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Abstract: Fourier ptychographic microscopy is a new microscopic computational imaging technology.
A series of low-resolution intensity images are collected by a Fourier ptychographic microscopy
system, and high-resolution intensity and phase images are reconstructed from the collected low-
resolution images by a reconstruction algorithm. It is a kind of microscopy that can achieve both a
large field of view and high resolution. Here in this article, a Fourier ptychographic reconstruction
method applied to a self-training physical model is proposed. The SwinIR network in the field of
super-resolution is introduced into the reconstruction method for the first time. The input of the
SwinIR physical model is modified to a two-channel input, and a data set is established to train the
network. Finally, the results of high-quality Fourier stack microscopic reconstruction are realized.
The SwinIR network is used as the physical model, and the network hyperparameters and processes
such as the loss function and optimizer of the custom network are reconstructed. The experimental
results show that by using multiple different types of data sets, the two evaluation index values of the
proposed method perform best, and the image reconstruction quality is the best after model training.
Two different evaluation indexes are used to quantitatively analyze the reconstruction results through
numerical results. The reconstruction results of the fine-tuning data set with some real captured
images are qualitatively analyzed from the visual effect. The results show that the proposed method
is effective, the network model is stable and feasible, the image reconstruction is realized in a short
time, and the reconstruction effect is good.

Keywords: fourier ptychographic microscopy; reconstruction; SwinIR; self-training physical model

1. Introduction

The microscope is an optical instrument consisting of single or multiple lenses. It is
an important part of the production, life, and research fields such as clinical medicine and
industrial inspection. In 2013, Zheng Guo ‘an et al. proposed a new imaging technique
called Fourier ptychographic microscopy (FPM) [1]. FPM is a computational imaging tech-
nology with a large field of view and high resolution. Fourier ptychographic microscopy
combines synthetic aperture [2–11], phase retrieval [12–23], optimization theory [24–36],
and other concepts to break many limitations of traditional microscopes. Different from
the traditional microscope, Fourier ptychographic imaging is a series of low-resolution
intensity images collected by Fourier ptychographic microscopy system. Combined with
a reconstruction algorithm, high-resolution intensity and phase images are reconstructed
from the collected low-resolution images. The imaging process is as follows: the samples
are illuminated successively with different LED incident angles, a set of low-resolution
(LR) images with different spatial spectra are captured accordingly, and then these spectral
sub-apertures obtained from the low-resolution images are spliced together in the Fourier
domain to reconstruct the entire high-resolution (HR) spatial spectrum. In short, only
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the low-resolution intensity image corresponding to the high-resolution spatial spectrum
sub-aperture image is obtained, and the low-resolution intensity image is used to restore
the high-resolution spatial spectrum.

The traditional G-S (Gerchberg–Saxton) method [37] generates phase information by
changing the phase gradient caused by oblique incident illumination, thereby achieving
synthetic aperture and reconstructing high-resolution complex amplitude images. The
iterative update process of this reconstruction method uses the traditional gradient descent
method to obtain the global optimal solution. Since FPM technology was proposed in 2013,
researchers have proposed many improvements to FPM reconstruction algorithms, such as
Gauss–Newton [38], Wirtinger flow [39] (Wirtinger flow optimization), adaptive step [40]
(A-S, adaptive step-size), and other optimization algorithms. However, the traditional
reconstruction algorithm of Fourier ptychographic microscopy requires more iterative
updates, which cannot escape the idea of gradient descent, and the reconstruction effect is
poor. Researchers have focused their research on neural networks and deep learning. By
using neural network algorithms, the computing power of computational imaging can be
improved. For example, the neural network modeling method proposed by Jiang et al. [41]
uses back propagation as a tool to solve the global optimal solution; the deep learning
method [42–45] has the advantages of high processing performance and fast operation
speed. It can be used in Fourier laminated microscopic computational imaging technology
to solve the problem of image reconstruction quality.

The author proposed an FPM reconstruction algorithm based on the SwinIR physical
model [46] at the 2022 ICAITA International Conference. The algorithm completes the
reconstruction by screening the appropriate network parameters and using the trained
weights. At the same time, fast and high-quality target image reconstruction is realized.
The results show that it has strong robustness to noise, fast reconstruction speed, and high
reconstruction quality.

At present, deep learning and machine learning have developed rapidly, and have
been studied in many aspects such as machine crown segmentation [47], music [48], life
prediction [49], and image classification [50]. The main research of this paper is based
on transfer learning to introduce the network with a better imaging effect in the field of
super-resolution into Fourier laminated microscopic reconstruction, which improves the
reconstruction speed and quality, and enhances the robustness of real images and ideal
images with noise. At the same time, Zuo et al. [51] proposed a new non-interference
method for quantitative phase imaging. By obtaining quantitative phase information only
through intensity measurement, the best spatial resolution, higher signal-to-noise ratio, and
better image quality can be achieved. Michael Kovalev et al. [52] proposed a simple method
to reconstruct the spatial parameters of laser beams based on the intensity transfer equation.
A single CMOS camera is used to register the cross-sectional light intensity distribution in
multiple planes.

In this article, we use the SwinIR network [53] in the field of super-resolution as the
main network of Fourier stack microscopic reconstruction. However, unlike SwinIR, in
order to ensure that our FPM data set can adapt to the SwinIR model, we customize the
training process and modify its input into a two-channel input. The end-to-end process-
ing is realized by the Fourier stack microscopic imaging algorithm (STPM-FPM) of the
self-training physical model, and the data set is established to train the network. Finally,
the results of high-quality Fourier microscopic reconstruction are realized. Simulation
experiments show that the self-training SwinIR network structure is superior to the tradi-
tional algorithm in terms of reconstruction quality and speed, and STPM-FPM can use less
low-resolution images for image reconstruction, which greatly improves the time resolution
of FPM imaging. It also has better robustness than other algorithms for external interference
factors such as noise.
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2. Principle of FPM
2.1. Fourier Ptychographic Microscopy Device

The biggest difference between the Fourier ptychographic microscopy device and the
traditional microscope is that the Fourier ptychographic microscope uses an LED array
illumination light source instead of the microscope light source, that is, reposed on the
single hardware modification of the traditional bright field microscope to achieve the goal
of a large field of view and high resolution. This imaging mode is implemented in the
same optical settings, no moving parts, only need to select the appropriate LED to open.
In addition, this experimental device is equipped with a DMK 33UX264 camera (3.45 um,
2448 × 2048), which is used to digitally image the sample. In addition, the microscope uses
the RX50 series upright bright field microscope for optical microscopy imaging, which can
be directly viewed, and can also collect actual real pictures through the camera. Figure 1
shows the hardware structure of the Fourier ptychographic microscopy.
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Figure 1. Fourier Ptychographic Microscopy Device Diagram. (a) Real FPM System; (b) FPM
System Diagram.

FPM consists of an eyepiece, optical path selection rod, Y-axis mobile handwheel,
mirror group, loose and tight adjustment handwheel, adjustment light wheel, collecting
light microscope, X-axis mobile handwheel, mechanical platform, a DMK 33UX264 camera,
an LED lamp holder, an LED lamp plate (20 × 20), and other components. The function of
the LED lamp board bracket is to clamp the LED lamp board and facilitate the adjustment
of the LED height. The function of the LED light board is to analyze the instructions sent
by the Matlab program through the serial port, light the LED lights at a specific position,
and realize the collection of FPM data by successively lighting the LED lights at a specific
position. The built-in RGB three-color LED lamp beads can be lit in turn by three RGB
colors. The black and white camera is used to collect the image and synthesize the color
image of the sample.

2.2. Fourier Ptychographic Microscopy Imaging Process

In the FPM system, the LED array with multi-angle illumination is used as the il-
lumination light of the system. This section analyzes the transfer process of the sample
information of the FPM system under more general illumination, as shown in Figure 2.
Suppose the incident light from the Em(x0, y0) LED:

Em(x0, y0) = exp[i2π(µmx0 + vmy0)] (1)
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where (µ, v) denotes that the illumination wave vector is determined by the illumination
angle of the incident light; (x0, y0) refers to the LED light source position.

µm =
n sin ϕm

x
λ

, vm =
n sin ϕm

y

λ
(2)

where n is the refractive index of the medium in the illumination path.
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For the LED array structure in Figure 2, the illumination angle of each LED is calculated
as follows:

sin ϕm
x =

xcenter
0 −xm√

(xcenter
0 −xm)

2
+(ycenter

0 −ym)
2
+L2

,

sin ϕm
y =

ycenter
0 −ym√

(xcenter
0 −xm)

2
+(ycenter

0 −ym)
2
+L2

(3)

In Equation (3), (xcenter
0 ,ycenter

0 ) represents the center coordinates of the unanalyzed
area on the object surface, (xm,ym) represents the coordinates of the mth LED, and L
represents the distance from the LED array to the sample. By combining with Formula (2),
the spectral information transmitted to the focal plane behind the objective lens can be
obtained as follows:

Um
0
(

fx, fy, 0
)

P
(

fx, fy
)
= F{O0(x0, y0, 0)Em(x0, y0)}P

(
fx, fy

)
= U0

(
fx − µm, fy − vm, 0

)
P
(

fx, fy
)

= U0
(

fx, fy, 0
)

P
(

fx + µm, fy + vm) (4)

where F represents Fourier transform.
Finally, the expression of the low-resolution image acquired by the FPM system can

be obtained:
Im(xi, yi) = ||F−1{U0

(
fx, fy, 0

)
P
(

fx + µm, fy + vm)}||2 (5)

It can be seen that in the case of oblique incident illumination, the spectrum of the
sample has shifted as a whole, which can be equivalent to the interception of the pupil
function of the system at various locations of the sample spectrum, and the acquisition of
information exceeding the original passband is realized. At another angle, the illumination
of different LEDs in the FPM system can be equivalent to the pupil function (sub-aperture)
at different positions on the sample spectrum. A series of low-resolution images with
different information are taken by the camera in turn and iterated in the frequency domain
to update the corresponding spectrum information in different sub-apertures, expand the
sample spectrum range, and recover the high-frequency complex amplitude information
limited by the original objective resolution, which is also the basis for FPM technology to
realize the images of super-resolution reconstruction.

Since the zero-frequency information related to the background light is located in
the center of the spectrum, we divide the captured image into a bright field image and a
dark field image. The way to distinguish these is to detect whether the spectrum passing
through the system contains zero-frequency information. It is expressed by the formula:

NAill = n
√

sin2 ϕx + sin2 ϕy (6)
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Among them, NAill is the lighting NA. If NAill ≤ NAobj, the image is a bright field
image; if NAill > NAobj, the image is a dark field image. Figure 3 shows the imaging
diagram of bright field and dark field images.
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For the collected bright field image and dark field image, the gray mean value is not
an order of magnitude at all. Therefore, for the weak signal acquisition of the dark field
image, it is often needful to consider the dynamic range of the camera used in the FPM
system, so as to prevent the signal from being approximated to 0 when it is too weak. In
the process of collecting images, in order to ensure the integrity of the dark field image
information, a 16 bit camera or LED array is often used to increase the exposure time.

2.3. Fourier Ptychographic Reconstruction Process

The traditional FPM reconstruction algorithm updates the spectrum of the sample by
alternating iterations in the spatial and frequency domains. Taking the most traditional
G-S method as an example, the reconstruction process is based on the gradient descent
algorithm to minimize the loss function. From the FPM imaging process in the previous
section, we can obtain the complex amplitude corresponding to each LED array illumination
Bash transmitted to the image plane, Ul

est(x,y), and l = 1,2, . . . . . . N, N is the number of
LED arrays. The reconstruction process is as follows: the loss function is constructed by
combining the low-resolution light intensity image actually collected by the FPM system,
and the loss function converges to the minimum value through iterative updates. The
high-resolution complex amplitude reconstruction process of the whole sample is regarded
as a nonlinear minimization problem based on the loss function. The traditional FPM
technology often adopts an iterative update strategy based on the minimization of mean
squared error (MSE). The expression of the loss function can be expressed as follows:

Loss =
NLED

∑
l

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣Ul

est(x, y)
∣∣∣− √Il(x, y)

∣∣∣∣∣∣∣∣2 + τR(O(x0, y0))

= ∑NLED
l

∣∣∣∣∣
∣∣∣∣∣∣∣∣F−1

{
P
(
kx, ky

)
·Õ
(
kx − µl , ky − vl

)}∣∣∣− √Il(x, y)
∣∣∣∣∣∣∣∣2 + τR(O(x0, y0))

(7)
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Here, Ul
est(x, y) represents the low-resolution complex amplitude obtained under the

illumination of the first LED array. Il(x,y) represents the low-resolution light intensity
image actually collected corresponding to the lth LED illumination; P

(
kx, ky

)
represents

the pupil function of the system; O(x0 , y0) represents the complex amplitude function
representing the high resolution of the sample; F−1represents inverse Fourier transform;
Õ
(
kx , ky

)
represents the high-resolution spectrum; and (µl , vl) represents the illumination

wave vector represented by the lth LED array. Considering that the nonlinear effect of the
model will lead to overfitting of the reconstruction results, a regular term (µl , vl) is added
to the reconstructed complex amplitude. τ is the regularization weight.

Taking the relatively simple first-order gradient descent algorithm and the lth LED ar-
ray illumination as an example, using the nonlinear optimization method to solve the high-
resolution complex amplitude in Equation (7), the first derivative of the high-resolution
complex amplitude spectrum to be solved is conducted for Equation (7):

GÕ(kx ,ky)
= P∗

(
kx, ky

)
·F
{

Ul
est(x,y)
|Ul

est(x,y)|

[∣∣∣Ul
est(x, y)

∣∣∣−√Il(x, y)
]}

(8)

By minimizing the loss function through the traditional gradient descent method, the
formula for solving the sample spectrum of FPM imaging optimization is updated:

Õnew
(
kx − µl , ky − vl

)
= Õ

(
kx − µl , ky − vl

)
+ α

P∗(kx ,ky)∣∣∣∣∣∣P (kx−ky)||2max

F
{

Ul
est(x,y)
|Ul

est(x,y)|

√
Il(x, y)−Ul

est(x, y)
}

(9)

where α is the step length of updating the sample spectrum, and Ul
est(x,y)
|Ul

est(x,y)|

√
Il(x, y) is

the replacement process of spatial information in Formula (9), that is, the estimated low-
resolution complex amplitude is updated by using the actual collected light intensity image.
The participating pupil function means that, for each LED, only a part of the spectrum is
updated, which is equivalent to the constraint of the update range introduced by the pupil
function in the frequency domain.

This algorithm replaces and projects the collected low-resolution images and pupil
functions as spatial and frequency domain constraints, so this method is also called the AP
algorithm (alternating projection). When α = 1, the iterative update process of the above
formula is the G-S algorithm commonly used in traditional FPM.

In each iteration, the frequency domain constraint is updated once. Therefore, due
to the updated frequency domain constraints, the spectral radius reconstructed by FPM
technology only depends on the numerical aperture of the objective lens NAobj and the

maximum illumination of the LED array NA (NAmax
ill ):

NAobj+NAmax
ill

λ . Therefore, the recon-
structed complex amplitude resolution is:

εrec =
λ

2
(

NAobj + NAmax
ill

) (10)

The traditional G-S algorithm only considers the low-pass nature of the pupil function
and cannot deal with the aberration problem. Therefore, the process of spectrum updates
and the update process of the pupil function of the system must be synchronized, as shown
in Equation (11):

Pnew
(
kx, ky

)
= P

(
kx, ky

)
+β

Õ
∗
(kx−µl ,ky−vl)∣∣∣∣∣∣Õ (kx−µl ,ky−vl)||2max

·F
{

Ul
est(x,y)
|Ul

est(x,y)|

√
Il(x, y)−Ul

est(x, y)
}

(11)

In Formula (11), β is the step size for updating the pupil function. Combined with
Equation (9), the FPM optimization algorithm with aberration correction can be obtained.
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It is worth noting that β < α. The above update formulas are several commonly used
aberration-free reconstruction algorithms (EPRY).

2.4. Evaluation Indicators

FPM technology is a computational imaging method, and its reconstruction results
directly reflect the quality of the reconstruction network or algorithm. In the field of im-
ages, the evaluation of image quality can generally be divided into two aspects, subjective
evaluation and objective evaluation. Subjective evaluation means that people observe the
reconstruction results with the naked eye and give intuitive qualitative evaluation through
vision. This evaluation method is easily affected by subjective factors. Although it is simple
and fast, it cannot be quantitatively and accurately evaluated. It is also easily affected
by individual differences and has poor operability. Therefore, in the actual judgment of
reconstruction quality, objective evaluation is often used to judge the advantages and disad-
vantages of different reconstruction algorithms, and different algorithms are quantitatively
compared. This summary introduces two objective evaluation methods commonly used in
Fourier ptychographic microscopy reconstruction.

2.4.1. Peak Signal-to-Noise Ratio

Peak Signal-to-Noise Rate (PSNR) is the most normally and extensively used objective
evaluation index. It is an image quality evaluation grounded on the error between the
corresponding pixels, that is, grounded on the sensitive error. PSNR is an engineering term
for the ratio of the maximum possible power of a signal to the destructive noise ratio that
affects its representation accuracy. Because many signals have a very wide dynamic range,
PSNR is often expressed in logarithmic decibels (dB). In the field of image evaluation, its
mathematical definition is:

MSE = mean
(
(I1 − I2)

2
)

,
PSNR = −10 ∗ log(MSE)

(12)

Among them, MSE is mean squared error (MSE), which is also a common loss function
which represents the original image, represents the reconstructed image, and is the same
size. The value of PSNR is generally 0–100 dB. The larger the value of PSNR, the smaller
the distortion and the better the image quality.

2.4.2. Structural Similarity

Although traditional evaluation methods such as PSNR can objectively measure the
difference between the original image and the reconstructed image, there is often a certain
gap between these evaluation indicators and the subjective evaluation of people, and it is
easy for it to appear that the image evaluation index with good subjective quality is low.
Structure similarity (SSIM) is a full-reference image quality evaluation index. It measures
the similarity of images from three aspects: brightness, contrast, and structure, which is
more in line with a human subjective evaluation index. The input of SSIM is two images,
one is an uncompressed undistorted image (grand truth), and the other is a restored image.
The calculation is as follows:

SSIM = [l(I1, I2)]
α[c(I1, I2)]

β[s(I1, I2)]
γ,

l(I1, I2) =
2µ1µ2+C1
µ2

1+µ2
2+C1

,

c(I1, I2) =
2σ1σ2+C2
σ2

1+σ2
2+C2

s(I1, I2) =
σ12+C3

σ1σ2+C3
#(13)

(13)

Among them is the brightness comparison of two images; it is the contrast comparison
of two images; and it is the structure comparison of two images. α, β, and γ are weight
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parameters, α, β, γ > 0; µ1 and µ2 are the average values of the two images; σ1 and σ2 are
the standard deviation of two images. σ12 is the covariance of two images. and C1, C2, and
C3 are constants used to maintain the stability of the calculation. In practical application,
α = β = γ = 1 and c3 = C2

2 , and the updated SSIM expression is:

SSIM =
(2µ1µ2 + C1)(2σ12 + C2)(

µ2
1 + µ2

2 + C1
)(

σ2
1 + σ2

2 + C2
) (14)

where C1 = (0.01 ∗ L)2, C2 = (0.03 ∗ L)2, and L is the dynamic range of pixel value. The
value of SSIM is generally 0–1. The larger the value of SSIM, the smaller the gap between
the output image and the undistorted image. When the two images are consistent, SSIM = 1.
At the same time, SSIM has symmetry, that is, SSIM(x, y) = SSIM(y, x).

SSIM can also use the sliding window to divide the image into blocks. Let the total
number of blocks be N. Considering the influence of window shape on the block, the mean,
variance, and covariance of each window are calculated by Gaussian weighting. Then,
the structural similarity SSIM of the corresponding block is calculated. Finally, using the
average value as the structural similarity measure of the two images, the average structural
similarity is MSSIM.

MSSIM(X, Y) =
1
N

N

∑
K=1

SSIM(xk, yk) (15)

3. Self-Training SwinIR Network Structure
3.1. Overall Network Structure

Considering the inverse problem of recovering vectorized image a from measurements:

b = S{a} + ε (16)

Among them, S is a forward measurement operator, and ε represents the noise gener-
ated by imaging. For image reconstruction applications suitable for deep learning meth-
ods such as image denoising and super-resolution direction, the forward model S is un-
known [3]. At present, the deep learning method for such problems is to train a DNN as a
reverse model. The training is performed in a supervised manner, so the data sets need to
have (a, b) pairs of images.

For many applications of computational imaging, such as FPM, the forward model S
is partially or completely known. Therefore, the forward imaging process is implemented
using open source machine learning libraries such as TensorFlow and PyTorch. A method
known as physics-based learning allows the measurement b to estimate the image a by
means of unsupervised back propagation. Since the results of each image reconstruction
can be estimated independently, the training set is not required for training. Based on the
method of physics learning, Jiang et al. [41] introduced FPM and SUN et al. [43] improved
it. The physics-based learning method combines the interpretability of the model and
the automatic differentiation of the network. In addition, it does not require a separate
reconstruction model to reconstruct the output image.

This paper introduces the SwinIR network that has performed well in the field of
super-resolution recently and uses SwinIR as a physical model to reconstruct our data.
Figure 4 shows the structure diagram of the SwinIR physical model. The SwinIR physical
model includes a shallow feature extraction module, a deep feature extraction module, and
a reconstruction module [2]. It is worth mentioning that the feature map of the image after
the deep feature extraction module and the feature map obtained by the shallow feature
extraction module are cascaded. With feature fusion, the final output to the reconstruction
module, the reconstruction result is obtained [2].
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3.2. Subnetwork Structure

In the SwinIR network, the original image is pre-processed and collectively referred
to as a dual-channel image, which is transmitted to the SwinIR network as intensity and
phase, respectively. The reconstruction result is obtained after the shallow feature extraction
module, the deep feature extraction module, and the reconstruction module.

3.2.1. Shallow Feature Extraction Module

This module mainly uses the convolution layer to extract the features of the image in
order to retain the low frequency information. Given a low-resolution image ILQ as input:

ILQ ∈ RH∗W∗Cin (17)

H is the height of the image, W is the width of the image, and Cin is the number of
input channels of the image. Therefore, the extracted features F0 are:

F0 = HSF
(

ILQ
)
,

F0 ∈ RH∗W∗C
(18)

HSF(·) is a 3 × 3 convolutional layer, and C is the feature channel number.

3.2.2. Deep Feature Extraction Module

The module mainly reconstructs the image loss high-frequency features based on the
residual SwinTransformer block (RSTB). Each RSTB block uses multiple Swin Transformer
layers to implement a local attention mechanism and cross-window interaction mecha-
nism (Cross-Windows Interaction), and a 3 × 3 convolution layer is placed at the end for
feature enhancement.

The deep feature extraction module of the SwinIR network mainly consists of six
RSTB (Residual Swin Transformer Block) blocks. Each RSTB block uses multiple Swin
Transformer layers (STL) for the local attention mechanism and cross-window interaction.
At the same time, a residual connection is added to each RSTB module. The purpose of
adding residual connections is to enable different levels of features to be fused together to
enhance the details of the image lost in one-layer feature extraction. The structure of the
RSTB is shown in Figure 5.
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Figure 5. Residual Swin Transformer Block (RSTB).

In RSTB, there are six STL modules and a 3 × 3 convolution layer. The STL module
is based on the traditional standard multi-head attention mechanism, but different from
the STL module, the local window attention and cyclic shift are added. The local window
attention is used to reduce the computational burden caused by the global attention of the
traditional transformer, and the calculation of attention is limited to each window, which is
still the original multi-head self-attention in each window. Generally, a 3 × 3 convolution
layer is used to extract local adjacent information to reduce the computational cost of
the network.

Two residual connections are used in the STL layer, and the nonlinear problem is
solved by a multi-layer perceptron (MLP). The LayerNorm layer is added before MSA
(Multi-head Self-Attention) and MLP to ensure the stability of the data feature distribution,
which can use a larger learning rate and a faster convergence speed. At the same time,
the LayerNorm layer also has a certain anti-overfitting effect, which makes the training
process more stable and avoids the data falling into the saturation area of the activation
function to reduce the problem of gradient disappearance. The structure of the STL is
shown in Figure 6.
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Extracting deep features FDF from shallow features F0 occurs block by block.

FDF = HDF(F0),

FDF ∈ RH∗W∗C
(19)

HDF (·) is a deep feature extraction module that contains six Residual Swin Trans-
former blocks (RSTB) and a 3 × 3 convolutional layer.

The RSTB module includes a Swin Transformer layer (STL) and a convolutional layer.
Given the input features of the ith module, the role of the STL layer is to extract intermediate
features Fi,1, Fi,2 . . . . . . Fi,L, namely:

Fi,j = HSTLi.j

(
Fi,j − 1

)
, j = 1, 2, . . . . . . , L (20)

HSTLi,j(·) is the jth STL layer in the ith RSTB.



Appl. Sci. 2023, 13, 3590 11 of 24

The output of the RSTB module is:

Fi,out = HCONVi (Fi,L) + Fi,0 (21)

HCONVi (·) is the convolution layer in the ith RSTB.

3.2.3. Feature Fusion

In the whole network, the extracted low-frequency information and high-frequency
information are connected by the residual method for feature fusion, as shown in Figure 7.
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After the deep feature extraction, the obtained feature map may lose some edge details.
Therefore, the feature fusion with the residual as the main structure can fully collect and
supplement the complete image information, so as to obtain a better input.

3.2.4. Reconstruction Module

In this module, the PixelShuffle convolutional layer is used to upsample the input fea-
tures to increase the image size. The generated feature map passes through the reconstruc-
tion module to obtain the output of the network, thereby completing the reconstruction.

4. Experimental Results and Analysis
4.1. Construction of Data Sets
4.1.1. Dual-Channel Synthetic Input

The data set used in this paper is a series of low-resolution images collected by the
FPM system, synthesized in the Fourier domain, converted into dual-channel data through
the inverse Fourier transform, and then used as the input of the network. The whole
process of synthesizing double inputs can be expressed by the following formula:

On(k) = F
{√

Inc(r)
}

H(k + kn) + On−1(k)[1− H(k + kn)] (22)

o(r) = F−1{ONLED (k)
}

(23)

Here, n is the sequence number of the image, n = 1,2,..., NLED. This operation can be
regarded as a half-iteration process of the traditional FPM reconstruction method. O(r) is
a complex number, so its intensity and phase can be transported to the SwinIR physical
model as a channel. The advantage of using the above method is that after processing the
data, the number of channels is greatly reduced, and the space size is increased, which can
be sampled and compared at the front end of the super-resolution network, and it contains
rich and effective high-frequency information. By using the synthesized dual-channel data,
we can make our reconstruction better, which is equivalent to adding a residual structure
to the neural network structure. The schematic diagram using a synthetic input is shown
in Figure 8.
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4.1.2. Construction of Real Data Set

For the field of image super-resolution, the most common method of establishing
a data set is to collect a large number of images with better accuracy, and downsample
these images to obtain the corresponding true values and inputs. In Fourier ptychographic
microscopy, the number of low-resolution images is closely related to the size of the LED
array under the FPM system, but the original data are at least hundreds of images. If
these images correspond to the neural network, there will be a multi-dimensional tensor
with a certain number of channels, and the convolutional layer in the neural network
needs to extract the information of the image from the input. These channels will greatly
increase the number of network parameters, resulting in a too large network size and
reconstruction failure.

At present, there are two ways to build FPM data sets. The first one is to directly
collect the low-resolution image of FPM to generate the input of the whole network model,
and then use the high-resolution complex amplitude obtained by the traditional FPM
reconstruction algorithm as the output. This method of directly collecting low-resolution
images and using them as input is simple and intuitive, and can cover any error encountered
in actual imaging. However, this method has a series of shortcomings: (1) The way to
obtain the true value is obtained by the traditional FPM reconstruction algorithm. However,
the traditional reconstruction algorithm cannot escape the idea of the gradient descent
algorithm in iterative updates, which has great limitations. (2) The number of data sets to
be collected is too large to obtain such a large data set. The second method is to directly
use the simulation image and generate the simulation results through the Fourier stack
microscopic imaging model. In order to avoid the first method of collecting data sets, this
paper uses the second method to construct FPM data sets.

We directly select the image as the truth value, and then generate the input corre-
sponding to the true value through the Fourier ptychographic microscopy imaging process.
Firstly, 400 high-resolution images are collected, and then 1600 sets of complex amplitudes
are obtained by random combinations of phase and amplitude as the truth value of the
whole network. Using these complex amplitudes, the input of the network is obtained
by Fourier ptychographic microscopy imaging and the synthesis of dual-channel images.
The pre-processed image is randomly cropped to obtain 25,600 sets of input data and true
values. The process is shown in Figure 9.
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4.1.3. Experimental Data Preparation 
The method based on deep learning needs to build data sets for network training and 
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4.1.3. Experimental Data Preparation

The method based on deep learning needs to build data sets for network training and
testing. In this paper, 3.1 data sets are used to build the network. The low-resolution images
collected by FPM are still preprocessed and synthesized into dual-channel images, which
are sent to the network as intensity and phase, respectively. In the experiment, the FPM
system has an objective lens with a numerical aperture (NA) of 0.13, and a 2560 × 2560 pixel
(6.5 um pixel size) CMOS camera is used to collect and record light intensity images. The
planar array is used as a 13 × 13 programmable control light source element LED, and the
illumination wavelength is 505 nm to provide illumination at 100 mm below the sample.

In this paper, the data sets are divided into a training set and a test set. The training
set is used to train the neural network. The network calculates the error between the truth
value and the network output by calculating the value of the loss function, and updates the
hyperparameters of the network by back propagation and gradient descent. The test set is
used to quantitatively evaluate the effect of network training during the training process.
In order to prevent overfitting, the process of back propagation is turned off when using
the test set.

In addition, in order to enhance the ability of the reconstructed network model to
process real collected data, a data set with a mixture of real collected data and simulated
data sets is built. In the mixed data set, the original low-resolution images of 50 groups
of samples were first collected by a Fourier ptychographic microscopy, and the results
reconstructed by the traditional phase recovery method were used as the true values. For
speeding up the training of the network and achieving better training results, the images
in the mixed data set are cut into fixed-size image blocks before network training, and
more training data samples are obtained by reducing the cutting step size. After the above
operation, 500 sets of low-resolution complex amplitude images and the corresponding
truth values were finally obtained, in which the ratio of training set to test set was 9:1. The
physical model training flow chart is shown in Figure 10.

4.2. The Selection of Network Hyperparameters under Noise Data

In the field of deep learning, how to find the parameters that make the loss function
value as small as possible is the main problem. The process of problem solving is called
optimization. Unfortunately, this problem is difficult to solve, because the parameter space
is very complex and the minimum value cannot be obtained by mathematical formula, and
in the deep neural network, the size of parameters is very huge, resulting in the optimization
problem being more complex. It is worth noting that the objectives of optimization and
deep learning are different. The objective function of the optimization algorithm is usually
a loss function based on the training data set. Its goal is to reduce the training error, and
the purpose of deep learning is to reduce the generalization error.
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So far, there are many ways to find the optimal parameters. For example, the stochastic
gradient descent (SGD) method uses the gradient of the parameters, updates the parame-
ters along the gradient direction, and repeats this step to gradually approach the optimal
parameters. Small-batch stochastic gradient descent uses a small batch of randomly uni-
formly sampled samples to calculate the gradient. Usually, the time consumption of the
small-batch stochastic gradient in each iteration period is between that of gradient descent
and stochastic gradient descent. The momentum method uses the idea of the average
exponentially weighted movement. It makes a weighted average of the gradient of the past
time step, and the weight decays exponentially according to the time step. The momentum
method makes the independent variable update of the adjacent time step more consistent in
the direction.RMSProp adjusts the learning rate by using a small batch of random gradients
to exponentially weighted moving averages of the square of the elements. The AdaDelta
algorithm replaces the learning rate of the RMSProp algorithm by using the exponential
weighted average moving term of the square of the independent variable update amount
to achieve better results in finding the optimal parameters. Based on basis of RMSProp
algorithm, Adam algorithm also makes exponential weighted moving average for small
batch stochastic gradient, and uses deviation correction to find the optimal parameters
faster and more accurately.

In the custom training SwinIR code, we use AdamW as the training optimizer. The
AdamW optimizer directly adds the gradient of the regularization term to the back propa-
gation, eliminating the step of manually adding the regularization term to the loss, which
improves the efficiency and time of the program. The initial learning rate is set to 2 × 10−3,
and the multi-step attenuation strategy is used to update the learning rate by 0.1 times
in the case of 30, 50, and 80 iterations. At the same time, in order to present the optimal
reconstruction results, the selection of loss function is very important during training.

For making the model fit the training data during the training process to minimize
the error, in the process of selecting the loss functions, we refer to the current loss function
that has a better effect on Fourier ptychographic microscopic reconstruction, and select L2-
loss, SSIM, and combined loss function L2-loss and SSIM as our comparison loss function.
L2-loss as a loss function is currently the most popular choice for FPM reconstruction
networks based on neural networks and deep learning directions. It can prevent overfitting
and improve the generalization capability of the model. The L2-loss loss function is also
called the square loss function, L2 loss, mean squared error (MSE), secondary loss, etc. Its
mathematical expression is as follows:

MSE = mean
(
(I1 − I2)

2
)

(24)
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I1 represents the original image, I2 represents the reconstructed image, and the size of
the I1 and I2 images is the same. In addition, the basic principle of SSIM as a loss function
refers to the evaluation index in Section 2.4, and the loss value is calculated from three
aspects: brightness, contrast, and structure.

For verifying the impact of different loss functions on the reconstructed results, the
three loss functions are used as the loss functions of the network respectively, and the
Gaussian noise data set with a mean value of 0 and a standard deviation of 3 × 10−4 is
trained. Visual reconstruction results, as shown in Figure 11, are the reconstruction results
of different kinds of loss functions under the same noise data set. Table 1 shows the indexes
of reconstruction results of varied loss functions. From the comparison of visual effects
and numerical results, it can be seen that L2-loss is optimal as the main loss function of
the network.
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Table 1. Evaluation index of different loss function reconstruction results.

L2-Loss
PNSR/SSIM

SSIM
PSNR/SSIM

L2-Loss + SSIM
PSNR/SSIM

Amplitude 36.000/0.970 32.666/0.950 34.121/0.955
Phase 23.414/0.963 13.336/0.803 21.988/0.899

The epoch loss results of different loss functions on the same training set are shown
in Figures 12–14. Among them, the abscissa is the number of the epoch, and the ordinate
epoch loss represents that there are multiple iterations in an epoch. The loss values of each
iteration in an epoch are added. When an epoch training is completed, the accumulated
loss value is divided by the number of iterations, and finally the epoch loss value of an
epoch is obtained. In order to show the gap between epoch loss, the ordinate of the right
image is set to “log”.
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It can be seen from the results that whether L2-loss, SSIM, or SSIM and L2-loss are used
as the loss function, the convergence speed and epoch loss value of L2-loss are the lowest.
At the same time, in order to verify the correctness of using L2-loss as a loss function, we
train it on data sets with a mean value of 0 and standard deviation of 2× 10 −4 and a mean
value of 0 and standard deviation of 1× 10 −4. The training epoch and epoch loss curves
are shown in Figure 15.
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It can be seen from Figure 15 that, on different data sets, L2-loss has the fastest
convergence speed and the smallest epoch loss value as a loss function, and also has a
stronger performance than the other two loss functions. Therefore, in the self-training
SwinIR network, L2-loss will be used in the next experiment.

4.3. Comparison and Analysis of Reconstruction Methods under Different Noise
4.3.1. Comparison Results and Analysis of Reconstruction Methods under the SAME Noise

The true value image used in this experiment is shown in Figure 16, Including the first
behavior amplitude image and the second behavior phase image. The images used in this
paper are 192 × 192.
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Considering the process of real reconstruction of the Fourier ptychographic microscopy
imaging system, the noise effect that may occur in the actual acquisition process is sim-
ulated, because the noise source in the actual acquisition is mainly from the intensity
fluctuation of the LED component, and Gaussian noise is caused by sensor noise caused
by different brightness light sources in the process of image acquisition. Therefore, in the
subsequent experiments, we use Gaussian noise with different standard deviations as the
main interference condition of our experiment, based on which we verify the robustness
and anti-interference of the experimental method in this paper.

Under the data set with Gaussian noise, the Fourier ptychographic microscopy recon-
struction results are obtained by using the STPM-FPM method in this paper. The traditional
phase recovery G-S method, A-S method, Jiang et al.’s method based on neural network
reconstruction, and Zhang et al.’s method based on deep convolutional neural network are
used as comparison algorithms to reconstruct the data set with Gaussian noise. Three sets
of images are randomly selected from the test set. The reconstruction results of different
reconstruction algorithms under the same noise (3× 10−4) are shown in Figure 17.

At the same time, PSNR and SSIM are used to compare the advantages and disadvan-
tages of each reconstruction algorithm. The reconstructed results in Figure 17 are used as
the evaluation index images of each method to obtain the evaluation index values. The
results are shown in Table 2.

Table 2. Algorithm comparison results of multiple sets of images under 3× 10−4 noise.

Number of Classes Method
Amplitude Phase

PSNR (dB) SSIM PSNR (dB) SSIM

1

G-S 25.538 0.739 7.090 0.186
A-S 25.616 0.742 7.117 0.189

Zhang 23.807 0.935 21.255 0.900
Jiang 25.126 0.812 19.467 0.886

STPM-FPM 36.000 0.970 23.414 0.963



Appl. Sci. 2023, 13, 3590 18 of 24

Table 2. Cont.

Number of Classes Method
Amplitude Phase

PSNR (dB) SSIM PSNR (dB) SSIM

2

G-S 24.111 0.764 18.379 0.435
A-S 24.097 0.766 18.439 0.439

Zhang 22.590 0.939 9.200 0.529
Jiang 27.202 0.800 28.273 0.698

STPM-FPM 32.761 0.958 30.922 0.955

3

G-S 23.945 0.718 7.015 0.178
A-S 23.985 0.718 7.013 0.181

Zhang 22.101 0.936 22.957 0.922
Jiang 17.888 0.753 12.654 0.679

STPM-FPM 34.524 0.974 24.887 0.957
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Figure 17. Reconstruction results of the same reconstruction algorithm under the same noise (3× 10−4).

From Figure 17 and Table 2, it can be seen that the Fourier ptychographic microscopy
reconstruction method using the self-training physical model has a good reconstruction
effect and reconstruction index value. The reconstructed image results have higher clarity
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than the phase reconstruction results of G-S and A-S methods. Compared with the methods
of Jiang et al. and Zhang et al., the experimental results of this paper have no obvious
artifacts, and contain more texture details and have reduced error. In Table 2, the result of
the red part is the best, and the blue part is the second best. For the reconstruction index
value, the proposed method is better than the other four methods, while Zhang’s method
has sub-optimal performance.

4.3.2. Comparison and Analysis of Reconstruction Methods under Different Noises

In the process of real reconstruction, the interference encountered in the experiment is
different, so we simulate the reconstruction results and reconstruction indexes of the same
set of images under different noise conditions. Among them, the noise used is 1× 10−4,
2× 10−4, and 3× 10−4 respectively. Figure 18 shows the reconstruction results of the same
set of images under different noise conditions. Table 3 is the evaluation index value of the
same set of images under varied noise conditions.
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Table 3. Reconstruction index of the same group of images under different noise conditions.

Noise Size Method
Amplitude Phase

PSNR (dB) SSIM PSNR (dB) SSIM

1 × 10−4

G-S 27.978 0.794 12.052 0.228
A-S 27.970 0.790 12.046 0.227

Zhang 21.067 0.845 23.605 0.936
Jiang 18.209 0.767 19.909 0.854

STPM-FPM 33.861 0.971 26.093 0.951

2 × 10−4

G-S 24.492 0.650 12.295 0.246
A-S 24.468 0.647 12.280 0.246

Zhang 21.083 0.849 23.534 0.935
Jiang 18.209 0.767 19.909 0.854

STPM-FPM 34.649 0.965 26.787 0.947

3 × 10−4

G-S 22.693 0.562 12.497 0.262
A-S 22.683 0.562 12.490 0.261

Zhang 20.334 0.838 24.100 0.933
Jiang 18.209 0.767 19.909 0.854

STPM-FPM 36.949 0.982 25.889 0.943

According to Figure 18, STPM-FPM is visually superior to the other three reconstruc-
tion methods in this paper. Moreover, the STPM-FPM method has strong robustness to
different noise data sets, which proves the generalization of the network and improves the
quality of reconstruction.

Table 3 uses the method of the deep learning network to analyze the objective eval-
uation results and study the noise resistance of various methods. From the quantitative
analysis results in Table 3, it can be clearly seen that the anti-noise performance of STPM-
FPM is obviously due to other methods. The result is consistent with that in Figure 18.

4.3.3. Time Comparison Results of Reconstruction Methods

This paper adopts a network structure based on deep learning, so there is no need for
iterative updates and less reconstruction time. At the same time, we compare the time of
the STPM-FPM reconstruction image. Among them, the methods used are still based on
the traditional methods, G-S, A-S, Jiang et al. based on neural networks, and Zhang et al.
based on deep learning, as shown in Table 4.

Table 4. Time comparison of different reconstruction algorithms.

Reconstruction Method Iteration Times Reconstruction Time

G-S 50 2.170 s

A-S 50 2.744 s

Jiang et al. 20 33.503 s

Zhang et al. 20 204.304 s

STPM-FPM 0 0.139 s

4.3.4. Real Image Analysis

For verifying the advantages and disadvantages of the reconstructed results of the
STPM-FPM method in this paper under the data collected on real devices, this section
uses a fine-tuned data set with small samples to test the reconstruction results, and the
reconstruction results are compared and analyzed. Four real collected intensity images of
blood cell smear, penis tissue section, alveolar tissue section and testis tissue section were
selected as reconstructed contrast images. The traditional reconstruction methods G-S, A-S,
Jiang et al.’s method based on neural networks, and Zhang et al.’s method based on deep
convolutional neural network are selected for comparison and analysis. In the process of
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using Fourier ptychographic microscopy to collect real data, only the low-resolution image
of the original image sample can be collected, and there is no true value of the intensity
image and the phase image. Therefore, this experiment can only be qualitatively evaluated
by comparing with the reconstruction results of the four methods.

As shown in Figure 19, according to the results, under the premise of adding some
real collected data, the experimental method in this paper still has better reconstruction
performance and visual effect. Compared with the traditional algorithm, the STPM-FPM
algorithm has a more obvious effect of removing artifacts. At the same time, it has better
reconstruction result clarity from the naked eye. The background error of the reconstructed
image is relatively less, and there are clearer texture details, which proves the generalization
and robustness of STPM-FPM in the real acquisition data set. Thanks to the end-to-end
processing based on the deep learning method and the acceleration of the image processor,
the operation rate of the proposed method is higher than that of the other three comparison
algorithms, which is helpful for the practical application of Fourier ptychographic imaging
under high temporal resolution.
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5. Conclusions

According to this article, we propose a self-training physical model of the Fourier
ptychographic microscopy reconstruction method (STPM-FPM). The reconstruction method
trains the weight of the physical model with a custom training code, and then completes
the reconstruction. When training the network, the effects of different loss functions on
the data set collected by the Fourier ptychographic microscopy were compared, and the
loss function suitable for this network was selected. In the experimental stage, the validity,
generalization, and robustness of the reconstruction method in this paper were verified
by using the same noise data set, a different noise data set, and a fine-tuning data set with
some real data. The classical reconstruction algorithms G-S, A-S, Jiang et al.’s method
based on neural networks, and Zhang et al.’s method based on deep convolutional neural
networks were compared. The reconstruction quality of the reconstruction algorithm was
proved through this article, and two evaluation indexes were used to quantitatively and
qualitatively analyze the reconstruction results from different perspectives.

The method used in this paper is the FPM reconstruction method of a self-training
physical model, which effectively solves the decisive factors of different network models for
reconstruction quality. At the same time, the idea of transfer learning and deep learning can
fully improve the quality of reconstructed images. Compared with other traditional and
neural network-based reconstruction algorithms, this paper has a more obvious denoising
effect on noise. However, the deep learning reconstruction method is affected by its own
reconstruction network, such as the adjustment of hyperparameters, the selection of loss
function, the structure of the network, and other factors. Therefore, how to improve the
stability of the deep learning reconstruction method remains to be studied. At the same
time, the cycle time of training based on the deep learning method is long, and how to
lighten the model is one of the key research directions for the future.
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