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Abstract: In order to defraud state subsidies, some unscrupulous users use improper means to steal
photovoltaic (PV) power. This behavior brings potential safety hazards to photovoltaic grid-connected
operations. In this paper, a photovoltaic power-stealing identification method based on similar-day
clustering and interval prediction of the quantile regression model for long short-term memory neural
network (QRLSTM) is proposed. First, photovoltaic data are clustered into three similar days by
the similar-day clustering according to weather conditions. Second, compared with the quantile
regression neural network (QRNN) prediction method, the good prediction performance of the
QRLSTM method is illustrated. Third, using the prediction intervals with different confidence levels
on three similar days, according to the time scale (short-term, medium-term and long-term) combined
with different electricity-stealing judgment indicators, a three-layer photovoltaic power-stealing
screening framework is constructed, and the degree of user power stealing is qualitatively analyzed.
Last, the power generation data of eight photovoltaic users in a certain region of northwest China
and the data of four groups of artificially constructed power-stealing users are used as an example
for simulation. The simulation results prove the feasibility of the proposed method in this paper.

Keywords: photovoltaic power-stealing identification; interval prediction; similar-day clustering;
quantile regression model for long short-term memory neural networks; three-layer photovoltaic
power-stealing screening

1. Introduction

At present, the problem of energy shortage is increasingly prominent, and the use
of new energy instead of fossil energy has become an irreversible trend. Photovoltaic
(PV) power generation has been promoted worldwide due to its advantages of low cost,
high return and sustainability. However, the rapid development of photovoltaic power
generation has also brought some problems. In order to obtain the high subsidies of the state
in the field of photovoltaic power generation, some illegal users use certain technical means
to make the measured power of photovoltaic meters falsely high. This behavior is called
photovoltaic power stealing [1], which not only seriously damages the national interests but
also brings potential security risks to the grid-connected operation of photovoltaic power.

The problem of power stealing is a significant problem of the grid [2,3]. For the
identification of traditional power stealing, relevant technologies are relatively mature.
Kong et al. [4] proposed a power-stealing detection method based on a similarity measure
and the decision tree combined K-Nearest Neighbour and support vector machine (DT-
KSVM). Huang et al. [5] introduced the stacked sparse denoising autoencoder (SSDAE) to
detect the behavior of power stealing. The existing power-stealing identification methods
have been able to relatively accurately identify traditional means of power stealing, but
photovoltaic power stealing is different from traditional power stealing. Thus, the method
applicable to traditional anti-power stealing may not be excellent for photovoltaic anti-
power stealing.
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There are four typical distributed photovoltaic power-stealing methods: increasing
voltage method, increasing current method, photovoltaic simulator method and the grid
reconnection method [6]. Both the increasing voltage method and the increasing current
method need to change the external connection of the original line, which can be found
through on-site inspection. The photovoltaic simulator method can control the output of the
photovoltaic simulator according to the change of the external meteorological environment,
which has high concealability and is not easy to identify. Power stealing by the grid
reconnection method needs to ensure that the electricity consumed by the user is greater
than the electricity emitted by the photovoltaic panels [7]. The existence of power stealing
can be judged by analysing the electricity consumption of users.

The uncertainty of photovoltaic power generation, the diversity of photovoltaic
power-stealing methods and the randomness of photovoltaic power-stealing behavior
have brought great challenges to photovoltaic anti-power stealing. The existing photo-
voltaic power-stealing identification methods can be mainly divided into two categories:
one needs to predict the photovoltaic power generation and compares the predicted value
with the measured value of the photovoltaic meter [8,9]; the other does not need to predict
the photovoltaic power generation and directly uses the data of the power station [10–12].
The first method requires the model to have high prediction accuracy. Shaaban et al. [8]
proposed a power-stealing detection method based on the regression tree model, comparing
the real value read from the photovoltaic meter with the predicted value obtained from
the regression model to judge the power-stealing behavior. But the prediction accuracy of
the proposed model is not high, leading to the identification accuracy of power-stealing
behavior being not high.

The second method analyzes the data of the power station when there is behavior
of power stealing and finds those characteristics of the data that can be used to identify
photovoltaic power stealing. Xie et al. [13] put forward a new detection index for the
virtual increase of photovoltaic power generation, that is, the changed slope between
the data of the photovoltaic meter and the gate meter. The proposed detection index
improves the accuracy of photovoltaic power-stealing identification, but this approach
is only applicable to the photovoltaic simulator power-stealing method, not to the other
three common power-stealing methods. Lu et al. [14] proposed an identification method
for abnormal photovoltaic users based on MIV (mean impact value) and heuristic forward
searching. However, this method is limited, has no timeliness, and the results have a certain
randomness.

In regard to photovoltaic power generation forecasting, there has been much research
to improve the accuracy of photovoltaic power generation forecasts. The higher the predic-
tion accuracy, the more accurate the identification of electricity stealing. Talaat et al. [15]
proposed two MFFNN-based optimization techniques to predict the DC output power of a
PV plant. Zhang et al. [16] proposed an Ultra-short-term power forecasting method based
on NWP similarity analysis. At this stage, for photovoltaic power generation forecasting,
point forecasting is mostly used, but the information provided by point forecasting results
is limited, which is not conducive to reflecting the randomness of forecasting. Therefore, the
interval prediction method has been introduced. Interval prediction is an uncertainty pre-
diction, which can reflect the volatility of photovoltaic power generation and can also obtain
the probability distribution characteristics of photovoltaic output. Mei et al. [17] proposed a
photovoltaic interval prediction method based on the adaptive-rolling matching-prediction
correction mode. Wan et al. [18] established a linear programming-based prediction interval
construction model for photovoltaic power generation.

In summary, the main method of photovoltaic power-stealing identification is to
compare the predicted photovoltaic power generation with the photovoltaic metering
meter. However, the main problem of this method is that the prediction accuracy of
photovoltaic power generation in the existing research still has room for improvement, so
it is necessary to constantly update the algorithm to improve the prediction accuracy. The
other category of identification methods which do not rely on photovoltaic prediction also



Appl. Sci. 2023, 13, 3506 3 of 14

has some problems, such as difficulty in data acquisition, insufficient accuracy and limited
scope of application. These problems are considered comprehensively in carrying out the
work of this paper. This work aims to study a photovoltaic power-stealing identification
method based on similar-day clustering and quantile regression long short-term memory
(QRLSTM) neural interval prediction. The following are the primary contributions of
this work:

• The principles of four photovoltaic power-stealing methods and the data characteristics
after power stealing were investigated, and four groups of power-stealing user data
were artificially constructed to fully verify the effect of the proposed method.

• The method of combining similar-day clustering and the QRLSTM network was used
to forecast photovoltaic power generation under different types of weather conditions
to improve the prediction accuracy. It was considered that the efficiency of photovoltaic
power generation in the same weather is similar.

• In order to make the identification result of the final power stealing more stable
and accurate, three-layer screening criteria were set from the time scale, which were
specifically manifested as short-term, medium-term and long-term.

2. Materials and Methods
2.1. Analysis of Photovoltaic Output Characteristics
2.1.1. Influencing Factors of Photovoltaic Output

The factors affecting photovoltaic output mainly include two aspects: one is internal
factors, including the power generation performance and conversion efficiency of pho-
tovoltaic arrays, the installation angle of PV panels and its operation mode, the type of
system components and geographical location, etc.; the other is external factors, which
mainly refer to the climatic conditions of the location of the photovoltaic power generation
grid [19,20]. Considering that the geographical locations of the users selected for the identi-
fication of electricity stealing in this paper are adjacent to each other, it is assumed that their
power generation efficiency is similar, and only the influence of meteorological factors is
considered. Meteorological factors that affect photovoltaic output mainly include weather
type, actual irradiance, temperature, humidity, wind speed, pressure, etc. [21]. However,
in addition to weather type and irradiance, which have obvious effects on PV output, the
effect of other factors on PV output are often indirect and unclear. In order to improve the
prediction effect of the model, further feature mining is carried out on the meteorological
features, and some new features are constructed.

2.1.2. Feature Construction and Selection

Commonly used feature construction methods include statistical features and com-
bined features [21]. Statistical feature construction refers to the construction of statistical
indicators such as the mean and standard deviation of different features, which can reflect
the fluctuation of meteorological data over a period of time. Combined feature construction
is the use of four operations to “add, subtract, multiply, and divide” each feature to obtain
new features, which allow new features of linear and nonlinear types to be obtained.

A large number of new features are obtained through feature construction, but the
more features are not better. Too many features will make the model complex, resulting in
increased training time; too few features will not improve the performance of the model.
Therefore, all the constructed features should be selected according to the correlation
between the feature and the actual photovoltaic power.

This paper uses the extreme gradient-boosting (XGBoost) algorithm to filter features.
The feature importance score, a sub-module of the XGBoost algorithm, can calculate
the importance of each attribute in the decision tree. Therefore, it can be used to better
evaluate the degree of correlation between all structural features and the actual power of
photovoltaics.
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2.1.3. Similar-Day Clustering

Similar days refers to the days in a quarter that have the same weather characteristics
as the predicted day. Compared with other dates, similar days can better reflect the
photovoltaic output law of the predicted day [22]. Using clustered historical data for
prediction can greatly improve the accuracy of model prediction. In this paper, a similar-
day clustering method combining a fuzzy C-means (FCM) clustering algorithm and discrete
Fréchet distance [23] is used. Similar days are clustered into three categories.

2.2. PV Output Interval Prediction
2.2.1. LSTM Model

The long- and short-term memory neural network (LSTM) is an improved version
of the traditional recurrent neural network (RNN), and its network structure is shown in
Figure 1.
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Figure 1. LSTM network structure diagram.

LSTM realizes the protection and control of information through forgetting gates, input
gates, and output gates. The specific input–output relationship is shown in Equation (1).

ft = σ
(

W f xt + U f ht−1 + b f

)
it = σ(Wixt + Uiht−1 + bi)

ot = σ(Woxt + Uoht−1 + bo)
c̃t= tanh(Wcxt + Ucht−1 + bc)

ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct)

(1)

where ft is forgetting gates; it is input gates; ot is output gates; σ(·) represents the sigmoid
activation function; xt is the current input vector; W f , Wi, Wo, Wc, U f , Ui, Uo, Uc are
weight matrices; b f , bi, bo, bc are bias matrices; ht is the current hidden layer vector; ht−1 is
the hidden layer vector at last moment; c̃t is the candidate value; ct is the updated status; �
represents dot product; and tanh is the hyperbolic tangent activation function.

2.2.2. Quantile Regression

The quantile regression method can well analyze the quantile relationship between a
set of explanatory variables and the explained variables. Compared with the least-squares
method, the quantile regression method is more robust when dealing with outlier data and
reflects more comprehensive data information [24,25]. Assuming a set of sample sequence
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explanatory variables and explained variables, the parameters of the linear regression
model are obtained by Equation (2).

min
n

∑
i=1

(Yi − Xiβ) (2)

where β is the regression coefficient, which changes with the change of the quantile
τ(0 < τ < 1). The estimation of the β can be transformed into an optimization problem,
which can be obtained by Equation (3).

min
β

n
∑

i=1
ρτ(Yi − X′i β)

= min
β

∑
i|Yi≥X′i β

τ
∣∣Yi − X′i β

∣∣+ ∑
i|Yi<X′i β

(1− τ)
∣∣Yi − X′i β

∣∣ (3)

where X′i denotes the explanatory variable with quantile condition; i|Yi ≥ X′i β denotes that
the actual value of the i-th explained variable is not less than the estimated value of linear
regression; ρ is the optimization function—when ρ is the smallest, the optimal estimate of
β is obtained. The calculation formula is shown in Equation (4), where I(·) is the indicative
function. 

ρτ(u) = u[τ − I(u)]

I(u) =

{
1 u < 0
0 u ≥ 0

(4)

It can be seen from Equation (3) that for each different quantile τ, the corresponding
parameter estimate β(τ) can be calculated. When τ is continuously valued in the (0,1)
interval, the complete range of the explained variable and its conditional distribution can be
obtained, and the conditional density prediction can finally be obtained after the condition
density is obtained.

2.2.3. QRLSTM PV Interval Prediction Model

The QRLSTM model can be obtained by combining the quantile regression method
with the long short-term memory neural network. The expression of the loss function of
the QRLSTM model is shown in Equation (5).

fcost =
N
∑

i=1
ρτ [Yi − f (Xi, W, b)]

= ∑
i|Yi≥ f (Xi ,W,b)

τ|Yi − f (Xi, W, b)|+ ∑
i|Yi< f (Xi ,W,b)

(1− τ)|Yi − f (Xi, W, b)|
(5)

where N represents the number of samples Yi, and Yi ≥ f (Xi, W, V) represents that the
estimated value of the i-th regression model is less than or equal to the actual value of the
explained variable. The objective function of the QRLSTM model is given by Equation (6).

min
W,b

fcos t +
λ

2

∣∣∣(Ŵ(τ), b̂(τ)
)∣∣∣2 (6)

where Ŵ(τ) is the weight under the quantile condition and b̂(τ) is the bias item weight
under the quantile condition. Using the Adam stochastic gradient descent algorithm, the
parameters Ŵ(τ) and b̂(τ) can be solved, and then the results are put into Equation (7),
where the condition quantile estimate of the explained variable can be obtained.

Q̂Y(τ|X ) = f
(

X, Ŵ(τ), b̂(τ)
)

(7)

The quantile τ is continuously valued in the interval (0, 1), and the model learns the
nonlinear relationship under different quantile conditions so as to obtain the corresponding
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optimal estimated value under different quantile conditions. The conditional quantile
curve is called the conditional distribution function, and the conditional density P can be
derived from the distribution function, as shown in Equation (8).

P
(
Q̂Y(τ|X )

)
=

dτ

dQ̂Y(τ|X )
(8)

where Q̂Y(τ|X ) is the conditional quantile curve. Then, after conditioning X and discretiz-
ing τ in Equation (8), the probability density function of the explained variable can be
obtained through Gaussian kernel density estimation. The specific flow chart is shown in
Figure 2.
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2.3. Identification of PV Power Stealing Based on Interval Prediction

In order to identify PV power stealing more comprehensively and accurately, this
paper adopts the short-, medium- and long-term time series scale as the hierarchical index
of electricity stealing screening [26].

2.3.1. Judgment of Suspected Short-Term Power Stealing

The judgement of short-term power-stealing suspicion is mainly on the daily scale.
The judgement includes two layers. The first layer screening adopts the prediction results
at the 95% confidence level. At this time, the coverage rate of the interval is highest, and
the average width of the interval is the widest. So, it is suitable for screening the most
obvious power-stealing behaviors of users, such as in the increasing voltage method and
increasing current method. The first layer of power-stealing identification mainly uses two
moments in the morning and evening (6:00–8:00 and 16:00–18:00). No matter what the
weather type is, the solar radiation at sunrise and sunset is relatively weak, so theoretically,
the power generation of the photovoltaic array is very small. However, for some users who
steal electricity, the photovoltaic output in these two periods will be significantly higher
than the actual output. Therefore, the photovoltaic power generation in these two periods
can be used to determine whether the user has the behavior of stealing power. If the user
is found to be three or more times outside the prediction interval in these two periods or
fails to fall within the prediction interval for more than five times in a day, it is directly
determined that the user is suspected of power stealing.

The second layer of screening is for users who cannot be determined in the first layer,
and the key is to calculate the deviation of the points that fall outside the prediction interval.
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To this end, a normalized average deviation (NAD) indicator is introduced. The expression
is as shown in Equations (9) and (10).

eNAD =
1

Ninterval

Ninterval

∑
i=1

γi, (9)

γi =



yi−Ui

1
Ninterval

Ninterval
∑

i=1
(Ui−Li)

yi > Ui

0 yi ∈ [Li, Ui]
Li−yi

1
Ninterval

Ninterval
∑

i=1
(Ui−Li)

yi < Li

, (10)

where e represents the deviation and yi represents the actual output value. The larger the
eNAD is, the farther the non-falling point is from the prediction interval, and a reasonable
upper limit of deviation is set by referring to the identification of experts and comparing the
specific samples of historical photovoltaic power-stealing users to screen out the suspected
power-stealing users. If the value of the eNAD is more than 20% on sunny and cloudy days
or more than 30% on rainy days, the user is suspected of power stealing. The second layer
of screening uses the prediction results at the 90% confidence level. Here, the average width
of the interval is slightly smaller than that at the 95% confidence level, which is suitable
for screening the less obvious power-stealing user behavior, such as in the photovoltaic
simulator method.

2.3.2. Judgment of Suspected Medium- and Long-Term Power Stealing

The identification of medium- and long-term photovoltaic power stealing is mainly on
a monthly scale. Due to the randomness and uncertainty of photovoltaic power generation,
only using the daily scale to identify power stealing is not comprehensive enough, so the
third layer of screening is carried out. The specific screening process is shown in Figure 3.
By counting the number of days with suspicion of power stealing selected by users in the
first two layers within a month, the identification result is given.
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Through these three layers of screening, the user’s degree of power stealing can be
determined: when the number of days that a PV user is suspected of power stealing in a
month is within the range of 1–5 days, it is determined that the user is suspected of mild
power stealing; when the number of days is within the range of 6–9 days, it is determined
that the user is suspected of moderate power stealing; when the number of days reaches
10 days, it is determined that the user is suspected of major power stealing. For users who
are suspected of mild or moderate power stealing, appropriate offline inspections can be
carried out to eliminate the deviation from the prediction interval caused by prediction
errors and the photovoltaic power generation loss problem. If the suspicion remains
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unchanged or aggravated in the next inspection cycle, inspectors can go directly to the
site to rectify the users. For users suspected of major stealing of power, inspectors can go
directly to the scene to conduct a comprehensive inspection to determine whether they had
stolen power. The overall power-stealing identification process is shown in Figure 4.
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3. Results and Discussion
3.1. Data Preprocessing

This paper uses the historical photovoltaic data from February 2018 to January 2019 in
a certain region in northwest China for simulation and selects the valid data for a total of
12 h during the day from 6:00 to 18:00. Eight users with high correlation of photovoltaic
output in this area were selected, and then four power-stealing users were constructed
according to the characteristics of common power-stealing methods to form the sample
data of this paper.

Before the simulation, the sample data was pre-processed, and the missing values in
the data were filled using piecewise linear interpolation. At the same time, considering
that the numerical ranges of different eigenvalues are different, the standard deviation
standardization method was used to process the data, and the processed data presented a
normal distribution with a mean value of 0 and a standard deviation of 1. The formula for
standard deviation standardization is shown in Equation (11), where: ximean is the mean
value of the original data samples, and xivar is the standard deviation of the original data
samples.

x′ij =
xij − ximean

xivar
. (11)

3.2. QRLSTM PV Interval Prediction Simulation

The pre-processed data was feature-constructed, and then divided into a training set
and a test set in a ratio of 4:1. Firstly, to improve the prediction accuracy, the historical data
were clustered into three types according to the weather conditions, using the FCM–Fréchet
clustering method mentioned in Section 2.3. Then, the QRLSTM prediction model was
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used to make interval predictions on three groups of similar-day data, the photovoltaic
output in the next 24 moments (2 days) was predicted, and three confidence levels of
85%, 90%, and 95% were selected for analysis. In order to analyze the performance of the
prediction method used in this paper, the prediction results were compared with those of
the Quantile Regression Neural Network (QRNN) model. The prediction results are shown
in Figures 5–7.
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It can be seen from Figures 5–7 that the QRLSTM method can better predict the
photovoltaic output. Compared with the prediction results of the QRNN method, the
prediction interval of the QRLSTM method could contain more real values and the width
of the interval was narrower, regardless of the type of the similar day.

In order to compare the two methods more intuitively, the evaluation indicators
of interval prediction are introduced: prediction interval coverage probability (PICP)
and prediction interval normalized average width (PINAW). Prediction interval coverage
probability, which refers to the probability that the true value falls within the prediction
interval, is used to assess the reliability of the prediction interval. Only when the width of
the prediction interval is narrower, and the coverage rate of the interval is higher does it
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mean that the prediction effect of the interval is better. The calculation formulas of the two
evaluation indicators are shown in Equations (12) and (13).

Iα
i =

[
Lα

i , Uα
i
]

ξα
i =

{
0 yi /∈ Iα

i
1 yi ∈ Iα

i

PICP = 1
Ninterval

Ninterval
∑

i=1
ξα

i

(i = 1, 2, · · · , Ninterval) , (12)

where Iα
i represents the i-th interval at a certain confidence level; Lα

i and Uα
i are, respectively,

the lower and upper bounds of the corresponding interval; and ξα
i indicates whether the

actual value yi is within the prediction interval—1 represents that it is in the interval, 0
represents it is not. Ninterval is the number of intervals. The probability that the actual value
yi falls within the interval should not be less than or close to the set confidence level, which
means that the prediction model is effective.

δα
i = Uα

i − Lα
i

PINAW = 1
Ninterval

Ninterval
∑

i=1
δα

i
, (13)

where δα
i is the width of the i-th interval. The smaller the PINAW index is, the smaller the

obtained prediction interval is.
Tables 1–3 show the comparison of the evaluation indicators of the two interval

prediction models on three similar days.

Table 1. Comparison of evaluation indicators on similar-day 1.

Confidence Levels Model PICP (%) PINAW (KW)

85%
QRLSTM 88.05 3.35

QRNN 86.49 4.57

90%
QRLSTM 95.18 3.76

QRNN 92.58 5.02

95%
QRLSTM 99.67 4.29

QRNN 96.43 5.63

Table 2. Comparison of evaluation indicators on similar-day 2.

Confidence Levels Model PICP (%) PINAW (KW)

85%
QRLSTM 86.05 4.71

QRNN 82.11 6.37

90%
QRLSTM 92.18 5.16

QRNN 89.58 6.94

95%
QRLSTM 96.67 5.78

QRNN 95.00 7.53

Table 3. Comparison of evaluation indicators on similar-day 3.

Confidence Levels Model PICP (%) PINAW (KW)

85%
QRLSTM 85.05 5.86

QRNN 80.11 8.37

90%
QRLSTM 88.18 6.43

QRNN 84.58 9.08

95%
QRLSTM 95.00 7.19

QRNN 88.43 9.83
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From Tables 1–3, it can be seen that on different similar days, with the increase
of confidence level, the prediction interval coverage probability will increase, and the
prediction interval normalized average width will also increase.

It can be seen from Table 1 that the interval coverage of the two methods exceeds the
corresponding confidence level on similar-day 1. When the confidence level is 95%, the
QRLSTM method can even achieve close to 100% coverage, and the average width of the
interval is also smaller than that of the QRNN method. At other confidence levels, it can
also be concluded that the prediction accuracy of the QRLSTM method is higher than that
of the QRNN method on similar-day 1.

It can be seen from Table 2 that at the 95% confidence level, the interval coverage rate
of QRLSTM is only about 95%, and full coverage of the interval is not achieved; at other
confidence levels, it is only slightly larger than the corresponding confidence level. For
the QRNN method, the interval coverage is even lower than the corresponding confidence
level. At the same time, the average width of the interval of the QRLSTM method is smaller
than that of the QRNN method at any confidence level. In summary, Table 2 shows that
the prediction effect of the QRLSTM method is better than that of the QRNN method
on similar-day 2. The QRLSTM method achieves a relatively high interval coverage in a
relatively narrow interval.

It can be seen from Table 3 that the prediction effects of the QRLSTM and QRNN
methods are not ideal on similar-day 3. The prediction effect of the QRNN method is
significantly reduced, and the coverage of each prediction interval cannot reach the corre-
sponding confidence level. However, the QRLSTM method can still achieve 95% coverage
at the 95% confidence level, and the coverage under other confidence levels can also remain
similar to the confidence level. Therefore, on similar-day 3, the prediction effect of the
QRLSTM method is better than that of the QRNN method.

To sum up, Tables 1–3 all reflect the excellent prediction effect of the QRLSTM method
numerically.

3.3. Simulation of PV Power-Stealing Identification Based on Interval Prediction

In Section 3.2, the good prediction performance of the QRLSTM interval prediction
model was introduced. In this section, the trained QRLSTM model will be used for interval
prediction, and then power-stealing identification will be completed based on the interval
prediction results.

User 1 was selected to be the benchmark user. The benchmark user must ensure the
accuracy of its power generation. If necessary, appropriate on-site inspection can be carried
out on the benchmark user. Only after it is confirmed that it meets the requirements of
power generation operation can it be established as the benchmark user. The meteorological
data of the benchmark user is input into the trained QRLSTM model for prediction to
obtain the prediction interval. The prediction interval and the power generation data of the
users to be identified are input variables in the photovoltaic power-stealing identification
process. According to the judgment standard and power-stealing identification process
formulated in Section 2.3, four constructed power-stealing users in turn are identified,
and the identification results are shown in Table 4. It can be seen from Table 4 that all the
constructed users can be effectively identified. The constructed users 1 and 2 are identified
in the first layer of screening, and the basis of identification is that 6 moments in one day
and 3 moments at 6:00–8:00 and 16:00–18:00 exceed the prediction interval. The constructed
users 3 and 4 have a more concealed way of power stealing and enter the second layer
screening, but still can be identified, with the eNAD of 22.6% and 27.1%. The judgment
results are in line with the actual situation, which can confirm the effectiveness of the
method proposed in this paper.
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Table 4. Identification Results of Constructed Power-Stealing Users.

Users Basis of Identification Identification Result

Constructed user 1 The first layer, exceeds time in one day,
H = 6 Suspected of power stealing

Constructed user 2 The first layer, exceeds time at 6:00–8:00
and 16:00–18:00, H = 3 Suspected of power stealing

Constructed user 3 The second layer, eNAD = 22.6% Suspected of power stealing
Constructed user 4 The second layer, eNAD = 27.1% Suspected of power stealing

By comparing the actual output value of other users with the falling situation of the
predicted interval, and then checking one by one according to the judgment indicators of
the three-layer screening, the final results are shown in Table 5. According to the monthly
total suspicion days, the degree of the user’s power-stealing can be identified. Users
2–7 are not suspected of power stealing, and user 8 is suspected of mild power stealing.
Constructed users 1 and 2 are suspected of major power stealing, while constructed users 3
and 4 are suspected of moderate power stealing. This method effectively completes the
identification and analysis of power stealing by photovoltaic users.

Table 5. Identification results of all users.

Users Monthly Total
Suspicion Days Identification Result

2 0 not suspected of power stealing
3 0 not suspected of power stealing
4 0 not suspected of power stealing
5 0 not suspected of power stealing
6 0 not suspected of power stealing
7 0 not suspected of power stealing
8 3 days suspected of mild power stealing

Constructed user 1 10 days suspected of major power stealing
Constructed user 2 13 days suspected of major power stealing
Constructed user 3 6 days suspected of moderate power stealing
Constructed user 4 8 days suspected of moderate power stealing

The recognition results of the proposed method are compared with those of the
method proposed in Reference [14], as shown in Table 6. Both of them can effectively
identify the power-stealing user, but the method proposed in this paper is more systematic
and comprehensive, and it can qualitatively analyze the severity of power stealing. For
PV User 7 and User 8, they are not screened in the method of Reference [14], but the final
judgment result has not been determined, which needs to be combined with the results of
the next cycle. As can be seen from Table 5, user 7 is not suspected of stealing power, which
reflects that the MIV-heuristic forward search method has some errors. User 8 is indeed a
mild power stealer, and the method in this paper can e effectively identified it within one
cycle, which is more timely than the method in Reference [14]. Moreover, the three-layer
screening structure can be used for more comprehensive identification, including short-
and medium-term identification.

Although the method proposed in this paper can identify photovoltaic power-stealing
users more accurately and comprehensively, there are still some limitations in this paper.
In the subsequent research, the identification accuracy of power stealing can be improved
by further optimization from the perspectives of identifying indicators of power stealing
and improving the accuracy of the photovoltaic output prediction model.
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Table 6. Comparison of identification results of two methods.

Users MIV-Heuristic Forward
Search Method in Reference [14]

Method Based on Similar-day Clustering
and QRLSTM Interval Prediction

2 not suspected of power stealing not suspected of power stealing
3 not suspected of power stealing not suspected of power stealing
4 not suspected of power stealing not suspected of power stealing
5 not suspected of power stealing not suspected of power stealing
6 not suspected of power stealing not suspected of power stealing
7 Suspected of power stealing or out of order not suspected of power stealing
8 Suspected of power stealing or out of order suspected of mild power stealing

Constructed user 1 suspected of power stealing suspected of major power stealing
Constructed user 2 suspected of power stealing suspected of major power stealing
Constructed user 3 suspected of power stealing suspected of moderate power stealing
Constructed user 4 suspected of power stealing suspected of moderate power stealing

4. Conclusions

Photovoltaic power stealing is a significant problem after photovoltaic grid-connected
operations, which is related to the safe and stable operation of power systems and national
interests. In this paper, a photovoltaic power generation interval prediction model based
on similar-day clustering and QRLSTM is proposed. Experiments show that under three
similar-day conditions, the prediction results of the QRLSTM model are better than that
of the QRNN model. On this basis, a three-layer filter structure based on a time scale is
used so as to identify the power-stealing users more comprehensively and accurately. In
addition, the data used in this paper are historical meteorological data and photovoltaic
user power data, which are easier to obtain than those used in other studies. Considering
the lack of data of actual users of power stealing, this paper analyzes the principle of
the typical means of photovoltaic power stealing and the data characteristics after power
stealing, artificially constructs the data of power stealing, and fully verifies the effectiveness
of the method proposed in this paper.
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