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Abstract: The behaviour of seismically damaged steel joints with reduced beam section (RBS) at
elevated temperatures has not been widely investigated yet. Therefore, the study summarized in
this article aimed to (i) analyse the response of RBS joints at high temperatures and (ii) investigate
the influence of plastic damage, due to cyclic loading, on the fire performance of the joints. A set
of RBS joints with rib stiffeners on the both lower and upper beam flanges was designed according
to European standards and the following parameters were considered: (i) location of the joint (i.e.,
internal or external joint) and (ii) reduction in the beam flexural resistance (i.e., 65% or 80% of the
beam plastic moment). The mechanical response of these joints was simulated by means of finite
element models (FEM). The accuracy and effectiveness of the adopted modelling assumptions to
mimic the seismic response of the joints were validated against experimental results available from
the existing literature. The numerical results highlight that under cyclic loading, all investigated
joints exhibit ductile behaviour, allowing the concentration of the plastic deformation within the
reduced segment of the beam. The designed reduction in the beam flexural resistance influences the
joint fire performance, being impaired in the cases with lower flexural resistance. In contrast, the
imposed cyclic pre-damage does not appreciably affect the fire resistance of the investigated joints.

Keywords: steel joint; cyclic behaviour; elevated temperature; reduced beam section; fire; finite
element analysis

1. Introduction

Fire after a major earthquake is an extreme event that has occurred many times with
devasting effects [1,2]. Steel structures are generally sensitive to fire due to the intrinsic
limited thermal inertia, and their fire resistance can be significantly reduced if seismically
damaged, as also shown by [1–3]. In fact, steel moment-resisting frames (MRFs) can
dramatically lose their lateral rigidity and resistance following major earthquakes if plastic
hinges form in the columns. Nowadays, capacity design rules are widely used to enforce the
plastic deformations at the ends of the beams of MRFs, provided that the beam-to-column
joints guarantee adequate ductility [4–6]. Many types of beam-to-column joints have been
studied, verified and used in many applications [7]. Among them, dog-bone or reduced
beam section (RBS) moment-resisting joints are brilliant solutions to decrease the demand
on the column and optimize the design of the structures and their seismic response [8–11].
Therefore, RBS have been largely used to guarantee strong column–weak beam behaviour,
and many studies have been carried out to investigate their seismic behaviour [12–15]. In
order to enhance the capacity of the welded connection and the ductility of the RBS joints,
rib stiffeners have been also studied by the authors of [15,16], who verified the enhanced
seismic performance of such stiffened RBS joints. Lee and Kim [17] also studied the seismic
response of RBS joints with bolted web attachment and provided effective design criteria
to promote a ductile response under seismic loading. Sofias and Pachoumis [18] tested two
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RBS joints with extended endplate beam-to-column connection and European profiles, thus
demonstrating the effectiveness of RBS application with European connections and steel
profiles. Mousavi et al. [19] proposed an optimization design procedure of RBS joints using
genetic algorithms. More recently, Onuralp and Bakır [20] performed a numerical study
to investigate the seismic performance of novel replaceable RBS joints for steel moment-
resisting frames. The concept of replaceable RBS joints also allows considering such detail
as an alternative type of flexural damper for the mitigation of seismic effects in buildings
that can be combined with other passive systems [21,22].

As it can be easily recognized, a large number of studies have been carried out to
investigate the seismic performance and design of RBS joints. However, the response of
seismically damaged RBS joints subjected to elevated temperature (e.g., the case of fire after
an earthquake) has not been widely investigated, especially in the framework of Eurocode
8-compliant steel MRFs. Therefore, parametric finite element (FE) simulations have been
carried to investigate such an open issue. In particular, a building archetype with perimetric
steel MRFs was designed with welded and stiffened RBS joints according to Eurocodes and
considered as reference case study. Both external and internal beam-to-column assemblies
were sub-structured from the reference archetype. In particular, since no corner moment
resisting bay was adopted, the external joints have a moment-resisting joint on one side
of the column and a gravity load-resisting joint on the other side. Flush end-plate bolted
connection was used for the gravity load-resisting joint. Different levels of seismic damage
were imposed and three fire scenarios were considered.

This study is summarised in the present paper, which is organized as follows:
(1) the first part describes the reference archetype and the considered loading scenar-
ios; (2) modelling assumptions and their validation are given in the second part; (3) the
results of FE simulations are summarised and discussed in the third part.

2. The Reference Archetype and the Considered Scenarios
2.1. Design Assumptions

The considered building archetype is a perimetric three-storey steel structure designed
according to current structural Eurocodes [23–26]. The building has a rectangular plan
with five bays in the long side and three bays in the short side (see Figure 1a), and all spans
have the same length equal to 7 m; the interstorey height is equal to 3.5 m with the only
exception of the first storey, whose height is 4.5 m.

Perimetric moment-resisting frames (MRFs) were placed in the longitudinal direction,
while X-concentrically bracing in the transverse direction (see Figure 1a). Figure 1b shows
the vertical layout of the longitudinal side of the building, where it can be recognized that
MRFs are located in the internal bays, and the outer bays are solely devoted to resist the
gravity loads.

Dead and live loads were assumed to be equal to 5 kN/m2 and 2 kN/m2, respectively.
Peak ground acceleration (PGA) equal to 0.35 g, soil type C, and behaviour factor equal to
6.5 were also considered. The design seismic effects were evaluated by means of response
spectrum analysis, also including the torsional effects. The interstorey drift limit at the
damage limitation state was assumed to be equal to 0.75% of the interstorey height. The
EC8 rules of the hierarchy of resistances were adopted considering as plastic zone the
reduced beam sections, which were designed in accordance with EN1998-3 [25]. More
details about the designed joints are given in Section 2.2. S355 steel grade was used for all
members, and the profiles of columns and beams of the designed MRFs are summarized in
Table 1.
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Figure 1. Moment-resisting frame (MRF) and concentrically braced frame (CBF) layout and main
geometrical features of the building archetype (a) and Perimetral MRF (b) view.

Table 1. Cross section of the investigated moment-resisting frame.

Storey
Gravity Load Frame

(Outer Bays) External MRF Bays Internal MRF Bay

Column Beam Column Beam Column Beam

I HEB300 IPE400 HEB 500 IPE500 HEB550 IPE500
II HEB300 IPE400 HEB 500 IPE500 HEB550 IPE500
III HEB300 IPE400 HEB 500 IPE500 HEB550 IPE500

2.2. Details of the Designed Beam-to-Column Joints

Figure 2a shows the details of the designed beam-to-column joints that were sub-
structured from the reference building. The external joint of the MRF consists of a welded
RBS connection on one side of the column (i.e., the connection of the MRF) and a flush end-
plate bolted connection on the other side (i.e., the connection of the gravity load-resisting
bay). The internal joint comprises two welded RBS connections per column side.

All beam-to-column connections were designed according to EN1993-1-8 [26], while
the details of reduced beam sections were designed according to EN1998-3 [25]. In addition,
RBSs were alternatively designed to provide two different levels of flexural resistance:
(i) RBS with flexural resistance (MRBS,Rd) equal to 80% of the beam plastic moment (Mpl,Rd)
(hereinafter referred to as RBS-80) and (ii) RBS with MRBS,Rd equal to of 0.65 Mpl,Rd (here-
inafter referred to as RBS-65).

The geometrical features of both the external and internal investigated RBS (i.e., a, b, c,
and R) are depicted in Figure 2b and summarized in Table 2.
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Table 2. Features of the designed RBS.

Designed
RBS

Geometrical Features Flexural Resistance
a b c R Ze Mpl,Rd MRBS,Rd MRBS,Rd/Mp,Rd

mm mm mm mm cm3 kNm kNm -

RBS-80 150 350 30 525 1729 779 614 0.79
RBS-65 150 350 50 331 1419 779 504 0.65

The resistance of the rib-stiffened connection and the column web panel of the RBS
joints were designed to resist the effects due to Equations (1) and (2), respectively.

Mcf,Ed = MRBS,Rd + VRBS·e (1)

Mcc,Ed = MRBS,Rd + VRBS·
(

e +
dc

2

)
(2)

where Mcf,Ed and Mcc,Ed are the design bending moment at the column face and at the
column axis, VRBS is the shear force in the reduced beam section, e is the distance between
the beam plastic hinge and the column face, and dc is the column depth.

In order to enhance the resistance of the welded connection and to prevent the yielding
of the beam segment close to the column, double rib stiffeners were designed according
to [15,16].

2.3. Investigated Loading Scenarios

The examined joints were investigated as follows: first cyclic loading and fire were
separately applied; afterwards, fire was applied following cyclic loading. With this regard,
the cyclic loading was imposed by means of AISC341 [27] protocol up to two levels of
seismic-like damage, namely 0.04 rad (which may correspond to significant damage limit
state) and 0.06 rad (for near collapse limit state), and three alternative fire scenarios were
simulated as shown in Figure 3. Thus, 36 scenarios were considered on four different
beam-to-column joints, as summarized in Table 3.
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Table 3. Investigated loadings and their combinations.

Beam–Column
Assembly

RBS
Resistance Imposed Cyclic Damage Fire Scenarios

External
Internal

80% Mpl,Rd
65% Mpl,Rd

No damage (ND)
Significant damage (SD–0.04 rad)

Near collapse (NC–0.06 rad)

Only one bay (I)
Two lower bays (II)

All bays (III)

Total number of cases: 36

The joint assemblies were identify based on the following nomenclature:

• The configuration of the assemblies: “IJ” for the internal joints and “EJ” for the external joints.
• The flexural resistance of the RBS: “RBS-80” and “RBS-65” for RBS having plastic

moments equal to 80% and 65% of the beam plastic moment, respectively;
• The imposed seismic damage: “ND” (no damage) for the joint subjected only to the fire

loads, and “SD” or “NC” (significant damage and near collapse limit state, respectively)
for the joints subjected to a cyclic loading up to 0.04 rad and 0.06 rad, respectively.

• The fire scenarios are identified as S1, S2, and S3, as shown in Figure 3.

For the sake of clarity, the identification code associated with an internal joint with
resistance of RBS equal to 80% of the beam plastic moment, an imposed cyclic damage
corresponding to 0.04 rad, and subjected to the second fire scenario is IJ-80%-SD-I.

The three investigated fire scenarios (i.e., S1, S2 and S3) are depicted in Figure 3, where
the bay and the storey where the fire action is modelled are shown (see Figure 3a), and the
corresponding distributions of the temperature within the steel joints are pointed out (see
Figure 3b).

3. Finite Element Models
3.1. Modelling Assumptions

Finite element analyses (FEAs) were performed by means of Abaqus [28]. The adopted
modelling assumptions are consistent with those presented by the authors of previous
studies [29,30]. Therefore, only the main hypotheses are described hereinafter.

The FE models were discretized by means of structured meshes of C3D8I solid ele-
ments (i.e., 8-node linear brick, incompatible mode), as shown in Figure 4; “Tie constraints”
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were adopted to model the welds, while normal and tangential contacts were modelled
using “Hard contact” and “Penalty contact” formulations.
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The geometrical imperfections of the members were accounted for by imposing the
scaled shape of the imperfection-like engine modes obtained from buckling analysis as
described by the authors of [31].

European S355 steel grade was adopted for all the profiles and plates, while grade 10.9
was used for bolts. The expected mean yield stress of S355 was used through γov factor
equal to 1.25, as recommended by EN1998-1 [24], and combined hardening was modelled
as in [3]. The non-linear behaviour of the bolts at ambient temperature was modelled as
shown in [32,33].

The stress–strain curves at elevated temperatures were scaled through the reduction
factors (k) for both structural steels and bolts as prescribed by EN 1993: 1–2 [34] (see
Figure 5). The engineering curves in Figure 5 were converted into true stress–true strain
curves and implemented in the FE models.
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Three analyses were performed per investigated joint, and each analysis comprised
different intermediate steps as follows:

- Cyclic loading at ambient temperature (i.e., 20 ◦C): Step 1, clamping the bolts; Step 2,
cyclic displacements imposed at the tip of the sub-assembled beam (the AISC341 [27]
loading protocol has been used to simulate the seismic damage);

- Fire scenario on undamaged joints: Step 1, clamping the bolts; Step 2, application of
gravity loads; Step 3, application of ISO834 curve [35] on the surfaces of the structural
elements depending on the simulated fire scenario (heating time equal to 60 min);

- Fire scenario on cyclically damaged joints: Step 1, clamping the bolts; Step 2, cyclic
displacements imposed at the tip of the sub-assembled beam; Step 3, application of
gravity loads; Step 4, application of the fire scenario (heating time equal to 60 min).
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In order to perform thermal analyses, a sequentially coupled thermal (transient) stress
(implicit dynamic) analysis procedure was adopted; in particular, two sequential analyses
were performed:

- Heat transfer: this was carried out to simulate the heat transfer from the external
surface of the heated elements through their cross section and along their length.

- Stress analysis: this was carried out to simulate the structural responses of heated
elements that are exposed to fire or thermal loading resulting from the previous step.

3.2. Validation of the FE Models

The accuracy of the adopted modelling assumptions at ambient temperature was
verified against the experimental results from Brandon Chi and Chia-Ming Uang [8], who
performed three cyclic tests on RBS joints whose main features are summarized in Table 4
(hereinafter, these specimens are identified as DC-1, DC2, and DC3).

Table 4. Features of the RBS joints tested in [8].

Specimen Elements Cross
Section

Yield
Strength

Tensile
Strength Elongation

[N/mm2] [N/mm2] [%]

DC-1
Column W27x146 344 433 46

Beam W36x150 359 445 47

DC-2
Column W27x194 427 453 61

Beam W36x150 359 445 47

DC-3
Column W27x194 375 482 30

Beam W27x194 427 453 61

Figure 6 depicts the comparison of the FE predictions and the experimental results
from [8] in terms of moment vs. plastic rotation curves for all considered cases (i.e., DC1,
DC2, and DC3 specimens).
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Figure 6. Cont.
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Figure 6. Comparison between the experimental [8] and numerical results in terms of moment–
plastic rotation curves (a,c,e) and damage pattern (b,d,f) for all considered specimens tested in [8].

As can be observed in Figure 6, the FEM is able to mimic the experimental results in
terms of moment–plastic rotation curves; moreover, the equivalent plastic deformations are
consistent with the experimental damage pattern in [8].

To the a best of the authors’ knowledge, the results of fire tests on seismically damaged
RBS joints are not available in the literature. Therefore, in this study, the same modelling
assumptions adopted by Tartaglia et al. [3] were implemented. In fact, the FEM in [3]
were validated against fire tests on steel joints, and their predictive accuracy is deemed
satisfactory.

4. Results of Parametric FEAs
4.1. Seismic Behaviour

The results of both external and internal joints under cyclic loading at ambient temper-
ature are depicted in Figure 7 in terms of moment–rotation curves (where the moment has
been normalised to the plastic moment of the beam Mpl,Rd) and damage pattern, showing
the distribution of the equivalent plastic deformations (PEEQ). For the sake of brevity,
only the distribution of PEEQ of the joints is shown at 0.06 rad. As can be observed, the
normalized response curves of RBS-80 and RBS-65 are very similar, although there is a
difference in the width of the reduced beam flange.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 16 
 

  
(c) (d) 

  
(e) (f) 

Figure 6. Comparison between the experimental [8] and numerical results in terms of moment– 
plastic rotation curves (a,c,e) and damage pattern (b,d,f) for all considered specimens tested in [8]. 

As can be observed in Figure 6, the FEM is able to mimic the experimental results in 
terms of moment–plastic rotation curves; moreover, the equivalent plastic deformations 
are consistent with the experimental damage pattern in [8]. 

To the a best of the authors’ knowledge, the results of fire tests on seismically dam-
aged RBS joints are not available in the literature. Therefore, in this study, the same mod-
elling assumptions adopted by Tartaglia et al. [3] were implemented. In fact, the FEM in 
[3] were validated against fire tests on steel joints, and their predictive accuracy is deemed 
satisfactory. 

4. Results of Parametric FEAs 
4.1. Seismic Behaviour 

The results of both external and internal joints under cyclic loading at ambient tem-
perature are depicted in Figure 7 in terms of moment–rotation curves (where the moment 
has been normalised to the plastic moment of the beam Mpl,Rd) and damage pattern, show-
ing the distribution of the equivalent plastic deformations (PEEQ). For the sake of brevity, 
only the distribution of PEEQ of the joints is shown at 0.06 rad. As can be observed, the 
normalized response curves of RBS-80 and RBS-65 are very similar, although there is a 
difference in the width of the reduced beam flange. 

  

-0.05 -0.03 -0.01 0.01 0.03 0.05
-5
-4
-3
-2
-1
0
1
2
3
4
5

Plastic rotation [rad]

M
om

en
t [

M
N

m
]

Exp. Res.
Num. Res.

+1.41 × 103

+1.29 × 103

+1.17 × 103

+1.06 × 103

+9.38 × 102

+8.21 × 102

+7.04 × 102

+5.87 × 102

+4.70 × 102

+3.53 × 102

+2.36 × 102

+1.19 × 102

+1.38 × 100

S, Mises
(Avg: 75%)

-0.05 -0.03 -0.01 0.01 0.03 0.05
-5
-4
-3
-2
-1
0
1
2
3
4
5

Plastic rotation [rad]

M
om

en
t [

M
N

m
]

Exp. Res.
Num. Res.

+5.44 × 102

+4.99 × 102

+4.54 × 102

+4.09 × 102

+3.63 × 102

+3.18 × 102

+2.73 × 102

+2.28 × 102

+1.83 × 102

+1.38 × 102

+9.25 × 101

+4.74 × 101

+2.21 × 100

S, Mises
(Avg: 75%)

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Rotation [rad]

M
 / 

M
pl

,R
d

[-
]

EJ-65%-LD
EJ-65%-SD

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Rotation [rad]

M
 / 

M
pl

,R
d

[-
]

EJ-80%-LD
EJ-80%-SDAppl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 16 

 

  

  

  
Figure 7. Cyclic behaviour of the investigated joints in terms of moment–rotation curves and equiv-
alent plastic deformation (PEEQ). 

All investigated joints show ductile behaviour (even at rotation of 0.06 rad), allowing 
the formation of the plastic hinge solely in the reduced portion of the beam. In addition, 
the presence of the two rib stiffeners contributes to preserving the connection components 
from plastic deformations, and the adoption of supplementary plates in the column panel 
zone contribute to keep that area in the elastic range. 

Up to 0.04 rad, all joints do not exhibit degradation of their mechanical response 
curves, while degradation can be observed at 0.06 rad, which is mainly due to the activa-
tion of local buckling in the plastic zone of the reduced beams. 

4.2. Fire Behaviour 
The results of FEAs of the undamaged joints subjected to the three considered fire 

scenarios (S1, S2, and S3) are presented in terms of time–rotation and temperature–rota-
tion curves in Figure 8, where the Von Misses stress distribution of the EJ-80%-ND-S2 and 
IJ-80%-ND-S2 joints are also depicted. 

+2.68 × 100

+2.45 × 100

+2.23 × 100

+2.01 × 100

+1.78 × 100

+1.56 × 100

+1.33 × 100

+1.11 × 100

+8.92 × 10-1

+6.69 × 10-1

+4.46 × 10-1

+2.23 × 10-1

+0.00

PEEQ
(Avg: 75%)

+2.14 × 100

+1.96 × 100

+1.78 × 100

+1.60 × 100

+1.43 × 100

+1.25 × 100

+1.07 × 100

+8.90 × 10-1 

+7.12 × 10-1

+5.34 × 10-1

+3.56 × 10-1

+1.78 × 10-1

+0.00

PEEQ
(Avg: 75%)

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Rotation [rad]

M
 / 

M
pl

,R
d

[-
]

IJ-65%-LD
IJ-65%-SD

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Rotation [rad]

M
 / 

M
pl

,R
d

[-
]

IJ-80%-LD
IJ-80%-SD

+3.27 × 100

+2.99 × 100

+2.72 × 100

+2.45 × 100

+2.18 × 100

+1.91 × 100

+1.63 × 100

+1.36 × 100

+1.09 × 100

+8.17 × 10-1

+5.44 × 10-1

+2.72 × 10-1

+0.00

PEEQ
(Avg: 75%) +2.79 × 100

+2.56 × 100

+2.32 × 100

+2.09 × 100

+1.86 × 100

+1.63 × 100 

+1.40 × 100

+1.16 × 100

+9.30 × 10-1

+6.97 × 10-1

+4.65 × 10-1

+2.32 × 10-1

+0.00

PEEQ
(Avg: 75%)

Figure 7. Cont.



Appl. Sci. 2023, 13, 3641 9 of 15

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 16 
 

  

  

  
Figure 7. Cyclic behaviour of the investigated joints in terms of moment–rotation curves and equiv-
alent plastic deformation (PEEQ). 

All investigated joints show ductile behaviour (even at rotation of 0.06 rad), allowing 
the formation of the plastic hinge solely in the reduced portion of the beam. In addition, 
the presence of the two rib stiffeners contributes to preserving the connection components 
from plastic deformations, and the adoption of supplementary plates in the column panel 
zone contribute to keep that area in the elastic range. 

Up to 0.04 rad, all joints do not exhibit degradation of their mechanical response 
curves, while degradation can be observed at 0.06 rad, which is mainly due to the activa-
tion of local buckling in the plastic zone of the reduced beams. 

4.2. Fire Behaviour 
The results of FEAs of the undamaged joints subjected to the three considered fire 

scenarios (S1, S2, and S3) are presented in terms of time–rotation and temperature–rota-
tion curves in Figure 8, where the Von Misses stress distribution of the EJ-80%-ND-S2 and 
IJ-80%-ND-S2 joints are also depicted. 

+2.68 × 100

+2.45 × 100

+2.23 × 100

+2.01 × 100

+1.78 × 100

+1.56 × 100

+1.33 × 100

+1.11 × 100

+8.92 × 10-1

+6.69 × 10-1

+4.46 × 10-1

+2.23 × 10-1

+0.00

PEEQ
(Avg: 75%)

+2.14 × 100

+1.96 × 100

+1.78 × 100

+1.60 × 100

+1.43 × 100

+1.25 × 100

+1.07 × 100

+8.90 × 10-1 

+7.12 × 10-1

+5.34 × 10-1

+3.56 × 10-1

+1.78 × 10-1

+0.00

PEEQ
(Avg: 75%)

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Rotation [rad]

M
 / 

M
pl

,R
d

[-
]

IJ-65%-LD
IJ-65%-SD

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-1

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Rotation [rad]

M
 / 

M
pl

,R
d

[-
]

IJ-80%-LD
IJ-80%-SD

+3.27 × 100

+2.99 × 100

+2.72 × 100

+2.45 × 100

+2.18 × 100

+1.91 × 100

+1.63 × 100

+1.36 × 100

+1.09 × 100

+8.17 × 10-1

+5.44 × 10-1

+2.72 × 10-1

+0.00

PEEQ
(Avg: 75%) +2.79 × 100

+2.56 × 100

+2.32 × 100

+2.09 × 100

+1.86 × 100

+1.63 × 100 

+1.40 × 100

+1.16 × 100

+9.30 × 10-1

+6.97 × 10-1

+4.65 × 10-1

+2.32 × 10-1

+0.00

PEEQ
(Avg: 75%)

Figure 7. Cyclic behaviour of the investigated joints in terms of moment–rotation curves and
equivalent plastic deformation (PEEQ).

All investigated joints show ductile behaviour (even at rotation of 0.06 rad), allowing
the formation of the plastic hinge solely in the reduced portion of the beam. In addition,
the presence of the two rib stiffeners contributes to preserving the connection components
from plastic deformations, and the adoption of supplementary plates in the column panel
zone contribute to keep that area in the elastic range.

Up to 0.04 rad, all joints do not exhibit degradation of their mechanical response
curves, while degradation can be observed at 0.06 rad, which is mainly due to the activation
of local buckling in the plastic zone of the reduced beams.

4.2. Fire Behaviour

The results of FEAs of the undamaged joints subjected to the three considered fire
scenarios (S1, S2, and S3) are presented in terms of time–rotation and temperature–rotation
curves in Figure 8, where the Von Misses stress distribution of the EJ-80%-ND-S2 and
IJ-80%-ND-S2 joints are also depicted.

All temperature–rotation curves have an initial rotation before at ambient temperature,
which corresponds to the rotation induced by the gravity loads (both dead and live loads).

As previously described, the external joints have an RBS connection on one side of the
column, and a flush end-plate connection on the other side. This configuration is strongly
influenced by fire loads. As depicted in Figure 8a,b, both external RBS-80 and RBS-65
s exhibit good behaviour in the S1 scenario up to 800 ◦C. In contrast, for S2 and S3, the
flush end-plate connection experiences a significant reduction in resistance due to the large
concentration of damage into the end-plate and first bolt row (see Figure 8e). In the case of
RBS-80 in the S1 scenario, the stiffness degradation becomes evident when a temperature
of 650 ◦C is reached at the lower flange of the beam (see Figure 8f).

The resistance of the RBS, namely the width of the cut flange, highly influences the
fire behaviour of the joints. For instance, comparing the response of the EJ-RBS-80 and
EJ-RBS-65 joints in the S1 scenario, it can be observed that the weaker the RBS, the worse
its fire response (see Figure 9); indeed, the EJ-RBS-80 shows a good fire performance up to
55 min, while the corresponding RBS-65 shows a complete loss of stiffness after 38 min.
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Figure 8. FE results of undamaged external joints subjected to elevated temperature in terms of time-
rotation curves (a,c), temperature rotation curves (b,d) and Von Misses and PEEQ distribution (e,f).
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Figure 9. Comparison between the external RBS-65 and RBS-80 joints in terms of time-rotation
(a) and temperature-rotation (b) curves.

The results of the internal joints are depicted in Figure 10. It should be observed that,
in contrast to the external, the internal joints are symmetric, having the same connections
and beams on both sides of the column. Therefore, only the results belonging to the right
beam are pointed out hereinafter. Moreover, for the sake of brevity and since the results are
perfectly comparable, only the results of the IJ-RBS-80 joints are presented.
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Figure 10. Results of the IJ-RBS-80 joints in terms of time–rotation curve (a), temperature–rotation
curve (b) and PEEQ (c).

For the S1 scenario, the considerations made for the external joints can be extended,
while a higher performance can be observed in the S2 and S3 scenarios (see Figure 10a,b).

As expected, since the beams and the connection are the same, the results of the S1 and
S2 scenario are rather similar. However, increasing the temperature of the IJ-RBS-80-ND-S2
affected the loss of stiffness. This difference is due to the instability of the column that is
subjected to fire on both sides in the S2 scenario (see Figure 10c).

In the case of the S3 scenario, the worst response for all examined cases can be observed.
These results depend on the severity of the fire scenario, where elevated temperatures are
applied throughout the surfaces of the assemblies.

4.3. Fire Behaviour of Seismically Damaged Joints

The fire performances of seismically damaged internal joints are depicted in Figure 11
in terms of time–rotation and temperature–rotation curves. In Figure 12, the distributions
of PEEQ, temperatures, and Von Misses stresses of the IJ-RBS-65-NC are pointed out for S1,
S2, and S3. Additionally, in these cases, due to the symmetry of the connections’ geometry
and the applied loads, the results are solely shown for one side of the beam.

It is worth noting that similar to the undamaged joints, the FE results for the dam-
aged RBS in S1 and S2 are similar, while the joints in S3 exhibit greater deterioration
due to a substantial increase in temperature. In particular, it can be observed that after
10 min of exposure, the IJ-RBS-65-NC-S1/S2 experience a rotation of 0.05 rad, while the
IJ-RBS-65-NC-S3 joints exhibit a rotation of 0.13 rad. Figure 12 confirms that all plastic
deformations develop in the beam, while the connection and the column remain in the
elastic range (Figure 12a,d,g). In addition, large plastic deformations as well as out of plane
deformations can be observed in the lower part of the beam for the S1 and S2; in contrast,
small deformations in the same parts of the beam occur in the case of S3 due to a more
homogeneous distribution of the temperatures (see Figure 12b,c,e,f,h,i).
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Figure 11. Time–rotation (a,c) and temperature–rotation (b,d) of the RBS-65/85 internal joints sub-
jected to the S1–S3 scenarios.
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Figure 12. PEEQ, temperature, and Von Misses stress distributions of internal joints subjected to S1
(a), S2 (b), and S3 (c) fire scenarios.
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Similar to the results depicted in Figure 9, it can be observed that the resistance of
the RBS influences the fire performance of the joint. In fact, independently from the fire
scenario (S1, S2, and S3), the RBS-80 joints reach a greater ultimate temperature and resist
for a longer time than RBS-65 (see Figure 13).
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However, the difference between the RBS-80 and the RBS-65 is rather small. In fact,
despite the seismic damage reducing the beam capacity, its entity marginally affects the
fire performance of the joints since the seismic damage is mainly concentrated in the beam
flanges, while the fire resistance is mainly influenced by the shear resistance of the beam,
which is not impaired by the cyclic loading. This aspect is clarified in Figure 14, where
the results of the undamaged joints are compared to those which are seismically damaged.
It can be observed that the imposed cyclic damage reduces both the maximum resisting
temperature and the resisting time, but such a reduction is not directly influenced by the
cut of the RBS.
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5. Conclusions

The behaviour of steel welded reduced beam section (RBS) joints equipped with rib
stiffeners subjected to elevated temperature was numerically investigated, also considering
the effects of initial plastic damage induced by cyclic (seismic-like) loading. Both internal
and external joints were considered, and two different sizes of the cuts for the beam
flange were considered (namely RBS-65 and RBS-80, corresponding to 65% and 80% of
the beam plastic moment). Based on the obtained results, the following conclusions can
be summarized:

• The adopted finite element modelling assumptions satisfactorily simulate the mechani-
cal response of the joints on the basis of the comparison with some experimental results
available from the literature. In particular, the elastic stiffness, resistance, hysteretic
response, and damage pattern are accurately predicted.

• All examined RBS joints show very ductile behaviour under cyclic loading; indeed,
independently from the imposed ultimate rotation (4% and 6%), all plastic deforma-
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tions are confined in the reduced segment of the beam. Moreover, the presence of
the welded rib stiffeners allows the connection to be kept in the elastic range, thus
preserving the beam-to-column welds from premature failure.

• As expected, the joints with the greater cut of the beam flange (i.e., RBS-65) exhibit
larger degradation under cyclic loading due to out-of-plane plastic deformation at
0.06 rad.

• When exposed to fire, the undamaged joints with the greater cut of the beam flange (i.e.,
RBS-65) exhibit slightly greater degradation, but the differences are rather small in com-
parison with RBS-80. However, the stronger joints guarantee greater resisting time.

• The seismically damaged joints do not show appreciable differences if subjected to
fire scenarios, since the cyclic pre-damage is mainly in the beam flanges, while the fire
resistance is mainly guaranteed by the shear resistance of the beam, which is scarcely
influenced by the seismic damage.
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