Hybrid Strategy to Improve the High-Dimensional Multi-Target Sparrow Search Algorithm and Its Application
Abstract
:1. Introduction
2. Sparrow Search Algorithm and High-Dimensional Multi-Objective Optimization Problem
2.1. Principle of Sparrow Search Algorithm
2.2. High-Dimensional Multi-Objective Optimization Problem
3. High-Dimensional Multi-Objective Sparrow Search Algorithm
3.1. Improved Reference Point Selection Strategy
3.2. Competitive Mechanism for Discoverer Position Update
3.3. Cauchy Mutation Arithmetic
3.4. Algorithm Process
Algorithm 1: MaOISSA |
Input: initialized population ; population size ; target number ; decision variable dimension ; current evolutionary algebra ; population’s maximum evolution algebra , constrained boundary and ; warning sparrow number ; warning value . Output: Pareto optimal frontier. |
(a) Initialized population and initial reference point ; (b) According to Formulas (7) and (8), calculate the threshold, initialized reference point , and the total number of individuals associated with the reference point = 0; (c) For t = 1: ; (d) Sort the population by non-domination, select the elite individual leader, and select the best individual and the worst individual from the results; (e) Calculate and judge the population scale factor ; (f) For (g) Update the discoverer’s location in the sparrow population according to Formula (9); (h) End for (i) For (j) Add Cauchy variation operator and update the follower’s position of sparrow population according to Formula (11); (k) End for (l) For (m) Update sparrow population location according to Formula (3); (n) End for (o) Form a population with the size of (p) Calculate the entropy of the population according to Formula (5) and ; (q) If (r) Delete reference points with the least number of associated individuals from ; (s) End if (t) ; (u) End for (v) Output the optimal solution. |
3.5. Time Complexity Analysis
4. Algorithm Performance Test
4.1. Algorithm Flow
4.2. Performance Indicators
4.2.1. Inverted Generation Distance (IGD) Index
4.2.2. Hypervolume Index
5. Experimental Results and Analysis
6. Case Analysis
6.1. Establishment of Objective Function
- (a)
- Investment in innovation resources
- (b)
- Innovation performance output
- (c)
- Industrial agglomeration degree
6.2. Optimization Model Solving
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xue, J.K.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Seyedali, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2015, 28, 673–687. [Google Scholar]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, S.; Chen, Q.; Wang, X. Comparative Study of Several New Swarm Intelligence Optimization Algorithms. Comput. Eng. Appl. 2020, 56, 1–12. [Google Scholar]
- Yang, X.S. A new metaheuristic bat-inspired algorithm. Comput. Knowl. Technol. 2010, 284, 65–74. [Google Scholar]
- Gad, A.G.; Sallam, K.M.; Chakrabortty, R.K.; Ryan, M.J.; Abohany, A.A. An improved binary sparrow search algorithm for feature selection in data classification. Neural Comput. Appl. 2022, 34, 15705–15752. [Google Scholar] [CrossRef]
- Zhang, Z.; He, R.; Yang, K. A bioinspired path planning approach for mobile robots based on improved sparrow search algorithm. Adv. Manuf. 2021, 10, 114–130. [Google Scholar] [CrossRef]
- Nie, F.; Wang, Y. Sparrow Search Algorithm Based on Adaptive t-Distribution and Random Walk. Electron. Sci. Technol. 2023, 1–7. [Google Scholar] [CrossRef]
- Hu, X.J.; Meng, B.M.; Li, P.; Ouyang, X.J.; Huang, S.P. Research and Application of Improved Sparrow Search Algorithm Based on Multi-Strategy. J. Chin. Comput. Syst. 2022, 1–10. Available online: http://kns.cnki.net/kcms/detail/21.1106.tp.20221018.0920.004.html (accessed on 7 March 2023).
- Li, D.; Wu, Y.; Zhu, C. Improved Sparrow Search Algorithm Based on A Variety of Improved Strategies. Comput. Sci. 2022, 49, 217–222. [Google Scholar]
- Tang, Y.; Li, C.; Li, S.; Cao, B.; Chen, C. A Fusion Crossover Mutation Sparrow Search Algorithm. Math. Probl. Eng. 2021, 2021, 9952606. [Google Scholar] [CrossRef]
- Ouyang, C.; Zhu, D.; Qiu, Y. Lens Learning Sparrow Search Algorithm. Math. Probl. Eng. 2021, 2021, 9935090. [Google Scholar] [CrossRef]
- Fu, H.; Liu, H. Improved sparrow search algorithm with multi-strategy integration and its application. Control. Decis. 2022, 37, 87–96. [Google Scholar] [CrossRef]
- Kong, F.; Song, J.; Yang, Z. A daily carbon emission prediction model combining two-stage feature selection and optimized extreme learning machine. Environ. Sci. Pollut. Res. 2022, 29, 87983–87997. [Google Scholar] [CrossRef]
- Wen, Z.Y.; Xie, J.; Xie, G.; Xu, X.Y. Multi-objective sparrow search algorithm based on new crowding distance. Comput. Eng. Appl. 2021, 57, 102–109. [Google Scholar]
- Wu, W.; Tian, L.; Wang, Z.; Zhang, Y.; Wu, J.; Gui, F. Novel multi-objective sparrow optimization algorithm with improved non-dominated ranking. Appl. Res. Comput. 2022, 39, 2012–2019. [Google Scholar] [CrossRef]
- Farina, M.; Amato, P. On the optimal solution definition for many-criteria optimization problems. In Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society, New Orleans, LA, USA, 27–29 June 2002; pp. 232–238. [Google Scholar]
- Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2001; pp. 28–55. [Google Scholar]
- Geng, H.T.; Dai, Z.B.; Wang, T.L.; Xu, K. Improved NSGA-III Algorithm Based on Reference Point Selection Strategy. Pattern Recognit. Artif. Intell. 2020, 33, 191–201. [Google Scholar]
- Yang, W. Research on Many-objective Particle Swarm Optimization Algorithm. Ph.D. Thesis, Northwest University, Xi’an, China, 2020. [Google Scholar] [CrossRef]
- Han, M.; He, Y.; Zheng, D. Reference-point-based particle swarm optimization algorithm for many-objective optimization. Control. Decis. 2017, 32, 607–612. [Google Scholar] [CrossRef]
- Cai, X.J.; Hu, Z.M.; Zhang, Z.X.; Wang, Q.; Cui, Z.H.; Zhang, W.S. Multi-UAV coordinated path planning based on many-objective optimization. Sci. Sin. Inform. 2021, 51, 985–996. (In Chinese) [Google Scholar] [CrossRef]
- Yang, W.; Chen, L.; Wang, Y.; Zhang, M. Many-objective particle swarm optimization algorithm for fitness ranking. J. Xidian Univ. 2021, 48, 78–84. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, X.; Cheng, R.; Qiu, J.; Jin, Y. A competitive mechanism based multi-objective particle swarm optimizer with fast convergence. Inf. Sci. 2018, 427, 63–76. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A. A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Sierra, M.; Coello, C.C. Multi-objective particleswarm optimizers: A survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2012, 2, 287–308. [Google Scholar]
- Li, K.; Deb, K.; Zhang, Q.; Kwong, S. An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 2014, 19, 694–716. [Google Scholar] [CrossRef]
- Deb, K.; Thiele, L.; Laumanns, M.; Zitzler, E. Scalable Test Problems for Evolutionary Multi-Objective Optimization; Springer: London, UK, 2005. [Google Scholar]
- Cheng, R.; Li, M.Q.; Tian, Y.; Zhang, X.; Yang, S.; Jin, Y.; Yao, X. A Benchmark Test Suite for Evolutionary Many-Objective Optimization. Complex Intell. Syst. 2017, 3, 67–81. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, X.; Wang, C.; Jin, Y. An evolutionary algorithm for large-scale sparse multiobjective optimization problems. IEEE Trans. Evol. Comput. 2020, 24, 380–393. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Zhou, Y.; Chen, Z. An Evolution Path Based Reproduction Operator for Many-Objective Optimization. IEEE Trans. Evol. Comput. 2017, 23, 29–43. [Google Scholar] [CrossRef]
- Zhou, C.; Dai, G.; Wang, M.; Li, X. Indicator and Reference Points Co-Guided Evolutionary Algorithm for Many-Objective Optimization Problems. Knowl. Based Syst. 2018, 140, 50–63. [Google Scholar]
M | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
p | ||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
2 | 3 | 6 | 10 | 15 | 21 | 28 | 36 | 45 | 55 | |
3 | 4 | 10 | 20 | 35 | 56 | 84 | 120 | 165 | 220 | |
4 | 5 | 15 | 35 | 70 | 126 | 210 | 330 | 495 | 715 | |
5 | 6 | 21 | 56 | 126 | 252 | 462 | 792 | 1287 | 2002 | |
6 | 7 | 28 | 84 | 210 | 462 | 924 | 1716 | 3003 | 5005 | |
7 | 8 | 36 | 120 | 330 | 792 | 1716 | 3432 | 6435 | 11,440 | |
8 | 9 | 45 | 165 | 495 | 1287 | 3003 | 6435 | 12,870 | 24,310 | |
9 | 10 | 55 | 220 | 715 | 2002 | 5005 | 11,440 | 24,310 | 48,620 | |
10 | 11 | 66 | 286 | 1001 | 3003 | 8008 | 19,448 | 43,758 | 92,378 |
Characteristic | Problem |
---|---|
Linear Pareto frontier | DTLZ1, SMOP3 |
Concave Pareto front | DTLZ2-6, MaF2, MaF4 |
Convex Pareto frontier | MaF3, MaF5 |
Hybrid frontier | MaF7 |
Multimode | DTLZ1, DTLZ3, MaF3, MaF4, MaF7, SMOP3 |
Problem | M | D | CMOPSO | NSGAIII | SPEAE/R | SMPSO | MaOISSA |
---|---|---|---|---|---|---|---|
DTLZ1 | 5 | 20 | 1.5355 × 10+2 (2.16 × 10+1) − | 6.1949 × 10+0 (2.23 × 10+0) = | 8.4207 × 10+0 (3.55 × 10+0) − | 1.4025 × 10+2 (6.76 × 10+1) − | 5.8102 × 10+0 (2.68 × 10+0) + |
DTLZ2 | 4 | 13 | 1.6753 × 10−1 (6.61 × 10−3) − | 1.4032 × 10−1 (1.37 × 10−5) − | 1.4498 × 10−1 (2.02 × 10−3) − | 3.8239 × 10−1 (4.40 × 10−2) − | 1.2362 × 10−1 (1.36 × 10−3) + |
DTLZ3 | 4 | 13 | 1.3917 × 10+2 (2.86 × 10+1) − | 1.2793 × 10+0 (1.08 × 10+0) = | 4.0254 × 10+0 (1.67 × 10+0) − | 1.5461 × 10+1 (2.01 × 10+1) − | 1.2553 × 10+0 (1.10 × 10+0) + |
DTLZ4 | 4 | 13 | 1.9280 × 10−1 (1.35 × 10−2) = | 2.6811 × 10−1 (1.59 × 10−1) + | 1.4599 × 10−1 (2.73 × 10−3) = | 3.7316 × 10−1 (3.48 × 10−2) = | 2.7557 × 10−1 (1.61 × 10−1) − |
DTLZ5 | 4 | 13 | 1.1479 × 10−1 (2.33 × 10−2) − | 5.5092 × 10−2 (1.41 × 10−2) − | 1.6755 × 10−1 (4.71 × 10−2) − | 7.2698 × 10−2 (2.27 × 10−2) − | 4.2965 × 10−2 (1.02 × 10−2) + |
DTLZ6 | 4 | 13 | 1.3460 × 10+0 (8.52 × 10−1) − | 1.0311 × 10−1 (3.91 × 10−2) + | 2.0997 × 10−1 (7.44 × 10−2) − | 2.5911 × 10+0 (1.12 × 10+0) − | 1.5857 × 10−1 (9.57 × 10−2) − |
MaF2 | 5 | 20 | 1.4812 × 10−1 (6.41 × 10−3) − | 1.4463 × 10−1 (5.84 × 10−3) − | 1.5543 × 10−1 (2.37 × 10−3) − | 1.6306 × 10−1 (5.15 × 10−3) − | 1.3384 × 10−1 (3.59 × 10−3) + |
MaF3 | 5 | 20 | 1.1606 × 10+6 (6.80 × 10+5) − | 5.7684 × 10+2 (4.90 × 10+2) = | 3.7808 × 10+3 (4.61 × 10+3) − | 1.4137 × 10+5 (1.06 × 10+5) − | 5.2688 × 10+2 (4.35 × 10+2) + |
MaF4 | 5 | 20 | 7.5265 × 10+3 (1.39 × 10+3) − | 2.1965 × 10+2 (1.11 × 10+2) − | 3.3508 × 10+2 (1.58 × 10+2) − | 7.7206 × 10+2 (7.74 × 10+2) − | 1.5868 × 10+2 (8.53 × 10+1) + |
MaF5 | 5 | 20 | 4.9650 × 10+0 (5.87 × 10−1) − | 3.0733 × 10+0 (1.32 × 10+0) − | 2.4431 × 10+0 (3.35 × 10−2) + | 6.1773 × 10+0 (7.56 × 10−1) − | 2.9255 × 10+0 (1.10 × 10+0) − |
MaF7 | 5 | 20 | 6.6403 × 10−1 (7.46 × 10−2) − | 3.8894 × 10−1 (2.15 × 10−2) − | 5.0488 × 10−1 (1.60 × 10−2) − | 7.0573 × 10−1 (1.34 × 10−1) − | 3.5604 × 10−1 (1.10 × 10−2) + |
SMOP3 | 5 | 20 | 2.8987 × 10+0 (1.05 × 10−1) − | 1.4187 × 10+0 (3.18 × 10−3) − | 1.4241 × 10+0 (7.34 × 10−3) − | 2.6776 × 10+0 (9.47 × 10−2) − | 1.3525 × 10+0 (7.71 × 10−2) + |
+/−/= | 0/11/1 | 2/7/3 | 1/10/1 | 0/11/1 | 9/3/0 |
Problem | M | D | CMOPSO | NSGAIII | SPEAE/R | SMPSO | MaOISSA |
---|---|---|---|---|---|---|---|
DTLZ1 | 5 | 20 | 0.0000 × 10+0 (0.00 × 10+0) = | 0.0000 × 10+0 (0.00 × 10+0) = | 0.0000 × 10+0 (0.00 × 10+0) = | 0.0000 × 10+0 (0.00 × 10+0) = | 0.0000 × 10+0 (0.00 × 10+0) = |
DTLZ2 | 4 | 13 | 5.8341 × 10−1 (1.45 × 10−2) − | 6.9112 × 10−1 (5.29 × 10−4) − | 6.8638 × 10−1 (2.49 × 10−3) − | 2.0194 × 10−1 (4.40 × 10−2) − | 6.9849 × 10−1 (1.60 × 10−3) + |
DTLZ3 | 4 | 13 | 0.0000 × 10+0 (0.00 × 10+0) − | 1.7215 × 10−1 (2.36 × 10−1) = | 0.0000 × 10+0 (0.00 × 10+0) − | 4.9317 × 10−2 (7.02 × 10−2) = | 2.1667 × 10−1 (2.92 × 10−1) + |
DTLZ4 | 4 | 13 | 5.5090 × 10−1 (3.50 × 10−2) − | 6.2507 × 10−1 (8.22 × 10−2) − | 6.8375 × 10−1 (2.88 × 10−3) = | 4.8318 × 10−1 (4.39 × 10−2) − | 6.2713 × 10−1 (8.31 × 10−2) + |
DTLZ5 | 4 | 13 | 7.7229 × 10−2 (2.00 × 10−2) − | 1.3475 × 10−1 (3.14 × 10−3) − | 9.5340 × 10−2 (1.85 × 10−2) − | 1.3717 × 10−1 (2.95 × 10−3)= | 1.3806 × 10−1 (3.07 × 10−3) + |
DTLZ6 | 4 | 13 | 2.2421 × 10−2 (4.40 × 10−2) − | 1.2581 × 10−1 (1.03 × 10−2) + | 7.7745 × 10−2 (3.00 × 10−2) − | 4.0200 × 10−3 (2.17 × 10−2) − | 1.1446 × 10−1 (1.65 × 10−2) − |
MaF2 | 5 | 20 | 1.0783 × 10−1 (7.07 × 10−3) − | 1.5186 × 10−1 (4.38 × 10−3) − | 1.3081 × 10−1 (3.16 × 10−3) − | 9.8532 × 10−2 (6.34 × 10−3) − | 1.6640 × 10−1 (2.94 × 10−3) + |
MaF3 | 5 | 20 | 0.0000 × 10+0 (0.00 × 10+0) = | 0.0000 × 10+0 (0.00 × 10+0) = | 0.0000 × 10+0 (0.00 × 10+0) = | 0.0000 × 10+0 (0.00 × 10+0) = | 0.0000 × 10+0 (0.00 × 10+0) + |
MaF4 | 5 | 20 | 0.0000 × 10+0 (0.00 × 10+0) = | 0.0000 × 10+0 (0.00 × 10+0) = | 0.0000 × 10+0 (0.00 × 10+0) = | 3.7082 × 10−3 (8.66 × 10−3) + | 0.0000 × 10+0 (0.00 × 10+0) − |
MaF5 | 5 | 20 | 1.8146 × 10−1 (1.04 × 10−1) − | 7.3079 × 10−1 (6.76 × 10−2) − | 7.6085 × 10−1 (3.97 × 10−3) + | 1.6672 × 10−1 (7.74 × 10−2) − | 7.5769 × 10−1 (5.38 × 10−2) − |
MaF7 | 5 | 20 | 8.1061 × 10−2 (1.65 × 10−2) − | 2.2874 × 10−1 (5.70 × 10−3) − | 2.2162 × 10−1 (3.41 × 10−3) − | 6.4835 × 10−2 (6.20 × 10−2) − | 2.3392 × 10−1 (3.73 × 10−3) + |
SMOP3 | 5 | 20 | 0.0000 × 10+0 (0.00 × 10+0) − | 1.9189 × 10−3 (8.86 × 10−5) − | 1.7169 × 10−3 (2.04 × 10−4) − | 0.0000 × 10+0 (0.00 × 10+0) − | 2.2147 × 10−3 (1.25 × 10−3) + |
+/−/= | 0/11/1 | 2/7/3 | 0/9/3 | 1/7/4 | 8/3/1 |
Problem | M | D | CMOPSO | NSGAIII | SPEAR | SMPSO | MaOISSA |
---|---|---|---|---|---|---|---|
SMOP3 | 3 | 20 | 1.3217 × 10+0 (6.91 × 10−2) − | 1.1998 × 10+0 (9.97 × 10−3) + | 1.2044 × 10+0 (1.03 × 10−2) + | 2.3338 × 10+0 (1.20 × 10−1) − | 1.2158 × 10+0 (1.10 × 10−2) − |
SMOP3 | 5 | 20 | 2.8987 × 10+0 (1.05 × 10−1) − | 1.4187 × 10+0 (3.18 × 10−3) − | 1.4241 × 10+0 (7.34 × 10−3) − | 2.6776 × 10+0 (9.47 × 10−2) − | 1.3525 × 10+0 (7.71 × 10−2) + |
SMOP3 | 8 | 20 | 3.3209 × 10+0 (1.48 × 10−1) − | 2.3996 × 10+0 (8.08 × 10−2) + | 2.9469 × 10+0 (1.54 × 10−1) − | 2.9915 × 10+0 (1.53 × 10−1) = | 2.2820 × 10+0 (1.51 × 10−1) + |
SMOP3 | 13 | 20 | 2.7189 × 10+0 (2.06 × 10−1) − | 1.9253 × 10+0 (2.56 × 10−1) − | 2.7637 × 10+0 (2.48 × 10−1) − | 2.3267 × 10+0 (1.83 × 10−1) − | 1.2894 × 10+0 (1.17 × 10−1) + |
Primary Indicator | Secondary Indicator | Weight | Unit |
---|---|---|---|
Innovation resource input C1 | Experimental development expenditure of R&D funds for industrial enterprises above the scale C11 | 0.2074 | million |
Internal expenditure of R&D funds for defense science and technology industry C12 | 0.1646 | thousand | |
Internal expenditure on R&D funding for research and development institutions C13 | 0.1956 | million | |
Internal expenditure on R&D funds of higher education institutions C14 | 0.4324 | million | |
Innovation performance output C2 | Amount of valid invention patents for organizations of research and development C21 | 0.2509 | Pieces |
Amount of valid invention patents at colleges and universities C22 | 0.2297 | Pieces | |
Above the scale, the number of legitimate innovation patents held by industrial businesses C23 | 0.3232 | Pieces | |
Number of defense invention patents granted C24 | 0.1961 | Pieces | |
Industrial agglomeration degree C3 | Proportion of the technology output of military-civilian integration innovation demonstration zones in the national output C31 | 0.1158 | % |
Construction degree of national defense science and technology innovation platform C32 | 0.1193 | % |
No. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 1,478,445.40 | 580,714.234 | 1,282,345.78 | 2322.246 | 13,000 | 23,513.48 | 25,000 | 6895.171 | 0.7 | 0.517 |
2 | 1,531,095.58 | 593,114.814 | 1,269,482.86 | 2110 | 12,999.96 | 25,000 | 20,772.08 | 2322.246 | 0.75 | 0.441 |
3 | 1,541,209.22 | 596,982.586 | 1,295,022.20 | 2110 | 2347 | 8985.67 | 5449 | 2110 | 0.69 | 0.56 |
No. | |||
---|---|---|---|
1 | 363,655.7245 | 16,763 | 69.77 |
2 | 363,758.5397 | 10,075.7138 | 67.41 |
3 | 370,019.2439 | 3588.47 | 60.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, L.; Zhang, W.; Ye, Y.; Li, X. Hybrid Strategy to Improve the High-Dimensional Multi-Target Sparrow Search Algorithm and Its Application. Appl. Sci. 2023, 13, 3589. https://doi.org/10.3390/app13063589
Ren L, Zhang W, Ye Y, Li X. Hybrid Strategy to Improve the High-Dimensional Multi-Target Sparrow Search Algorithm and Its Application. Applied Sciences. 2023; 13(6):3589. https://doi.org/10.3390/app13063589
Chicago/Turabian StyleRen, Lu, Wenyu Zhang, Yunrui Ye, and Xinru Li. 2023. "Hybrid Strategy to Improve the High-Dimensional Multi-Target Sparrow Search Algorithm and Its Application" Applied Sciences 13, no. 6: 3589. https://doi.org/10.3390/app13063589
APA StyleRen, L., Zhang, W., Ye, Y., & Li, X. (2023). Hybrid Strategy to Improve the High-Dimensional Multi-Target Sparrow Search Algorithm and Its Application. Applied Sciences, 13(6), 3589. https://doi.org/10.3390/app13063589