4 2959 (885.3) 2b 5123 (1023.1) 4 4257 (982.3) be 3036 (907.6) 2 2154 (709.4) * 1988 (752.2) 2 3481 (937.3) 2
2-phenylethyl acetate 385 (25.3) ¢ 264 (24.2) © 358 (31.6) 4e 331 (30.8) 4 248 (28.1) be 209 (20.5) 2P 199 (24.3) @ 273 (21.8) ¢
Higher alcohols (mg/L)
2- phenyl-ethanol 18.61 (0.36) b° 18.23 (0.24) b 18.98 (0.51) © 19.81 (0.36) 4 20.5 (0.49) © 19.89 (0.44) de 18.78 (0.37) be 15.72 (0.28)
propanol 27.9 (1.84) 282 (1.62) ® 27.0 (2.67)° 28.1(2.35) P 27.8 (2.53) P 31.0 (3.17) ® 28.0 (2.31) P 22.0(1.69)?
isobutanol 14.1 (4.36) @ 30.0 (5.21) 16.7 (3.78) @b 22.5 (6.07) b¢ 27.1 (5.05) © 28.0 (5.12) € 26.0 (4.68) © 21.7 (3.69) 2b¢
butanol 0.73 (0.036) @ 1.24 (0.027) 0.81 (0.085) be 1.08 (0.124) ¢ 1.14 (0.058) de 0.91 (0.069) © 1.18 (0.074) de 1.08 (0.044) ¢
isoamyl alcohol 166.4 (0.69) 170.2 (0.75) <4 170.0 (0.87) <@ 171.5 (0.90) 4 168.6 (0.96) © 173.3 (1.08) ¢ 168.6 (1.41) 141.4 (0.92) @
Thiols (ng/L)
3-sulfanylhexan-1-ol 206 (7.3) 2P 295 (6.5) 4 295 (9.2) 4 281 (8.2) 4 224 (85)°¢ 211 (8.7) ¢ 195 (9.2) 2 192(7.2)2
3-sulfanylhexan-1-ol acetate ND 5 (0.6) ND ND ND ND ND ND
4-methyl-4-sulfanylpentan-2-one 242 (1.14) ¢ 6.7 (0.87) b 17.1 (1.21) d 12.2(1.69) © 5.5(0.71) ab 4.8(0.63)° 4.6 (0.47)2 4.7 (0.39) 2

1 Initial malic acid concentration was 1.89 g/L. The average values are presented.

significant differences (p < 0.05).

Standard deviation is given in parentheses. Different letters in each column designate statistically
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The diversity of the volatile compounds produced under the different inoculation
schemes is illustrated by the Principal Component Analysis in Figure 3. The PCA analysis
of the volatile compounds clearly distinguished in different quadrants the monoculture
fermentation schemes and the spontaneous fermentation while the co-inoculation schemes
were distributed mainly on the upper part of the biplot. The co-inoculation modality of SP2
90%-BCS103 10% was the closest to the monoculture condition BCS103, both characterized
by the production of ethyl 2-hydroxyisobutyrate, isoamyl acetate, 2-phenylethyl acetate
and 4-methyl-4-sulfanylpentan-2-one. Diametrically opposed, the fermentation schemes
of S. pastorianus as monoculture, as well as the coculture with S. bayanus at a ratio of
70/30 and 99/1, were positioned to the right part of the biplot. At this side of the plot,
the majority of the ethyl esters as well as 3-sulfanylhexan-1-ol, butanol and isobutanol
were grouped. Finally, the spontaneous fermentation is clearly distinguished by the rest
fermentation conditions and positioned on the lower left quadrant, characterized by high
hexyl acetate production.

condition 2- phem‘-e'.hancl
i B(SWO} E:h‘jis@t‘,‘rate

70% - BCS103 30% Propagol
¢ - BCS103 10%

5103 5%
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Component 2 (24.1 %)
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Figure 3. Principal component analysis of 20 volatile compounds of Sauvignon blanc wines fermented
with monocultures of S. bayanus (BCS103) and S. pastorianus (SP2), mixed cultures of both species in

different inoculation ratio as well as the spontaneous fermentation condition.

3.3. Sensory Analysis

In Figure 4, the sensory analysis of the wines produced from the Sauvignon Blanc
variety is presented. In general, no statistically significant differences were observed
in the grades received in the visual descriptor ‘color’, the olfactory descriptors ‘floral’
and ‘citrus” as well as the gustatory descriptor ‘sweetness” between the wines produced.
The wines produced by spontaneous fermentation received lower grades in the olfactory
descriptor ‘aroma intensity’, the gustatory descriptor ‘balance’ as well as the overall quality,
compared to the wines produced by inoculation. The different inoculation strategies
also affected the sensory analysis of the wines to some extent. The wines produced with
the monocultures of the strains under study received different grades (p < 0.05) in the
overall quality and the olfactory descriptor ‘aroma intensity’. More specifically, the grades
received by the wine made with the monoculture of the S. bayanus BCS103 were higher
than the respective received by the wine made with the monoculture of the S. pastorianus
SP2. Co-inoculation with both strains had also a significant effect on the sensory analysis
of the wines. More specifically, the olfactory descriptor ‘aroma intensity” of the wine
made with the inoculum ratio 90/10 and the overall acceptance of the wines made with
the inoculum ratios 70/30 and 90/10 were improved compared to the wine made by
the monoculture of the S. pastorianus SP2. Conversely, the olfactory descriptors ‘aroma
intensity’, amylic” and ‘complexity” as well as the gustatory descriptors ‘body/roundness’
and ‘aftertaste/persistence’ and the overall quality of the wine made with the inoculum
ratio 99/1 received lower grades than the respective made with the monoculture of the
S. bayanus BCS103. Similarly, the wine made with the inoculum ratio 99/1 received a
higher grade in the olfactory descriptor ‘reduction” compared to the one made with the
monoculture of the S. bayanus BCS103.
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Figure 4. Heatmap analysis representation corresponding to Sauvignon Blanc wine sensory evalua-
tion fermented under different inoculation schemes. The relative content of each sensory attribute is
illustrated through a color scale (from dark blue, minimum, to dark red, maximum). The asterisk
denotes a statistically significant difference (p < 0.05) between each attribute and the fermenta-
tion schemes.

4. Discussion

Enhancing aromatic complexity without altering varietal typicity is the key to ef-
fectively addressing the recent consumer trends toward new sensorial challenges. The
strategy that has been employed for that purpose includes the utilization of yeast strains
that unfold the typical varietal aromas and at the same time supplement them through the
production of fermentation aromas. Thus, novel combinations are created, at least from
the varietal typicity perspective. S. pastorianus is not that common in winemaking while
S. bayanus is used more frequently, however, usually for difficult fermentations, i.e., for high
levels of sugar musts or stuck fermentations; however, they have provided very interesting
results regarding the alcoholic fermentation of Sauvignon Blanc must, especially under
co-inoculation mode [27]. The aim of the present study was to expand our knowledge
of the interactions between two strains of the aforementioned species and their effect on
the sensorial quality of Sauvignon Blanc wine. Thus, the chemical composition and the
sensorial properties of wines made by the co-culture of these strains at different ratios
were evaluated and compared with the ones made by each strain separately and through
spontaneous fermentation.

Controlled fermentation through the utilization of suitable strains is the strategy em-
ployed in order to obtain reproducible results. In the case of alcoholic fermentation, strains
belonging to the Saccharomyces genus are employed for ethanol production, and strains be-
longing to other genera, such as Hanseniaspora, Metschnikowia, Issatchenkia, Pichia, Schizosac-
charomyces, Torulaspora and Lachancea, for the production of aroma compounds [23,30-36].
Spontaneously fermented wines are usually characterized by higher sensorial complexity
and richer body, which has been attributed to the larger variety of metabolites produced
by the larger yeast consortium that contributes to alcoholic fermentation [16,37,38]. How-
ever, this consortium is uncontrolled, and, therefore, the outcome of the fermentation
is unpredictable. Thus, spontaneously fermented wines may be characterized as highly
acceptable [39,40], or, as in the present study, sensorially unsatisfactory [41]. Additionally,
according to our results, the volatile and sensory profiles of the spontaneously fermented
wines were well distinguished compared to the inoculated ones. It seems that the domi-
nance of non-Saccharomyces yeast after 48h of alcoholic fermentation clearly has an impact
on the final produced wines [42].
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Even if the impact of non-Saccharomyces yeast in wine has been well documented in
the literature [43,44], the prediction of their intra- and inter-species interaction along the
winemaking process is not yet established. The main obstacle of both spontaneous and
co-inoculation strategies in wine production is the compatibility of the microbial strains,
in terms of population growth and metabolite production. The antagonistic interactions
that possibly develop may have a negative impact on wine quality [45-47]. Regarding
the relationship between the S. bayanus and the S. pastorianus strains used in the present
study, good compatibility was observed between the strains since no negative oenological
attributes were detected. In terms of coexistence during fermentation, S. bayanus seems to
grow more efficiently in the must environment, since it managed to grow at populations
equal to or higher than the respective population of S. pastorianus, even though it was
inoculated at a lower initial population. Therefore, it can be concluded that there are no
evident indirect interactions of mutualism or commensalism between the two strains as
their co-existence didn’t affect their growth compared to the pure culture conditions [47,48].

Interestingly, the inoculation of Sauvignon Blanc must with different ratios of the
two strains resulted in the production of wines with different chemical compositions and
concomitantly sensory evaluation. These differences could not be correlated with the
population of the two strains during fermentation, since in the majority of the cases no
statistically significant differences were observed. Our findings suggest that the interaction
of the two strains could be based mainly on the presence of metabolites through physical
contact between these microorganisms. Wine yeasts have been reported to secrete small
quorum-sensing molecules to assess their population density and adapt their behavior
under stress conditions [49,50]. For instance, the aromatic alcohol 2-phenylethanol has been
reported to play the role of a signaling molecule in S. cerevisiae [51]. In our case, the produc-
tion of 2-phenylethanol was significantly higher when the inoculation rate of S. pastorianus
was higher than 90% compared to the monoculture conditions. It would be interesting to
study in the future the kinetics of 2-phenylethanol under a co-inoculation mode of the two
species and also study more metabolites through non-targeted metabolomics analysis.

5. Conclusions

The present study aimed to assess the effect of different S. pastorianus and S. bayanus
inoculation ratios on the sensory profile of Sauvignon Blanc wines, towards the modification
of the varietal typicity. The good compatibility of the strains employed was exhibited by
the absence of oenological attributes. The S. bayanus strain seemed to grow more efficiently
in the must environment, and the higher the ratio of the S. bayanus strain in the inoculum,
the higher the level of appreciation of the Sauvignon Blanc wine.
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