Soil Spectral Behavior Related to Its Load-Bearing Capacity Based on Moisture Content
Abstract
:1. Introduction
2. Soil Type Used and the Measuring Techniques
2.1. Load-Bearing Capacity Measurement (Bevameter Test)
2.2. Spectral Behavior Measurements (Color Test)
3. Results
3.1. Soil Density at Different Moisture Contents
3.2. Bevameter Results (Pressure–Sinkage Relationship)
- : the applied pressure;
- : the diameter of the plate;
- : the soil vertical deformation (sinkage);
- : the sinkage modulus.
3.3. Spectrophotometer Results (Color)
4. Discussion
4.1. The Influence of Moisture Content on the Soil’s Density
4.2. Sandy Loam Soil Maximum Sinkage
4.3. Color Reflectance Affected by Moisture Contents
- : the reflected wavelength at a specific spectrum, 400–700 nm;
- : the mean for wavelengths in the 400–500 nm range;
- : the mean for wavelengths in the 400–700 nm range.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.I.; Siddiqua, S. Compressibility Behavior of Soils: A Statistical Approach. Geotech. Geol. Eng. 2016, 34, 2063–2070. [Google Scholar] [CrossRef]
- Alamanis, N.; Lokkas, P.; Chrysanidis, T.; Christodoulou, D.; Paschalis, E. Assessment Principles for the Mechanical Behavior of Clay Soils. WSEAS Trans. Appl. Theor. Mech. 2021, 16, 47–61. [Google Scholar] [CrossRef]
- Mašín, D. Soil Mechanical Behaviour and Its Modelling. In Modelling of Soil Behaviour with Hypoplasticity; Springer Series in Geomechanics and Geoengineering; Springer: Cham, Switzerland, 2019; pp. 13–42. ISBN 978-3-030-03975-2. [Google Scholar] [CrossRef]
- Bekker, M.G. Introduction to Terrain-Vehicle Systems, 1st ed.; The University of Michigan Press: Ann Arbor, MI, USA, 1969. [Google Scholar]
- Ding, L.; Gao, H.; Deng, Z.; Li, Y.; Liu, G. New perspective on characterizing pressure–sinkage relationship of terrains for estimating interaction mechanics. J. Terramech. 2014, 52, 57–76. [Google Scholar] [CrossRef]
- Ahmed, A.E.E.; El Hariri, A.; Kiss, P. Soil strength and load bearing capacity measurement techniques. Hung. Agric. Eng. 2021, 40, 16–27. [Google Scholar] [CrossRef]
- Yong, R.N.; Fattah, E.A.; Skiadas, N. Vehicle Traction Mechanics; Elsevier Science: Amsterdam, The Netherlands, 1984. [Google Scholar]
- Wong, J.Y. Performance of Off-Road Vehicles. In Terramechanics and Off-Road Vehicle Engineering, 2nd ed.; Wong, J.Y., Ed.; Elsevier: Ottawa, ON, Canada, 2010; pp. 129–153. ISBN 9780750685610. [Google Scholar] [CrossRef]
- Wong, J.Y. Terramechanics and Off-Road Vehicle Engineering, 2nd ed.; Elsevier Ltd.: Oxford, UK, 2010. [Google Scholar] [CrossRef]
- Wong, J.Y. Theory of Ground Vehicles, 3rd ed.; John Wily and Sons: Toronto, ON, Canada, 2001. [Google Scholar]
- Pillinger, G.; Kiss, P.; Géczy, A.; Hudoba, Z. Determination of soil density by cone index data. J. Terramech. 2018, 77, 69–74. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X. Soil spectral behaviour and its effect on soil properties. Biosyst. Eng. 2015, 141, 61–70. [Google Scholar]
- Li, X.; Su, Z. Soil spectral behaviour and its relation to soil properties. Adv. Appl. Sci. Res. 2011, 2, 691–699. [Google Scholar]
- Mouazen, A.; Karoui, R.; Deckers, J.; De Baerdemaeker, J.; Ramon, H. Potential of visible and near-infrared spectroscopy to derive colour groups utilising the Munsell soil colour charts. Biosyst. Eng 2007, 97, 131–143. [Google Scholar] [CrossRef]
- Nickerson, D. Uniform colour scales: Munsell conversion of OSA committee selection. J. Opt. Soc. Am. 1975, 65, 205–207. [Google Scholar] [CrossRef]
- Rabenhorst, M.; Schmehling, A.; Thompson, J.; Hirmas, D.; Graham, R.; Rossi, A. Reliability of soil color standards. Soil Sci. Soc. Am. J. 2015, 79, 193–199. [Google Scholar] [CrossRef]
- Aitkenhead, M.; Coull, M.; Towers, W.; Hudson, G.; Black, H. Prediction of soil characteristics and colour using data from the National Soils Inventory of Scotland. Geoderma 2013, 200–201, 99–107. [Google Scholar] [CrossRef]
- Bloch, I.; Hosen, J.; Kracht, E.; Lefebvre, M.; Jazmine-Lopez, C.; Woodcock, R.; Keegan, W. Is it better to be objectively wrong or subjectively, right? testing the accuracy and consistency of the Munsell capture spectrocolorimeter for Archaeological applications. Adv. Archaeol. Pract. 2021, 9, 132–144. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Minasny, B.; Roudier, P.; McBratney, A.B. Colour space models for soil science. Geoderma 2006, 133, 320–337. [Google Scholar] [CrossRef]
- Csanády, E.; Magoss, E.; Tolvaj, L. Colour Characterization of Wood. In Quality of Machined Wood Surfaces; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Csanády, E.; Kovács, Z.; Magoss, E.; Ratnasingam, J. Principles of Optimization. In Optimum Design and Manufacture of Wood Products; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Sitkei, G. Further Studies on the Characterization of Wood Colours 2020; Anomalies of the CIE-Lab System; Department of Wood Engineering, University of Sopron: Sopron, Hungary, 2020; ISSN 2060-3649. ISBN 978-963-359-100-0. [Google Scholar]
- Orna, M.V. The chemical origins of colour. J. Chem. Ed. 1978, 55, 478–484. [Google Scholar] [CrossRef]
- Escadafal, R. Remote sensing of soil colour: Principles and applications. Remote Sens. Rev. 1993, 7, 261–279. [Google Scholar] [CrossRef]
- William, J.; Chancellor, J. Soil physical properties. In Advances in Soil Dynamics; Upadhyaya, S.K., Chancellor, W.J., Perumpral, J.V., Wulfsohn, D., Way, T.R., Eds.; American Society of Agricultural Engineers (ASAE): St. Joseph, MI, USA, 1994; Volume 1, pp. 21–254. [Google Scholar] [CrossRef]
- Salman, N.D.; Pillinger, G.; Hanon, M.M.; Kiss, P. Design and performance evaluation of Bevameter equipment. J. Adv. Mech. Des. Syst. Manuf. 2020, 14, AMDSM0084. [Google Scholar] [CrossRef]
- Máthé, L. Analysis of the Motion of Vehicles Running onto Terrain. Ph.D. Dissertation, Szent Istvan University, Gödöllő, Hungary, 2014. [Google Scholar]
- Pillinger, G. Deformation and Damping of Soil under Tire. Ph.D. Dissertation, Szent Istvan University, Gödöllő, Hungary, 2016. [Google Scholar]
- Salman, N.D.; Pillinger, G.; Kiss, P. Soil behaviour of shallow homogenous upper layer soil. J. Appl. Sci. Eng. 2022, 25, 159–164. [Google Scholar] [CrossRef]
- Salman, N.D. Load Bearing Capacity of Soil as a Homogeneous Finite Half-Space. Ph.D. Dissertation, Hungarian University of Agriculture and Life Sciences, Szent István Campus, Gödöllő, Hungary, 2022. [Google Scholar]
- Boussinesq, J. Application des Potentials a l’Etude de l’Equilibre et due Mouvement des Solides Elastique; Gauthier-Villars: Paris, France, 1885. [Google Scholar]
- Saakyan, S. Soil resistance under load. Szbornyik Tr. Zeml 1965, 3, 24–31. [Google Scholar]
- Salman, N.D.; Pillinger, G.; Hanon, M.M.; Kiss, P. A Modified Pressure–Sinkage Model for Studying the Effect of a Hard Layer in Sandy Loam Soil. Appl. Sci. 2021, 11, 5499. [Google Scholar] [CrossRef]
- Sitkei, G. Sinkage and rolling resistance of wheels. Prog. Agric. Eng. Sci. 2015, 11, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, R. Probleme zur Experimentellen Motorpflugmechanik; Der Motorwagen: Berlin, Germany, 1913; pp. 199–206. [Google Scholar]
Sample No. | H2/D2 | MC (%) | Mass (kg) | Height | Density (g/ | Density Ratio (−) |
---|---|---|---|---|---|---|
1 | 0.5 | 1.05 | 4.62 | = 10, = 8.4 | = 1.47, = 1.75 | 0.19 |
2 | 0.5 | 3.34 | 4.52 | = 10, = 6.9 | = 1.44, = 2.09 | 0.45 |
3 | 0.5 | 4.82 | 4.23 | = 10, = 5.9 | = 1.35, = 2.28 | 0.69 |
4 | 0.5 | 6.05 | 4.21 | = 10, = 5.8 | = 1.34, = 2.31 | 0.72 |
5 | 0.5 | 7.63 | 4.12 | = 10, = 5.4 | = 1.31, = 2.43 | 0.85 |
Sample No. | MC (%) | Rm^(4/5) | Rm^(4/7) | X (10°/D65) | Y (10°/D65) | Z (10°/D65) | Ref. at 700 nm |
---|---|---|---|---|---|---|---|
1 | 1.05 | 8.13 | 11.58 | 11.56 | 11.71 | 8.84 | 16.25 |
2 | 3.34 | 6.66 | 9.69 | 9.68 | 9.77 | 7.23 | 13.92 |
3 | 4.82 | 5.09 | 7.44 | 7.40 | 7.41 | 5.52 | 10.92 |
4 | 6.05 | 4.31 | 6.01 | 5.94 | 5.95 | 4.66 | 8.67 |
5 | 7.63 | 4.37 | 5.83 | 5.74 | 5.79 | 4.72 | 8.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, A.E.E.; El Hariri, A.; Kiss, P. Soil Spectral Behavior Related to Its Load-Bearing Capacity Based on Moisture Content. Appl. Sci. 2023, 13, 3498. https://doi.org/10.3390/app13063498
Ahmed AEE, El Hariri A, Kiss P. Soil Spectral Behavior Related to Its Load-Bearing Capacity Based on Moisture Content. Applied Sciences. 2023; 13(6):3498. https://doi.org/10.3390/app13063498
Chicago/Turabian StyleAhmed, Ahmed Elawad Eltayeb, Alaa El Hariri, and Péter Kiss. 2023. "Soil Spectral Behavior Related to Its Load-Bearing Capacity Based on Moisture Content" Applied Sciences 13, no. 6: 3498. https://doi.org/10.3390/app13063498
APA StyleAhmed, A. E. E., El Hariri, A., & Kiss, P. (2023). Soil Spectral Behavior Related to Its Load-Bearing Capacity Based on Moisture Content. Applied Sciences, 13(6), 3498. https://doi.org/10.3390/app13063498