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Abstract: Artificial intelligence applications are becoming increasingly popular and are producing
better results in many areas of research. The quality of the results depends on the quantity of data
and its information content. In recent years, the amount of data available has increased significantly,
but this does not always mean more information and therefore better results. The aim of this work is
to evaluate the effects of a new data preprocessing method for machine learning. This method was
designed for sparce matrix approximation, and it is called semi-pivoted QR approximation (SPQR).
To best of our knowledge, it has never been applied to data preprocessing in machine learning
algorithms. This method works as a feature selection algorithm, and in this work, an evaluation of its
effects on the performance of an unsupervised clustering algorithm is proposed. The obtained results
are compared to those obtained using, as preprocessing algorithm, principal component analysis
(PCA). These two methods have been applied to various publicly available datasets. The obtained
results show that the SPQR algorithm can achieve results comparable to those obtained using PCA
without introducing any transformation of the original dataset.
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1. Introduction

Considering generic systems (natural or artificial phenomena, processes, etc.) and the
relationships existing among inputs and outputs, they can be represented physically, math-
ematically, or logically. Anyhow, they create relationships among data (input and output).

In many phenomena, inputs to the system can be modelled as random variables. If
our model is mathematical, this is a quantitative representation of a natural phenomenon.
Similar to all other models used in science, its purpose is to represent, as incisively as
possible, a given object, real phenomenon, or set of phenomena (mathematical model of a
physical, chemical, or biological system).

Often, the model is an approximate representation of reality, but it is meaningful to
conduce the analysis or prognosis.

Mathematical models are widely used in all areas of science. There are various
mathematical tools in use from combinatorics to infinitesimal calculus. For example, for
many phenomena, a very concise and intuitive description can be formulated immediately
through differential equations.

For the sake of simplicity, we will speak of data input and data output from the
model, regardless of the nature of the characteristic transfer function (e.g., linear dynamic
systems, etc.).

In the present case, we consider the input and output data as discrete random vari-
ables, i.e.,

p(x) = P(X = x) (1)

A random phenomenon (a phenomenon that is characterizable by a random variable)
can be described in terms of the probability distribution and its parameters, such as the
expected value and variance.
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The relevance of variance in the study of models is widely used, for example, think of
KLT (Karhunen–Loeve transform) [1], PCA, and its variants.

PCA is often used for dimensionality reduction. This process aims to reduce a large
number of variables describing a dataset to a smaller number of latent variables, limiting
the loss of information as much as possible [2]. In [3], authors used PCA in a computational
chain to identify and remove noisy data from a dataset before addressing the classification
problem of an artificial neural network (ANN). In [4] authors used PCA in a method to
improve image classification performance by exploring the utilization of collective class
characteristics to establish a statistically weighted algorithm and combined this weight
with PCA to enhance the discrimination ability.

From this point of view, it is possible to say that giving input to a model original
dataset and a dataset reduced using PCA, the model will produce almost the same results.

To test this hypothesis, in this work, a widely used algorithm (PCA) and an algorithm
under our evaluation (semi-pivoted QR approximation SPQR [5,6]) have been used to
reduce the dimensionality of the original data of various publicly available databases [7]. On
the other hand, manipulating input data is one of the factors that can introduce uncertainty
in numerical models. This is an interesting problem that is studied in the field of uncertainty
analysis. Uncertainty analysis aims at quantifying the variability of the output that is due
to the variability of the input. Some interesting approaches to this problem can be found
in [8,9].

The SPQR method was presented in [5] and, to best of our knowledge, it has never
been applied to dataset dimensionality reduction for machine learning algorithms.

Fuzzy clustering and silhouette analysis were used to compare the results. The
performances obtained were compared among them, showing strong variations among
the methods, highlighting the strong impact that preprocessing techniques can have on the
performances of machine learning algorithms.

In further development of this, the information loss in the case of using the well-known
PCA compared to the SPQR algorithm will be evaluated. This analysis was carried out on
10 public databases from the UCI site [7], and for each database, the following procedure
was run:

• Fuzzy clustering on the raw database and performance evaluation with silhouette
analysis;

• Fuzzy clustering on the preprocessed database with PCA and performance evaluation
with silhouette analysis;

• Fuzzy clustering on the preprocessed database with SPQR and performance evaluation
with silhouette analysis;

• All the previous tests performed on normalized data.

The remaining part of this paper is so organized: Section 2 reports a brief overview of
related works, Section 3 describes the ten databases used for the tests, and Sections 4 and 5
describe, respectively, clustering and silhouette algorithms. The SPQR and PCA algorithms
are described in Sections 6 and 7, respectively. Experiments and results are reported in
Section 8, and conclusions and final remarks are in Section 9.

2. Related Works

Modern applications generate large amounts of data that are not always relevant.
The transition between data and information is a topic of great interest to study. Many
algorithms try to increase the density of knowledge from this data used in machine learning.
We want to have less data in the original dataset, but with the same information or mini-
mal information loss. To improve the computational efficiency of these algorithms, data
preprocessing techniques are used to filter the data. Typically, statistics-based algorithms
such as PCA are used.

Formally, PCA is a statistical technique for reducing the dimensionality of a dataset,
linearly transforming the data into a new coordinate system, and preserving the maximum
amount of information, often used to enable visualization of multidimensional data [10].
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In our opinion, these techniques have a strong impact on the final performance of
these algorithms, and therefore, we believe that push-button solutions should clear the way
for more accurate analyses. The remaining part of this article will also focus on limitations
and problems encountered in these applications.

Typically, PCA is used assuming that the relationships between variables are linear
and comparable in terms of magnitude, i.e., they are scaled numerically. Several dimen-
sion reduction techniques have been introduced to handle nonlinear relationships, such
as Isomap [11], locally linear embedding (LLE) [12], Hessian LLE [13], Laplacian eigen-
maps [14], and its variants [15], including kernel PCA [16].

These methodologies discover the inherent geometric structure of high-dimensional
data. In [17], authors showed that high-dimensional spaces are sparse and suffer from
distance concentration.

This challenge makes the discovery of the intrinsic geometric structure nontrivial.
In nonlinear dimension reduction (NDR), distance covariance is used for nonlinear rela-
tions, while the sparsity of high-dimensionality space is addressed by evaluating group
dependencies.

To solve the problem of computational disadvantages and imperfect estimations in
large-scale scenarios, divide-and-conquer mechanisms have been proposed for dimen-
sionality reduction in [18–21]. In these works, the authors have shown that, in many
cases, well-known application-specific relations and natural groupings can be exploited for
efficient size reduction.

However, such approaches [18–21], require prior knowledge of these relationships
to enable organization, which may not be available in big data scenarios. A divide-and-
conquer approach is also presented in these studies.

Moreover, in traditional dimensionality reduction approaches [11–24], the basic princi-
ple is to perform one-step mapping from an upper-dimensional space to a lower-dimensional
space. There is no mechanism for incorporating new information into the analysis structure
when new data are available. In these scenarios, it would be necessary to recalculate the
dimension reduction [22–24], which is inefficient.

Although parameter aggregation methods facilitate the Pearson correlation and/or
covariance updating [23] with the corresponding single-value decomposition (SVD) [25],
they are focused on computational efficiency when all data are available.

However, unlike in [18–21], NDR allows for SVD results to be used to perform group
organization. Moreover, if information on such relationships is available, the generic
organizational structure proposed here allows for this information to be incorporated at
the first step.

First, such an approach is computationally poor when the amount of original data
is very large. It is also susceptible to improper estimation due to the presence of large
amounts of noise and redundancies [26].

Dimensionality reduction approaches require the practitioner to specify the number
of dimensions to be extracted from the data. In some algorithms, the user simply specifies
the percentage of information to be stored in the NDR, and the algorithm estimates the
number of dimensions to be extracted from the data. Unfortunately, this is not the case in
big data scenarios; these methods can be computationally inefficient.

The algorithm studied and proposed in this paper, called “semi-pivoted QR approxi-
mation” (SPQR), is an efficient deterministic method to reduce a given matrix to its most
important columns by estimating its significance and specific information content. It was
introduced by Stewart [5,27].

As the name highlights, the approach is based on the QR decomposition that expresses
a matrix A as the product of an orthogonal matrix Q and an upper triangular matrix R.
These factors are obtained by the Gram–Schmidt algorithm to orthonormalize the columns
of A, one at a time, from first to last. This procedure is preferred because it uses Pivoted
QR: it differs in that the Gram–Schmidt procedure takes the largest remaining column at
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the beginning of each new step [6]. The new step is taken, and then a permutation matrix P
is operated such that:

A − P = Q− R (2)

3. Database Description

All the experiments carried out in this work have used public databases downloaded
from [7]. This repository contains a large number of datasets. In this work, all the exper-
iments have been carried out on ten datasets. These datasets are very different among
them in many aspects: number of features, number of instances, semantic content, etc. This
choice improves the generalizability of the obtained results.

In particular, the used databases are:

1. Gender Gap in Spanish WP Dataset [28]: Dataset used to estimate the number of
women editors and their editing practices in the Spanish Wikipedia. It is composed of
21 attributes and 4746 instances;

2. TUANDROMD (Tezpur University Android Malware Dataset) Dataset [29]: This
dataset contains 4465 instances and 241 attributes. The target attribute for classification
is a category (malware vs. goodware);

3. Room Occupancy Estimation Dataset [30]: this dataset contains 10,129 instances and
16 attributes, and it is used to estimate the occupation level of a room. The setup
consisted of seven sensor nodes and one edge node in a star configuration with the
sensor nodes transmitting data to the edge every 30 s using wireless transceivers.
Each sensor node contained various sensors such as temperature, light, sound, CO2,
and digital passive infrared (PIR);

4. Myocardial Infarction Complications Dataset [31]: This dataset contains 1700 instances
and 124 attributes. The main application of this database is to predict complications of
myocardial infarction based on information about the patient at the time of admission
and on the third day of the hospital period;

5. Wine Dataset [7]: This dataset is used to recognize a specific wine using the concentra-
tion of 13 chemical parameters. It is composed of 13 features and 178 instances;

6. Dry Bean Dataset [32]: This dataset contains 16 visual features extracted from 13,611 im-
ages of grains of 7 different dry beans. The used visual features are in 12 dimensions
and 4 shape forms;

7. APS Failure at Scania Trucks Dataset [7]: This dataset contains 60,000 instances and
171 features. The dataset consists of data collected from heavy Scania trucks in
everyday usage. The system in focus is the air pressure system (APS), which generates
pressurized air that is utilized in various functions in the truck, such as braking and
gear changes;

8. Multiple Features Dataset [7]: This dataset consists of the features of handwritten
numerals (‘0′–‘9′) extracted from a collection of Dutch utility maps. It is composed of
649 features and 2000 instances;

9. Relative Location of CT Slices on Axial Axis Dataset [7]: This dataset consists of
384 features extracted from 53,500 CT images. The class variable is numeric and
denotes the relative location of the CT slice on the axial axis of the human body;

10. Mice Protein Expression Dataset [33]: This dataset contains 1080 instances and 82 fea-
tures. The dataset consists of the expression levels of 77 proteins/protein modifications
that produced detectable signals in the nuclear fraction of the cortex.

In all the experiments, for each database, only the numerical features have been
considered.

4. Clustering

The term “clustering” refers to a wide family of learning algorithms that comprise
unsupervised, supervised [34], and semi-supervised [35] learning techniques. These algo-
rithms implement different approaches (hierarchical, partitional, grid, density, and model
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based [34]) to solve the same classification problem, namely, grouping objects according to
a given similarity criterion.

In this work, the authors used the fuzzy C-means (FCM) algorithm [36,37]. This
clustering algorithm generates fuzzy partitions and prototypes for any set of numerical
data. It works by optimizing a generalized least squares objective function:

Q = ∑c
i=1 ∑N

k=1 um
ik ‖ xk − vi ‖ 2 (3)

where

• ||.|| is a distance function such as: Euclidean, Mahalanobis, etc.;
• v1, v2, . . . , vc are the centroids of the clusters, also called prototypes;
• X = {x1, x2, . . . , xN} is the set of points to be clustered;
• U = [uik] is the partition matrix;
• c is the number of clusters;
• N is the number of points to be clustered;
• i is an index that varies from 1 to c;
• k is an index that varies from 1 to N;
• “m” is a coefficient called the “fuzzification coefficient”. It is greater than 1, and it

is responsible for the level of “fuzziness” of the partition matrix. In other words, it
controls the level of fuzziness with which each point belongs to the various clusters.

This algorithm allows for the discovery of the inner structure of a given dataset X,
minimizing the objective function Q according to the given prototypes and the partition
matrix U. The minimization process is iterative. It works by updating the values of the
partition matrix and the prototypes until a given criterion of stop is reached.

For example, considering two partition matrices, U and U’, obtained in two consecutive
iterations, the procedure may stop when the quantity:

||U − U′|| = maxi,k|uik − u′ik| (4)

gets smaller than some predefined positive threshold ε.
It should be noticed that the nature of the optimization function leads to a solution

that somehow reflects the geometry of the original dataset.
On the other hand, the hidden structure of the dataset, discovered by the clustering

algorithm, can be used to classify other elements added to the set after the initial clustering.
This task can be accomplished applying the following rules:

• The “anchor points” of the classifier are the prototypes of the clusters;
• Each cluster defines a class;
• A point x belongs to a class defined by the cluster with prototype vj if:

j = arg
(

mini||x− vi||2
)

(5)

5. Silhouette Method for Clustering Evaluation

The performance evaluation of a clustering algorithm is not a trivial task. Indeed,
when using a clustering algorithm, it is possible to be in one of the following situations:

• The correct solution is known: in this case, the classification of each point is known a
priori, and the classification performance of the clustering algorithm can be computed
counting the number of misclassified patterns (error rate);

• The correct solution is subjective: in this case, there is no true ground against which to
evaluate the results of the clustering algorithm. Since the classification is subjective,
there is no universally acceptable solution, so the classification task falls into the
problem of the semantic gap [38];

• The correct solution is unknown: also in this case, there is no true ground against
which to evaluate the results of the clustering algorithm. To face this problem, there
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are various approaches as reported in [39]. On the other hand, in the latest years, the
silhouette parameter has become a more commonly used method for assessing the
quality of clusters [40].

In this work the silhouette parameter has been used to evaluate the clustering per-
formance. This method is based on a comparative evaluation of the similarity level of
each object in relation to its cluster (tightness) and to the other clusters (separation). This
parameter is defined as follows: if y is a point belonging to cluster A, then t(y) is the mean
distance between y and all other points of A. Let us now consider any cluster B, different
from A, and compute the average distance between y and all points of B(d(y, B)). Once we
have computed d(y, B) for each cluster B such that B 6= A, we select the smallest of these
numbers and denote it by:

v(y) = min
A 6=B

d(y, B) (6)

Starting from these considerations, the silhouette for the point y is defined as shown
in the following formula:

s(y) =


1− t(y)

v(y) i f t(y) < v(y)
0 i f t(y) = v(y)

v(y)
t(y) − 1 i f t(y) > v(y)

(7)

From this definition, it is possible to say that for each point x into the dataset:

−1 < s(y) < +1

An in-depth analysis of this parameter is reported in [40].
On the other hand, using this method makes it possible to show the obtained results

using a graphical representation highlighting, for each point, how well it has been classified.
Furthermore, the flexibility of this method should be highlighted due to the fact that it is
possible to use any kind of distance metric, such as Mahalanobis, Euclidean, Manattan, etc.

All these features give to the silhouette parameters a strong appeal when it is required
to evaluate the performance of a clustering algorithm applied to datasets for which there is
no a-priori knowledge (this is also the case study of this paper).

Another interesting application of the silhouette method is as a reference guide in
discovering the optimal number of clusters for a given dataset. This task can be carried out
by implementing an iterative process composed of the following steps:

1. Run the clustering algorithm using a certain number of clusters “C”;
2. Compute the silhouette for the obtained clusters.

If there is a satisfying number of points with a good level of silhouette, then “C” can
be considered a good number of clusters. Otherwise, change the value of “C” and return
to Step 1.

6. SPQR Algorithm

Many data applications deal with the necessity to represent m objects characterized
by n features. One of the most often used representations of this kind of data is a matrix
A composed of m rows and n columns. In modern applications of data analysis, such as
image analysis and environmental datasets, these matrices often have high dimensionalities.
This fact leads to a series of difficulties in the processes of data mining, representation,
communication, and storage.

In the latest years, many works in the field of feature selection [41] have demonstrated
that, through analyzing a dataset, it is possible to identify and eliminate some redundant
and/or irrelevant features. By applying feature selection methods, it is possible to achieve a
series of advantages in data analysis processes, such as a decrease in the amount of data, an
improvement in the prediction accuracy, pulling out important features, understanding the
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attributes or variables easily, and finally reducing the execution time [41]. An interesting
overview on feature section methods can be found in [41].

Many of these methods aim to approximate the matrix A by means of a “smaller”
matrix obtained by combining its columns and rows. The drawback of these methods is
that they usually yield dense factorizations, and more seriously, these terms are often much
harder to interpret than the original ones. For example, truncating the SVD at k terms is one
of the most common ways to obtain the “best” rank-k approximation of A when measured
with respect to any unitarily invariant matrix norm. The drawback of this method is that it
produces a representation of the dataset that is difficult to relate to the original dataset and
to the processes that generated it. The same drawbacks are present in another widely used
method for feature selection: principal component analysis (PCA).

Starting from these considerations, many methods to solve the column subset selection
problem have been developed [42]. These methods try to find a subset of k actual columns
of A, with k less than n, which “captures” most of the information of A with respect to the
spectral or the Frobenius norm.

Essentially two classes of methods may be defined:

1. Randomized methods: these methods select the most representative columns in a
matrix using probability distributions;

2. Deterministic methods: these methods select the columns in a deterministic way.

An effective deterministic method to reduce the matrix A to its more important
columns is “semi-pivoted QR approximation” (SPQR) by Stewart [5,27,43]. As its name
suggests, the key approach is the QR decomposition of A into an orthogonal matrix Q
and a triangular matrix R. These factors are computed by the Gram–Schmidt algorithm
for orthonormalizing the columns of A, one at a time, from first to last. In many situations
pivoted QR is preferred: in practice, columns are exchanged at the start of each new stage to
take the largest remaining column. In this way a permutation matrix P is built such that:

A·P = Q·R (8)

When A is rank deficient, the column pivoting A·P is applied to improve the numerical
accuracy. Moreover, the choice of P usually guarantees that R does not have increasing
diagonal entries, a specific feature which is useful in the following. More in detail, we may
partition the expression above as:

[ B1 B2] = [ Q1 Q2]

[
R11 R12
0 R22

]
(9)

The following properties hold:

1. B1 = Q1·R11
2. ||B2 − Q1·R12|| = ||R22||

The semi-QR algorithm exploits these results to use the approximation:

A·P ≈ Q1·[R11 R12] (10)

that, thanks to Property 1 above, reproduces the first k columns of A·P exactly by intro-
ducing a quantifiable error (Property 2). An additional strength of this method is that the
explicit computation of the nonsparse orthogonal matrix Q1 is not required.

In practice, given a rank parameter k, the SPQR algorithm gives k columns of A whose
span approximates the column space of A; they form the matrix B1 of dimension m × k,
while the factor R11 contains the coefficients of the column orthogonalization.

7. PCA

Principal component analysis (PCA) is a well-known method often used to reduce the
dimensionality of large databases. Reducing the dimensions of a dataset introduces a loss
in accuracy, but on the other hand, it improves the efficiency of algorithms of data analysis,
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such as data exploration, data visualization, machine learning, etc. From this perspective,
when using PCA, it is required to find a trade-off between performance improvement and
accuracy loss.

In [22], there is an in-depth analysis of the PCA method, while in this section, a brief
operative description is proposed.

Essentially, PCA can be seen as a five-step process:

1. Standardization: In this step, the range of each initial variable (each column of the
dataset is a variable) is standardized so that each variable contributes equally to the
overall analysis;

2. Covariance matrix computation: The goal of this step is to compute the degree of the
relationship among the variables of the dataset;

3. Identification of the principal components: These are new variables obtained as a
linear combination or mixture of the initial variables. These new variables have the
following properties: they are uncorrelated and most of the information contained
in the initial variables is compressed in the first components. This allows for the
reduction in dimensionality without losing too much information, discarding the
components with low information and considering the remaining components as the
new variables. To find these principal components, eigenvectors and eigenvalues of
the covariance matrix are computed because they are the directions of the axes where
there is the most variance (most information);

4. Feature vector selection: In this step, the eigenvectors are disposed in descending
order by their eigenvalues, allowing it to find the principal components in order of
significance. In this way, it is possible to choose the number of components to keep
for further analysis, discarding those of lesser significance (of low eigenvalues);

5. Recast the data along the principal component axes: Once the principal components
have been chosen, it is necessary to recast on them the original dataset.

8. Experiments and Results

In this section a brief description of the carried-out experiments is reported. For
each database described in Section 3, a clustering analysis was conducted using the FCM
algorithm, varying the number of clusters from 10 to 50. The results of each clustering were
evaluated using the silhouette parameter. For each database, the percentages of points with
a silhouette level greater than 0.7, 0.8, and 0.9 are reported. These analyses were carried
out six times on each database using:

1. The raw data (namely, the original data stored in each database);
2. The dataset reduced using the PCA algorithm, losing less than 2% of the total variation

in the dataset;
3. The dataset reduced using the SPQR algorithm, setting the same number of features

used with PCA;
4. The raw data normalized between 0 and 1;
5. The normalized dataset reduced using the PCA algorithm, losing less than 2% of the

total variation in the dataset;
6. The normalized dataset reduced using the SPQR algorithm, setting the same number

of features used with PCA;
7. In the following, the obtained results for each database are reported.

8.1. Gender Gap in Spanish WP Dataset
8.1.1. Clustering and Silhouettes Using Raw Data

The original dataset is composed of 20 numerical features. Applying PCA to this
dataset, losing less than 2% of the total variation in the data, produced a dataset with a
single dimension.

The following Tables 1–3 show the obtained results in terms of silhouettes varying
the number of clusters from 10 to 50 (see columns). Each row represents the percentage of
points with a silhouette greater than a given threshold, that is 0.7, 0.8, and 0.9.
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Table 1. Clustering performance in terms of silhouettes using original data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 43.95 37.44 43.28 50.46 60.81

0.8 21.60 16.29 29.31 39.40 51.45

0.9 0 0.40 16.75 35.92 37.340

Table 2. Clustering performance in terms of silhouettes using the reduced dataset with PCA.

Silhouette\N. Clusters 10 20 30 40 50

0.7 43.95 37.44 43.28 50.46 60.81

0.8 21.60 16.29 29.31 39.40 51.45

0.9 0 0.40 16.75 35.92 37.340

Table 3. Clustering performance in terms of silhouettes using the reduced dataset with SPQR.

Silhouette\N. Clusters 10 20 30 40 50

0.7 92.54 76.06 78.93 82.49 87.80

0.8 89.55 69.64 69.59 75.41 74.40

0.9 78.59 47.83 57.753 46.103 48.463

8.1.2. Clustering and Silhouettes Using Normalized Data

The original dataset was normalized between 0 and 1. Applying PCA to this dataset,
losing less than 2% of the total variation in the data, produced a dataset with six dimensions.

The following Tables 4–6 show the obtained results in terms of silhouettes varying
the number of clusters from 10 to 50 (see columns). Each row represents the percentage of
points with a silhouette greater than a given threshold, that is 0.7, 0.8, and 0.9.

Table 4. Clustering performance in terms of silhouettes using normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 0.06 0.08 0.17 0.08 0.23

0.8 0.06 0.08 0.10 0.08 0.15

0.9 0.06 0.08 0.06 0.06 0.15

Table 5. Clustering performance in terms of silhouettes using the reduced dataset with PCA applied
to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 0 1.92 1.96 0.02 0.17

0.8 0 0.04 0 0.02 0.17

0.9 0 0.04 0 0.02 0.17

Table 6. Clustering performance in terms of silhouettes using the reduced dataset with SPQR applied
to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 8.81 3.37 2.61 2.40 1.85

0.8 0 1.60 0 2.21 1.01

0.9 0 0 0 0.46 0.63
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In these experiments, the results obtained using normalized data seem to be worse
than those obtained with the raw data.

8.2. Room Occupancy Estimation Dataset
8.2.1. Clustering and Silhouettes Using Raw Data

The original dataset is composed of 20 numerical features. Applying PCA to this
dataset, losing less than 2% of the total variation in the data, produced a dataset with two
dimensions.

The following Tables 7–9 show the obtained results in terms of silhouettes varying
the number of clusters from 10 to 50 (see columns). Each row represents the percentage of
points with a silhouette greater than a given threshold, that is 0.7, 0.8, and 0.9.

Table 7. Clustering performance in terms of silhouettes using original data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 61.85 68.70 59.29 67.41 56.31

0.8 55.32 49.05 31.20 39.98 46.01

0.9 50.29 34.87 5.56 9.22 22.68

Table 8. Clustering performance in terms of silhouettes using the reduced dataset with PCA.

Silhouette\N. Clusters 10 20 30 40 50

0.7 67.64 68.19 61.77 61.23 56.06

0.8 58.49 47.50 43.93 44.03 45.42

0.9 48.98 34.78 7.918 6.74 16.00

Table 9. Clustering performance in terms of silhouettes using the reduced dataset with SPQR.

Silhouette\N. Clusters 10 20 30 40 50

0.7 63.34 54.01 62.71 62.11 57.87

0.8 46.83 35.16 46.13 26.06 40.93

0.9 4.68 13.31 2.59 3.29 19.58

8.2.2. Clustering and Silhouettes Using Normalized Data

The original dataset was normalized between 0 and 1. Applying PCA to this dataset,
losing less than 2% of the total variation in the data, produced a dataset with five dimensions.

The following Tables 10–12 show the obtained results in terms of silhouettes varying
the number of clusters from 10 to 50 (see columns). Each row represents the percentage of
points with a silhouette greater than a given threshold, that is 0.7, 0.8, and 0.9.

In these experiments, the results obtained using normalized data seem to be slightly
worse than those obtained with the raw data.

Table 10. Clustering performance in terms of silhouettes using normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 15.03 20.39 13.74 19.47 23.40

0.8 6.17 5.67 4.04 8.10 8.65

0.9 0 0.01 0.02 1.03 0.03
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Table 11. Clustering performance in terms of silhouettes using the reduced dataset with PCA applied
to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 51.43 41.16 38.56 37.08 32.20

0.8 32.08 21.46 21.27 17.01 14.96

0.9 4.34 0.01 1.58 0.83 3.14

Table 12. Clustering performance in terms of silhouettes using the reduced dataset with SPQR
applied to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 53.34 56.47 55.40 61.69 62.98

0.8 37.88 35.16 34.88 40.51 40.34

0.9 13.51 19.07 10.68 9.81 17.37

8.3. Myocardial Infarction Complications Dataset
8.3.1. Clustering and Silhouettes Using Raw Data

This dataset could be considered a sort of spare matrix. There are many 0s, and
some features contain not-a-number values (NaN). The proposed results were obtained,
selecting only the features without NaN values, obtaining a dataset composed of fourteen
dimensions. Applying PCA to this dataset, losing less than 2% of the total variation in the
data, produces a dataset with one dimension.

The following Tables 13–15 show the obtained results in terms of silhouettes varying
the number of clusters from 10 to 50 (see columns). Each row represents the percentage of
points with a silhouette greater than a given threshold, that is 0.7, 0.8, and 0.9.

Table 13. Clustering performance in terms of silhouettes using original data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 48.91 25.48 21.60 16.59 15.48

0.8 27.31 14.24 8.83 8.06 7.062

0.9 0 5.59 3.35 2.24 0.82

Table 14. Clustering performance in terms of silhouettes using the reduced dataset with PCA.

Silhouette\N. Clusters 10 20 30 40 50

0.7 62.45 64.04 66.27 64.92 67.10

0.8 52.44 50.85 52.62 51.68 54.21

0.9 23.19 24.48 25.37 23.90 27.78

Table 15. Clustering performance in terms of silhouettes using the reduced dataset with SPQR.

Silhouette\N. Clusters 10 20 30 40 50

0.7 63.39 61.86 59.98 59.86 59.74

0.8 50.68 47.38 46.44 46.08 47.14

0.9 22.31 19.36 18.07 17.83 17.83
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8.3.2. Clustering and Silhouettes Using Normalized Data

The original dataset (without the features containing NaN values) was normalized
between 0 and 1. Applying PCA to this dataset, losing less than 2% of the total variation in
the data, produced a dataset with nine dimensions.

The following Tables 16–18 show the obtained results in terms of silhouettes varying
the number of clusters from 10 to 50 (see columns). Each row represents the percentage of
points with a silhouette greater than a given threshold, that is 0.7, 0.8, and 0.9.

Table 16. Clustering performance in terms of silhouettes using normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 27.49 11.42 0.12 2.77 3.12

0.8 17.66 0 0.12 0 0

0.9 0 0 0.12 0 0

Table 17. Clustering performance in terms of silhouettes using the reduced dataset with PCA applied
to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 25.60 17.89 10.24 12.48 5.59

0.8 11.48 14.12 9.71 4.00 2.77

0.9 0 0 0 0 0

Table 18. Clustering performance in terms of silhouettes using the reduced dataset with SPQR
applied to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 27.37 15.30 9.24 0.06 3.06

0.8 14.42 10.12 0.18 0.06 0.06

0.9 0 0 0 0.06 0.06

In these experiments, the results obtained using normalized data seem to be worse
than those obtained with the raw data.

8.4. TUANDROMD (Tezpur University Android Malware Dataset) Dataset
8.4.1. Clustering and Silhouettes Using Raw Data

This dataset could be considered a sort of spare matrix. There are many 0s, but there
are no features containing not-a-number values (NaN). Applying PCA to this dataset, losing
less than 2% of the total variation in the data, produced a dataset with seven dimensions.

The following Tables 19–21 show the obtained results in terms of silhouettes varying
the number of clusters from 10 to 50 (see columns). Each row represents the percentage of
points with a silhouette greater than a given threshold, that is 0.7, 0.8, and 0.9.

Table 19. Clustering performance in terms of silhouettes using original data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 38.64 36.29 36.33 12.09 36.51

0.8 38.17 21.03 21.16 11.91 21.34

0.9 17.74 17.74 17.78 0.17 17.96
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Table 20. Clustering performance in terms of silhouettes using the reduced dataset with PCA.

Silhouette\N. Clusters 10 20 30 40 50

0.7 62.27 52.95 52.01 63.44 61.53

0.8 45.16 48.29 46.93 58.51 58.19

0.9 38.64 43.27 31.09 55.51 53.22

Table 21. Clustering performance in terms of silhouettes using the reduced dataset with SPQR.

Silhouette\N. Clusters 10 20 30 40 50

0.7 48.47 48.81 48.76 48.56 52.93

0.8 37.09 40.36 40.32 40.12 48.31

0.9 21.84 29.05 29.00 40.12 39.8

8.4.2. Clustering and Silhouettes Using Normalized Data

The original dataset was normalized between 0 and 1. Applying PCA to this dataset,
losing less than 2% of the total variation in the data, produced a dataset with seven dimen-
sions.

The following Tables 22–24 show the obtained results in terms of silhouettes varying
the number of clusters from 10 to 50 (see columns). Each row represents the percentage of
points with a silhouette greater than a given threshold, that is 0.7, 0.8, and 0.9.

Table 22. Clustering performance in terms of silhouettes using normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 36.82 30.39 36.37 30.10 30.04

0.8 21.07 29.92 21.21 29.63 29.56

0.9 0.04 18.18 17.83 17.89 17.83

Table 23. Clustering performance in terms of silhouettes using the reduced dataset with PCA applied
to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 62.27 58.06 58.71 58.75 58.51

0.8 45.16 52.86 53.67 54.45 54.83

0.9 38.64 34.83 45.43 49.84 50.33

Table 24. Clustering performance in terms of silhouettes using the reduced dataset with SPQR
applied to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 48.16 48.90 48.76 49.66 52.91

0.8 28.33 40.45 40.32 41.21 44.46

0.9 28.33 29.14 29.01 29.90 39.85

8.5. Wine Dataset
8.5.1. Clustering and Silhouettes Using Raw Data

The original dataset is composed of 13 numerical features. Applying PCA to this
dataset, losing less than 2% of the total variation in the data, produced a dataset with
a single dimension. The following Tables 25–27 show the obtained results in terms of
silhouettes varying the number of clusters from 10 to 50.
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Table 25. Clustering performance in terms of silhouettes using original data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 62.92 57.86 42.13 40.45 42.13

0.8 45.50 38.20 25.28 24.15 28.65

0.9 10.67 7.86 6.18 10.11 14.61

Table 26. Clustering performance in terms of silhouettes using the reduced dataset with PCA.

Silhouette\N. Clusters 10 20 30 40 50

0.7 70.22 70.79 73.59 74.16 68.54

0.8 58.43 59.55 58.99 58.99 57.30

0.9 28.65 26.40 31.46 31.46 39.89

Table 27. Clustering performance in terms of silhouettes using the reduced dataset with SPQR.

Silhouette\N. Clusters 10 20 30 40 50

0.7 65.73 71.35 75.28 74.16 74.16

0.8 52.81 60.11 61.80 57.30 60.11

0.9 21.91 31.46 34.83 29.77 41.57

8.5.2. Clustering and Silhouettes Using Normalized Data

The original dataset was normalized between 0 and 1. Applying PCA to this dataset,
losing less than 2% of the total variation in the data, produced a dataset with three dimen-
sions. The following Tables 28–30 show the obtained results in terms of silhouettes varying
the number of clusters from 10 to 50.

Table 28. Clustering performance in terms of silhouettes using normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 0.56 1.12 1.68 1.68 1.123

0.8 0.56 0.56 1.12 1.68 0.56

0.9 0.56 0.56 1.12 1.68 0.56

Table 29. Clustering performance in terms of silhouettes using the reduced dataset with PCA applied
to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 5.62 8.99 8.99 10.11 12.92

0.8 0 1.68 4.49 3.93 8.42

0.9 0 1.123 0 0 5.62

Table 30. Clustering performance in terms of silhouettes using the reduced dataset with SPQR
applied to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 14.61 14.61 10.67 19.10 14.61

0.8 3.93 4.49 3.93 8.99 8.43

0.9 0 0 3.37 2.81 2.81
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8.6. Multiple Features Dataset
8.6.1. Clustering and Silhouettes Using Raw Data

The original dataset is composed of 649 numerical features. Applying PCA to this
dataset, losing less than 2% of the total variation in the data, produced a dataset with two di-
mensions. The following Tables 31–33 show the obtained results in terms of silhouettes
varying the number of clusters from 10 to 50.

Table 31. Clustering performance in terms of silhouettes using original data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 22.40 2.40 0.70 0.35 0.70

0.8 15.95 0 0 0 0

0.9 0 0 0 0 0

Table 32. Clustering performance in terms of silhouettes using the reduced dataset with PCA.

Silhouette\N. Clusters 10 20 30 40 50

0.7 56.55 32.30 24.95 24.10 23.45

0.8 38.65 10.90 7.10 8.50 6.400

0.9 15.65 0 0.35 0.35 0

Table 33. Clustering performance in terms of silhouettes using the reduced dataset with SPQR.

Silhouette\N. Clusters 10 20 30 40 50

0.7 65.35 55.10 48.60 44.85 44.95

0.8 51.60 35.80 28.75 25.85 25.50

0.9 22.45 8.85 3.65 3.55 2.10

8.6.2. Clustering and Silhouettes Using Normalized Data

The original dataset was normalized between 0 and 1. Applying PCA to this dataset,
losing less than 2% of the total variation in the data, produced a dataset with four dimen-
sions. The following Tables 34–36 show the obtained results in terms of silhouettes varying
the number of clusters from 10 to 50.

Table 34. Clustering performance in terms of silhouettes using normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 0 0.20 0.10 0.15 0

0.8 0 0.20 0.10 0.15 0

0.9 0 0.20 0.10 0.15 0

Table 35. Clustering performance in terms of silhouettes using the reduced dataset with PCA applied
to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 21.05 8.70 6.90 2 1.40

0.8 4.15 0.40 0.65 0 0

0.9 0 0 0 0 0
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Table 36. Clustering performance in terms of silhouettes using the reduced dataset with SPQR
applied to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 73.70 74.85 69.25 67.75 72.35

0.8 67.70 64.60 57.20 58.50 61.75

0.9 46.45 45.45 29.80 23.35 40.60

8.7. Dry Beans Dataset
8.7.1. Clustering and Silhouettes Using Raw Data

The original dataset is composed of 16 numerical features. Applying PCA to this
dataset, losing less than 2% of the total variation in the data, produced a dataset with
one dimension. The following Tables 37–39 show the obtained results in terms of silhouettes
varying the number of clusters from 10 to 50.

Table 37. Clustering performance in terms of silhouettes using original data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 62.15 59.83 60.83 60.52 59.70

0.8 48.18 45.64 46.20 45.95 45.34

0.9 17.24 16.09 16.72 15.99 14.38

Table 38. Clustering performance in terms of silhouettes using the reduced dataset with PCA.

Silhouette\N. Clusters 10 20 30 40 50

0.7 62.20 61.43 61.27 60.45 61.16

0.8 48.29 46.52 46.95 46.86 46.85

0.9 17.46 17.48 18.41 18.37 19.23

Table 39. Clustering performance in terms of silhouettes using the reduced dataset with SPQR.

Silhouette\N. Clusters 10 20 30 40 50

0.7 62.26 61.13 61.31 61.02 60.66

0.8 48.14 47.12 47.61 46.80 46.85

0.9 17.40 17.43 18.61 18.40 18.11

8.7.2. Clustering and Silhouettes Using Normalized Data

The original dataset was normalized between 0 and 1. Applying PCA to this dataset,
losing less than 2% of the total variation in the data, produces a dataset with two dimensions.
The following Tables 40–42 show the obtained results in terms of silhouettes varying the
number of clusters from 10 to 50.

Table 40. Clustering performance in terms of silhouettes using normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 13.16 4.39 3.22 0.55 0.53

0.8 3.11 2.36 2.31 0 0

0.9 0.15 0.037 0.01 0 0
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Table 41. Clustering performance in terms of silhouettes using the reduced dataset with PCA applied
to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 30.07 22.94 19.43 17.23 17.13

0.8 10.10 6.74 5.55 3.91 4.74

0.9 0 0 0 0 0

Table 42. Clustering performance in terms of silhouettes using the reduced dataset with SPQR
applied to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 30.55 21.61 20.99 19.95 21.64

0.8 11.39 4.94 4.33 4.63 5.99

0.9 0 0 0 0 0

8.8. APS Failure at Scania Trucks Dataset
8.8.1. Clustering and Silhouettes Using Raw Data

The original dataset is composed of 168 numerical features. Applying PCA to this
dataset, losing less than 2% of the total variation in the data, produced a dataset with
one dimension. The following Tables 43–45 show the obtained results in terms of silhouettes
varying the number of clusters from 10 to 50.

Table 43. Clustering performance in terms of silhouettes using original data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 11.94 37.07 29.13 45.43 45.31

0.8 11.31 32.07 20.36 39.45 39.34

0.9 9.70 27.02 5.54 35.07 34.99

Table 44. Clustering performance in terms of silhouettes using the reduced dataset with PCA.

Silhouette\N. Clusters 10 20 30 40 50

0.7 68.40 74.05 78.86 75.34 77.41

0.8 58.14 65.12 70.83 66.66 68.81

0.9 41.40 41.38 51.89 46.52 50.42

Table 45. Clustering performance in terms of silhouettes using the reduced dataset with SPQR.

Silhouette\N. Clusters 10 20 30 40 50

0.7 90.66 85.51 81.28 84.09 79.63

0.8 85.30 80.79 76.01 78.15 72.96

0.9 81.17 65.34 59.48 63.08 56.15

8.8.2. Clustering and Silhouettes Using Normalized Data

The original dataset was normalized between 0 and 1. Applying PCA to this dataset,
losing less than 2% of the total variation in the data, produced a dataset with five dimen-
sions. The following Tables 46–48 show the obtained results in terms of silhouettes varying
the number of clusters from 10 to 50.
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Table 46. Clustering performance in terms of silhouettes using normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 34.28 20.97 18.43 9.97 11.9

0.8 9.65 13.52 15.20 2.99 8.56

0.9 7.08 5.12 5.42 1.97 0.40

Table 47. Clustering performance in terms of silhouettes using the reduced dataset with PCA applied
to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 48.17 25.93 21.18 16.80 12.46

0.8 18.63 15.13 14.07 8.93 4.05

0.9 8.01 2.48 1.94 0 1.16

Table 48. Clustering performance in terms of silhouettes using the reduced dataset with SPQR
applied to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 28.40 27.88 14.55 12.74 12.79

0.8 15.10 11.13 9.59 6.58 7.49

0.9 6.88 3.37 4.38 2.75 3.95

8.9. Relative location of CT Slices on Axial Axis Dataset
8.9.1. Clustering and Silhouettes Using Raw Data

The original dataset is composed of 16 numerical features. Applying PCA to this
dataset, losing less than 2% of the total variation in the data, produced a dataset with
six dimensions. The following Tables 49–51 show the obtained results in terms of silhouettes
varying the number of clusters from 10 to 50.

Table 49. Clustering performance in terms of silhouettes using original data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 0.002 0.002 0.004 0.013 0.019

0.8 0.002 0.002 0.004 0.013 0.019

0.9 0.002 0.002 0.004 0.013 0.019

Table 50. Clustering performance in terms of silhouettes using the reduced dataset with PCA.

Silhouette\N. Clusters 10 20 30 40 50

0.7 10.06 7.16 4.99 6.56 3.79

0.8 0.82 2.91 2.88 2.858 0.68

0.9 0 1.54 1.42 1.19 0

Table 51. Clustering performance in terms of silhouettes using the reduced dataset with SPQR.

Silhouette\N. Clusters 10 20 30 40 50

0.7 23.61 25.91 15.64 20.30 37.95

0.8 8.39 5.75 0.01 15.531 21.03

0.9 5.38 0.01 0.01 5.47 8.31
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8.9.2. Clustering and Silhouettes Using Normalized Data

The original dataset was normalized between 0 and 1. Applying PCA to this dataset,
losing less than 2% of the total variation in the data, produced a dataset with five dimen-
sions. The following Tables 52–54 show the obtained results in terms of silhouettes varying
the number of clusters from 10 to 50.

Table 52. Clustering performance in terms of silhouettes using normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 0.006 0.007 0.011 0.015 0.020

0.8 0.006 0.007 0.011 0.015 0.020

0.9 0.006 0.007 0.011 0.015 0.020

Table 53. Clustering performance in terms of silhouettes using the reduced dataset with PCA applied
to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 13.45 10.93 5.20 2.15 1.46

0.8 1.46 4.32 3.18 0 0

0.9 0 1.40 1.46 0 0

Table 54. Clustering performance in terms of silhouettes using the reduced dataset with SPQR
applied to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 53.43 82.86 90.65 88.22 85.94

0.8 25.01 79.76 86.64 83.62 81.28

0.9 0 57.74 79.67 70.08 67.80

8.10. Mice Protein Expression Dataset
8.10.1. Clustering and Silhouettes Using Raw Data

The original dataset is composed of 81 numerical features. Applying PCA to this
dataset, losing less than 2% of the total variation in the data, produced a dataset with
one dimension. The following Tables 55–57 show the obtained results in terms of silhouettes
varying the number of clusters from 10 to 50.

Table 55. Clustering performance in terms of silhouettes using original data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 0 0.18 0.09 0.28 0.37

0.8 0 0.18 0.09 0.28 0.37

0.9 0 0.18 0.09 0.28 0.37

Table 56. Clustering performance in terms of silhouettes using the reduced dataset with PCA.

Silhouette\N. Clusters 10 20 30 40 50

0.7 63.42 62.41 63.70 63.70 64.63

0.8 50.09 49.07 48.61 50.92 50.65

0.9 23.05 19.35 21.85 21.76 19.07
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Table 57. Clustering performance in terms of silhouettes using the reduced dataset with SPQR.

Silhouette\N. Clusters 10 20 30 40 50

0.7 58.15 61.85 64.35 63.15 63.15

0.8 47.59 50.92 49.44 49.91 49.72

0.9 17.87 21.30 22.68 21.39 22.41

8.10.2. Clustering and Silhouettes Using Normalized Data

The original dataset was normalized between 0 and 1. Applying PCA to this dataset,
losing less than 2% of the total variation in the data, produced a dataset with one dimension.
The following Tables 58–60 show the obtained results in terms of silhouettes varying the
number of clusters from 10 to 50.

Table 58. Clustering performance in terms of silhouettes using normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 0 0 0 0.09 0.18

0.8 0 0 0 0.09 0.18

0.9 0 0 0 0.09 0.18

Table 59. Clustering performance in terms of silhouettes using the reduced dataset with PCA applied
to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 60.09 61.85 62.41 62.68 64.44

0.8 46.30 49.44 48.70 48.98 50.65

0.9 19.26 20.74 20.46 20.37 19.81

Table 60. Clustering performance in terms of silhouettes using the reduced dataset with SPQR
applied to normalized data.

Silhouette\N. Clusters 10 20 30 40 50

0.7 61.11 62.78 59.91 61.941 61.851

0.8 48.981 50.181 45.551 48.051 48.421

0.9 19.26 20.83 17.78 18.80 20.37

8.11. Synthesis

The mean values of all the results shown in the previous sections are reported in the
following figures. Figures 1–3 report the mean results obtained by applying the analysis to
the raw datasets, while Figures 4–6 report those obtained by applying the analysis to the
normalized datasets. Each figure shows the mean results in terms of silhouettes obtained
varying the number of clusters from 10 to 50.

In Figure 1, each line represents the mean percentage of points with a silhouette greater
than 0.7. The blue line represents the results obtained using the raw data, the orange line
represents those obtained after preprocessing with PCA, and the gray line represents those
obtained after preprocessing with SPQR.
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Figure 1. Mean results in terms of silhouettes >0.7 obtained by varying the number of clusters from
10 to 50.

In Figure 2, each line represents the mean percentage of points with a silhouette greater
than 0.8.
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Figure 2. Mean results in terms of silhouettes >0.8 obtained by varying the number of clusters from
10 to 50.

In Figure 3, each line represents the mean percentage of points with a silhouette greater
than 0.9.
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Figure 3. Mean results in terms of silhouettes >0.9 obtained by varying the number of clusters from
10 to 50.

In Figure 4, each line represents the mean percentage of points with a silhouette greater
than 0.7 obtained by applying the analysis to the normalized datasets.
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Figure 4. Mean results in terms of silhouettes >0.7 obtained by varying the number of clusters from
10 to 50 using normalized data.

In Figure 5, each line represents the mean percentage of points with a silhouette greater
than 0.8 obtained by applying the analysis to the normalized datasets.
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Figure 5. The mean results in terms of silhouettes >0.8 obtained varying the number of clusters from
10 to 50 using normalized data.

In Figure 6, each line represents the mean percentage of points with a silhouette greater
than 0.9 obtained by applying the analysis to the normalized datasets.
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Figure 6. Mean results in terms of silhouettes >0.9 obtained by varying the number of clusters from
10 to 50 using normalized data.

To perform a comparative evaluation of various methods, statistical hypothesis tests
are commonly adopted with experimental results for a number of datasets. In this work, the
obtained results were analyzed using the Friedman test [44]. It is a nonparametric statistical
method to evaluate the validity of the null hypothesis (no difference or relationship exists
between the two sets of data or variables being analyzed). The analysis was carried
out using Matlab®. Since the obtained value of χ2 is 28.13 which is greater than the
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critical value of 5.991 (derived from the table of the χ2 distribution choosing the value of
significance α equal to 0.05), we can reject the null hypothesis. Once the null hypothesis
was rejected applying the Friedman test, the authors adopted a post hoc procedure for the
pairwise comparison using the “multcompare” Matlab function. Figure 7 shows a graphical
representation of the obtained results. In this figure, the intervals are computed so that the
two estimates being compared are significantly different if their intervals are disjointed
and are not significantly different if their intervals overlap. In Figure 7, all the intervals
are disjoined, indicating the fact that the three observations are significatively different
among them.
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9. Discussion

In this work, the authors proposed to use the SPQR algorithm as a data preprocessing
method for machine learning algorithms. It is a technique for sparce matrix approximation,
and to best of our knowledge, it has never been applied to this context. The obtained results
were compared to those obtained using the well-known PCA under the same conditions. In
particular, an unsupervised learning method (FCM) was applied to ten publicly available
databases using different preprocessing techniques:

1. No preprocessing: in these experiments, the FCM was used to cluster raw data;
2. Data normalization: in these experiments, each feature of the datasets was normalized;
3. PCA: the dimensions of the datasets were reduced using PCA, retaining at least the

98% of the total variation in the data;
4. SPQR: the dimensions of the datasets were reduced by applying the same number of

features used in PCA.

The obtained results are shown in the previous section, and they allow us to outline
some considerations:

• Data normalization has a significant impact on the performance of the clustering
algorithms. This is due to the “equalization effect” that data normalization has on the
morphology of the feature space defined by a dataset. Indeed, when normalizing a
dataset, each dimension of the feature space has the same extension (1); hence, all the
dimensions of the feature space have the same weight in the distance function used
in the clustering algorithm. From a semantic point of view, this situation could cause
trouble when analyzing a dataset where there are features more important than others;
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• Reducing the dimensions of the dataset could improve the classification performance
of the algorithms. In the proposed experiments, there were improvements both in the
computational and classification performances;

• As shown in Section 7, reducing dimensions using PCA means to reproject the original
feature space into a new one defined by the eigenvectors of the covariance matrix.
This fact makes the estimation of the contribution given by each feature of the original
dataset to the classification process quite difficult. Furthermore, it is not possible to
classify new points eventually added in a second time to the original dataset without
recasting them into the new feature space;

• As shown in Section 6, the SPQR algorithm does not introduce any changes in the
original dataset (it changes only the position of some features in the original dataset).
This overcomes the drawbacks of PCA discussed above. Furthermore, the proposed
results show that the performance obtained by preprocessing data with this algorithm
often overcomes that obtained using PCA.
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