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Abstract: An equation of state (EOS) of CH4-N2 fluid mixtures in terms of Helmholtz free energy
has been developed by using four mixing parameters, which can reproduce the pressure-volume-
temperature-composition (PVTx) and vapor-liquid equilibrium (VLE) properties of CH4-N2 fluid
mixtures. The average absolute deviation of all the PVTx data available up to 673.15 K and 1380 bar
from this EOS is 0.38%. Combining this EOS of CH4-N2 fluid mixtures and the EOS of CH4-CO2

and CO2-N2 fluid mixtures in our previous work, an EOS of CO2-CH4-N2 fluid mixtures has been
developed, which is named ZMS EOS. The ZMS EOS can calculate all thermodynamic properties
of ternary CO2-CH4-N2 fluid mixtures and the average absolute deviation of the PVTx data from
the ZMS EOS is 0.40% for the CO2-CH4-N2 system. The ZMS EOS can be applied to calculate excess
enthalpies of CO2-CH4-N2 fluid mixtures, predict the solubility of CO2-CH4-N2 fluid mixtures in
brine and water, and quantitatively estimate the impact of the impurities (CH4 and N2) on the CO2

storage capacity in the CO2 capture and storage (CCS) processes. The ZMS EOS can also be applied to
calculate the isochores of CO2-CH4-N2 system in the studies of fluid inclusions. All Fortran computer
codes and Origin drawing projects in this paper can be obtained freely from the corresponding author.

Keywords: CO2-CH4-N2 system; equation of state; CCS; excess enthalpies; fluid inclusion

1. Introduction

The CO2, CH4 and N2 are important natural fluids, and non-aqueous CO2–CH4–N2
mixtures are often reported in the studies of fluid inclusions [1–3]. In recent decades, the
amount of greenhouse gas CO2 in the atmosphere has gradually increased because of the de-
velopment of industry. Numerous studies have shown that CO2 capture and storage (CCS)
is an effective method to reduce the amount of CO2 in the atmosphere [4–6]. However, CO2
in industrial exhaust gases is usually impure, mixing with other components, such as CH4
and N2 [7,8]. The impurities can affect the design of the CCS processes [9–11]. Therefore,
predicting thermodynamic properties of the CO2-CH4-N2 fluid mixtures, especially the
pressure-volume-temperature-composition (PVTx) and vapor-liquid equilibrium (VLE)
properties at different temperatures and pressures, is of great significance for the related
CCS and fluid inclusion studies [12–15].

Although experimental thermodynamic data are the most reliable in the corresponding
applications, they are costly and time-consuming to obtain. On the other hand, the predic-
tive EOS is a better choice for us. In the past century, the cubic EOSs (e.g., Peng-Robinson
(PR) EOS [16], Soave–Redlich–Kwong (SRK) EOS [17]) originated from the van der Waals
EOS [18] are highly preferred for the CCS researchers because of their simplicity. Based on
the standard PR EOS, some more accurate EOSs have been presented for the CCS mixtures,
such as a model that integrates the classical PR EOS with advanced mixing rules, called the
“Peng-Robinson + residual part of excess Helmholtz energy model” [19], and the Enhanced-
Predictive-PR78 (E-PPR78) EOS [20]. However, the cubic EOSs cannot well reproduce the
PVTx properties of fluids under high pressure-temperature conditions, as can be seen in
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Section 2. Based on Heyen EOS [21], Heyen et al. [22] simulated the phase equilibria of the
CH4-CO2 system below 50 ◦C and 100 bar; Darimont and Heyen [23] predicted the phase
equilibria of the CO2-N2 system below 20 ◦C and 90 bar. Because cubic EOSs cannot well
reproduce the PVTx properties, Thiery et al. [24,25] and Thiery and Dubessy [26] modeled
the phase equilibria of the CO2-CH4-N2 system including liquid, vapor and solid by the
cubic EOSs and the PVTx properties by the Lee–Kesler correlation [27]. However, these
models have the disadvantage of using two EOSs that may cause incoherency of various
fluid parameters [28].

In recent years, the Statistical Associating Fluid Theory (SAFT) EOS [29] from Wertheim’s
thermodynamic perturbation theory (TPT) has become popular for CCS fluid mixtures. Be-
cause it is based on statistical mechanics and has an explicit physical meaning, it has more
reliable extrapolation and more accurate predictive capability than traditional empirical mod-
els. Many successful modifications of the SAFT-based EOSs have been presented, such as
the EOS of perturbed-chain SAFT (PC-SAFT) [30,31], variable range SAFT (SAFT-VR) [32],
and Lennard-Jones SAFT (LJ-SAFT) [33]. However, the SAFT EOSs cannot well reproduce
experimental VLE data in the near-critical region of the CO2-N2 fluid mixture, as can be seen
in the previous work [34]. Up to now, the EOS in terms of Helmholtz free energy is also com-
monly used to calculate the thermodynamic properties of CCS fluid mixtures [35–39], because
the EOS in the form of Helmholtz free energy has high precision, wide temperature-pressure
range, and can calculate all thermodynamic properties of the fluids by the derivation from the
Helmholtz free energy EOS, such as enthalpy, heat capacity, entropy, etc. The derivation from
the Helmholtz free energy EOS is not complex, as can be seen later.

In our previous work [34,40], the EOS in terms of dimensionless Helmholtz free energy
for the CH4-CO2 and CO2-N2 fluid mixtures have been established by using four mixing
parameters, which have been applied to the studies of the CH4-CO2 and CO2-N2 fluid
inclusions. In this work, firstly, the EOS in terms of dimensionless Helmholtz free energy
of the CH4-N2 fluid mixture has been developed by the same approach. The ZMS EOS is
obtained by combining the binary interaction parameters of CH4-CO2, CO2-N2 and CH4-N2
systems. Experimental data available for the binary CH4-N2 and ternary CO2-CH4-N2 fluid
mixtures are used to verify the accuracy of the ZMS EOS. Then the ZMS EOS is applied
to calculate the excess enthalpies, the solubility of CO2-CH4-N2 gas mixtures in brine and
water, the impact of impurities (CH4 and N2) on the CO2 storage capacity, and the isochores
of the CO2-CH4-N2 fluid inclusions.

2. The ZMS EOS

The EOS of the CO2-CH4-N2 mixtures is in terms of dimensionless Helmholtz free
energy α, which is represented by

α = α0 + αr (1)

where α0 and αr are the ideal-gas part and the residual part of dimensionless Helmholtz
free energy. α0 and αr are defined by

α0 =
n

∑
i=1

xi

[
α0

i + lnxi

]
(2)

αr =
n

∑
i=1

xiα
r
i (δ, τ) + αE(δ, τ, x) (3)

where n is the number of components in the mixture, xi is the mole fraction of component i
in the mixture, the superscripts “0”, “r” and “E” denote the ideal-gas part, the residual part,
and the excess of dimensionless Helmholtz free energy, respectively. The subscript i denotes
the component i. αr

i can be calculated by the EOSs of pure CO2, CH4 and N2 fluids [41–43],
which are in terms of dimensionless Helmholtz free energy and are recommended as the
standard EOSs of pure CO2, CH4 and N2 fluids by the National Institute of Standards and
Technology (NIST).
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δ and τ of Equation (3) are the reduced mixture density (δ = ρ/ρc) and the inverse
reduced mixture temperature (τ = Tc/T), where ρ and T are the density and temperature
of the mixture, and ρc and Tc are the pseudo-critical density and temperature of the mixture.
ρc and Tc are defined by

ρc =

[
n

∑
i=1

xi
ρci

+
n−1

∑
i=1

n

∑
j=i+1

xixjζij

]−1

(4)

Tc =
n

∑
i=1

xiTci +
n−1

∑
i=1

n

∑
j=i+1

x
βij
i xjςij (5)

where xj is the mole fraction of component j in the mixture, ρci and Tci are the critical density
and temperature of component i, respectively. The critical temperatures and densities of
the three components considered in this study are listed in Table 1. ζij, βij and ςij are binary
parameters associated with components i and j.

Table 1. Critical parameters of pure fluids.

Component i Tci (K) ρci (mol/dm3) References

CH4 90.6941 10.139 Setzmann and Wagner [42]
CO2 216.592 10.625 Span and Wagner [41]
N2 63.151 11.184 Span et al. [43]

αE of Equation (3) takes the general form developed by Lemmon and Jacobsen (LJ-1999
EOS) [35].

αE(δ, τ, x) =
n−1

∑
i=1

n

∑
j=i+1

xixjFij

10

∑
k=1

Nkδdk τtk (6)

where Fij is a binary parameter associated with components i and j, Nk, dk and tk are
the general parameters independent of fluids, which can be obtained from Lemmon and
Jacobsen [35]. There are four binary parameters (ζij, βij, ςij and Fij) in the above equations.
Binary interaction parameters of CH4-CO2 and CO2-N2 have been determined in previous
work [34,40]. In this work, the binary interaction parameters of CH4-N2 systems are
obtained by the nonlinear regression of selected experimental data. Since experimental
PVTx data available are much more than experimental VLE data, only part of new and
accurate experimental PVTx data are selected to fit the parameters to make the PVTx and
VLE data keep similar weights in the fitting. In this work, the Levenberg–Marquardt
algorithm of the nonlinear least squares method is used for fitting, which is an efficient and
widely used mathematical optimization technique. The fitting condition is to minimize
the weighted sum of squares of the calculation errors of the equation on the selected
experimental PVTx and VLE data. Compared to Newton’s method (e.g., The Newton–
Raphson method used in REFPROP [44]), it combines the advantages of two numerical
minimization algorithms: the gradient descent method and the Gauss–Newton method,
and it has good convergence and robustness. Regressed parameters of the CH4-N2 system
are listed in Table 2, which also includes the parameters of CH4-CO2 and CO2-N2 systems
from previous studies.

Table 2. Binary interaction parameters of the CO2-CH4-N2 system.

References Binary Mixtures Fij ζij (dm3/mol) ςij (K) βij

Mao et al. [40] CH4-CO2 0.12844025 × 10 0.35751245 × 10−2 −0.43720344 × 102 0.10358865 × 10
Zhang et al. [34] CO2-N2 0.16671494 × 10 0.58411078 × 10−2 −0.22952094 × 102 0.16878787 × 10

This work CH4-N2 0.63739997 0.3812517 × 10−2 −0.17790001 × 102 0.1009001 × 10

Note: Subscripts i and j refer to the first component and the second component, respectively.
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2.1. The Binary CH4-N2 Mixture

The calculated deviations of the PVTx and VLE properties from each experimental
data set [45–66] by this EOS for the CH4-N2 fluid mixture are listed in Table 3. Detail
calculation method for the PVTx and VLE properties can be found in Mao et al. [40]. The
deviations of the PVTx data are the density deviations, and the temperature and pressure
of the experimental PVTx data are up to 673.15 K and 1380 bar, respectively. The deviations
of VLE property are the deviations of the vapor-liquid phase equilibrium composition, and
the experimental VLE composition covers the full range. The average absolute deviation of
all PVTx data from this EOS is 0.38% for the CH4-N2 fluid mixture.

Table 3. Calculated PVTx and VLE deviations for the CH4-N2 mixture.

References
Number of Data Points T-P-x Range for xCH4-(1-x) N2

AAD%
Styles Total (Used) T (K) P (bar) x

Liu and Miller [45] PVTx 7 (0) 91–115 3–12 0.5 0.57
Rodosevich and Miller [46] PVTx 8 (0) 91–115 43–454 0.8–0.95 3.83

Pan et al. [47] PVTx 7 (0) 91–115 1–11 0.5–0.86 0.11
Hiza et al. [48] PVTx 21 (0) 95–140 1–21 0.5–0.95 0.10

Da Ponte et al. [49] PVTx 182 (50) 110–120 15–1380 0.3–0.68 0.12
Straty and Diller [65] PVTx 578 (0) 82–320 6–356 0.32–0.7 0.24

Haynes and McCarty [56] PVTx 85 (85) 140–320 10–164 0.3–0.71 0.09
Seitz et al. [64] PVTx 190 (90) 323–573 99–999 0.1–0.9 0.28

Seitz and Blencoe [63] PVTx 43 (0) 673.15 199–999 0.1–0.9 5.36
Ababio et al. [50] PVTx 83 (83) 308–333 9–120 0.5–0.78 0.12

Chamorro et al. [52] PVTx 242 (56) 230–400 9–192 0.8–0.9 0.23
Janisch et al. [57] PVTx 17 (0) 129–180 15–50 0.4–0.9 2.10

Li et al. [60] PVTx 27 (27) 17–270 1–16 0.9 0.06
Gomez-Osorio et al. [54] PVTx 142 (42) 304–470 100–1379 0.25–0.75 0.07
Brandt and Stroud [51] VLE 23 (0) 128–179 34 0.05–0.98 1.48
Cheung and Wang [53] VLE 20 (0) 92–124 0.2–6 0.85–1.0 5.02

Pan et al. [47] VLE 60 (60) 95–120 0.2–25 0.05–1 5.05
Miller et al. [62] VLE 11 (0) 112 2–13 0.2–0.97 3.30

Kidnay et al. [59] VLE 83 (83) 112–180 2–49 0.1–0.99 1.31
McClure et al. [61] VLE 8 (8) 91 1–3 0.1–0.8 5.60

Jin et al. [58] VLE 10 (10) 123 4–26 0.1–0.95 2.96
Parrish and Hiza [66] VLE 48 (43) 95–120 2–20 0.1–0.9 3.14

Janisch et al. [57] VLE 16 (6) 130–180 0.5–5 0.4–0.96 1.14
Han et al. [55] VLE 77 (60) 110–123 4–13 0.7–1.0 2.49

Note: Deviations of the PVTx data are the density deviations, and the deviations of VLE data are the equilibrium
composition deviations. AAD is the abbreviation of average absolute deviation.

Figure 1 shows the deviations between this EOS and the experimental density data
of the CH4-N2 mixture [49,52,54,64] at different pressures. It can be seen in Figure 1 that
most of the density deviations are within ±1%, with or close to experimental accuracy. The
comparisons between experimental density and the calculated densities by this EOS are
shown in Figure 2, where the calculated densities from the PR and SRK EOSs [67] are also
included. The errors of three EOSs are also plotted in Figure 2. Figure 2 shows the PR
and SRK EOSs cannot well reproduce the PVTx properties, especially under high-pressure
conditions. In contrast, the calculated densities from this EOS are in good agreement with
experiment data [68].

Figure 3 compares the vapor-liquid phase equilibrium curves calculated from this EOS
with experimental data [55,57,59,66] at three temperatures of 170 K, 115 K and 110 K. It
can be seen from Figure 3 that the calculated vapor-liquid phase equilibrium curves from
this EOS are consistent with experimental data, indicating that this EOS can accurately
calculate the vapor-liquid phase equilibrium of CH4-N2 mixture.
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Figure 1. Density deviations for the CH4-N2 system at different pressures. Experimental
data(triangles [64], stars [52], rounds [54], squares [49]): P is the pressure, ρcal is the calculated
density, and ρexp is the experimental density.
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Figure 2. Experimental and calculated densities for the 0.8 mole CH4 + 0.2 mole N2 mixture at
different temperatures. The experimental density data (rounds) [68], the PR (green dash lines) and
SRK (blue dash lines) EOSs [67], this work (red lines): P is the pressure, ρ is the density, and T
is temperature.
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Figure 3. Vapor-liquid phase equilibria of the CH4-N2 system at different temperatures, (a) P-xN2 /yN2

figure at 170 K; (b) P-xCH4 /yCH4 figure for 170 K; (c) P-xN2 /yN2 figure for 115 K; (d) P-xCH4 / yCH4

figure for 115 K; (e) P-xN2 /yN2 figure for 110 K; (f) P-xCH4 /yCH4 figure for 110 K. Experimental data
(rounds [55], triangles [57], squares [59]), this work (solid lines): xN2 and yN2 are the mole fractions of
N2 in the liquid and vapor phases, respectively xCH4 and yCH4 are the mole fractions of CH4 in the
liquid and vapor phases, respectively.



Appl. Sci. 2023, 13, 3659 7 of 20

2.2. The Ternary CO2-CH4-N2 Mixture

Combining binary interaction parameters of the CH4-CO2, CO2-N2 and CH4-N2
systems, the EOS can also predict the thermodynamic properties of the CO2-CH4-N2
mixture. Here, the experimental PVTx and vapor-liquid equilibrium data are used to verify
the accuracy of this EOS for the ternary mixture.

The calculated PVTx deviations for the ternary CO2-CH4-N2 mixture from each ex-
perimental data set [1,64,69–71] are given in Table 4, where the temperature and pressure
of the PVTx data are up to 573.15 K and 1000 bar, and the composition almost covers the
full range. The average absolute deviation of all PVTx data from this EOS is 0.40% for
the CO2-CH4-N2 fluid mixture. Figure 4 shows the comparison between experimental
data [71] and calculated densities for the CO2-CH4-N2 mixture at different temperatures.
It can be seen from Figure 4 that calculated densities from this EOS are in good agree-
ment with experiment data, indicating that this EOS has a good predictive ability for the
CO2-CH4-N2 mixture.
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Table 4. Calculated PVTx deviations for the ternary CO2-CH4-N2 mixture.

References N
T-P-x Range for xCO2-yCH4-(1-x-y) N2

AAD%
T (K) P (bar) x y

McElroy et al. [59] 242 303–333 6–126 0–0.9998 0–0.999 0.45
Seitz et al. [60] 42 474.15 1000 0.0–1.0 0.0–1.0 0.28
Seitz et al. [55] 271 323–573 199–999 0.1–0.8 0.1–0.8 0.28

Zhang et al. [61] 200 293.15–353.25 5–180 0.098–0.9949 0.02–0.6525 0.52
Le et al. [1] 84 305.15 5–600 0.499–0.899 0.0505–0.331 0.82

Note: Deviations of the PVTx data are the density deviations. N is the Number of data points, AAD is the
abbreviation of average absolute deviation.

The vapor-liquid phase equilibrium properties of the ternary CO2-CH4-N2 system are
shown in Figure 5, where the curves are calculated from this EOS, and the experimental
data are from the literature of [72–74]. As can be seen from Figure 5, all the experimental
data points in the non-critical region agree well with this EOS, but in the near-critical region
(Figure 5c), the calculated values deviate largely from experimental data [72–74].
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3. The Applications of the ZMS EOS
3.1. Calculating Excess Enthalpies

The excess enthalpy (HE) is an important thermodynamic property of the mixture for
the mixing and separation processes, which is defined by

HE =

{
Hm − ∑

i
xi Hi

}
P,T

(7)

where Hm is the enthalpy of the mixture, Hi is the enthalpy of pure component i, and
xi is the mole fraction of component i in the mixture. According to the thermodynamic
relationship between Helmholtz free energy and enthalpy, Hm and Hi are given by

Hm = RT
(

1 + τ
(

α0
τ + αr

τ

)
+ δαr

δ

)
(8)

Hi = RT
(

1 + τi

(
α0

τi + αr
τi

)
+ δiα

r
δi

)
(9)

where α0
τ =

(
∂α0

∂τ

)
δ
, αr

τ =
(

∂αr

∂τ

)
δ
, αr

δ =
(

∂αr

∂δ

)
τ
, α0

τi =

(
∂α0

i
∂τi

)
δi

, αr
τi =

(
∂αr

i
∂τi

)
δi

and

αr
δi =

(
∂αr

i
∂δi

)
τi

. δi and τi are the reduced density and inverse reduced temperature of
pure component i, which are defined by

δi = ρi/ρci (10)

τi = Tci/T (11)

where ρi is the density of component i. Based on Equations (8)–(11), Hm can be calculated
by this EOS of the CO2-CH4-N2 fluid mixtures and Hi can be calculated by the above-
mentioned equations of pure CO2, CH4 and N2 fluids.

The calculated excess enthalpy curves of the CH4-CO2 and CO2-N2 mixtures are,
respectively, shown in Figures 6 and 7, where the experimental data [75,76] are included
for comparison. The following EOSs are also included for comparison: the standard Peng–
Robinson (PR) EOS, either optimized (optimal kij) or not (kij = 0); the PR EOS with the
residual part of the Wilson excess Helmholtz energy model (PR + EOS/aE,Wilson

res ) [19]. It can
be seen from Figures 6 and 7 that this EOS is more accurate than the standard PR EOS, either
optimized (optimal kij) or not (kij = 0) at most cases. In general, the PR + EOS/aE,Wilson

res and
this EOS shows a similar predictive capability for the excess enthalpies of the CH4-CO2

mixture. However, this EOS is slightly more accurate than the PR + EOS/aE,Wilson
res for the

CO2-N2 mixture at low pressures.
Figure 8 compares the excess enthalpy curves of the CH4-N2 mixture calculated from

the ZMS EOS with experimental data [77], and enthalpies calculated from the Enhanced-
Predictive-PR78 (E-PPR78) EOS [20] are also added for comparison. Figure 8a shows
the ZMSEOS are significantly more accurate than the (E-PPR78) EOS at high and middle
pressures. Figure 8b shows the enthalpies of mixing calculated from the E-PPR78 EOS are
slightly better than those of the ZMS EOS at low and middle pressures, but the enthalpies
of mixing calculated from the ZMS EOS are better than those from the E-PPR78 EOS at
P = 101.33 bar.
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3.2. Calculating the Solubility of CO2-CH4-N2 Mixtures in Aqueous Electrolyte Solution

The solubility of the CO2-CH4-N2 gas mixtures in the electrolyte solutions can provide
the quantitative assessment for the storage of CO2 in deep saline aquifers. According to the
thermodynamic principle, when the CO2-CH4-N2 gas mixtures reach dissolution equilib-
rium in the electrolyte solution, the chemical potential of component i in the liquid phase
(µL

i ) and its chemical potential in the vapor phase (µV
i ) are equal. The chemical potential

can be written in terms of fugacity in the vapor phase and activity in the liquid phase

µL
i = µ

L(0)
i + RTlnmiγi (12)

µV
i = µ

V(0)
i + RTlnϕiyiP (13)

where i is the gas component in vapor mixtures, and P is the pressure in bar. yi is the molar
fraction of i in the vapor phase, ϕi is the fugacity coefficient of i in the vapor phase and mi is
the solubility of i in the liquid phase in mol/kg. γi is the activity coefficient of component i
in the liquid phase. µ

L(0)
i and µ

V(0)
i are the standard chemical potential of i in the liquid

and vapor phase, respectively.
At the dissolution phase equilibrium, µV

i = µL
i . From Equations (12) and (13), we

can obtain

lnmi = lnyiP + lnϕi −
µ

L(0)
i − µ

V(0)
i

RT
− lnγi (14)
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Since the water content in the vapor phase at equilibrium is generally small, it has a
negligible effect on the fugacity coefficient. When calculating the fugacity coefficient, the
water content in the vapor phase can be ignored, the vapor phase can be approximated
as the CO2-CH4-N2 system and the mole fraction of gas component i in the vapor phase
is expressed as yi. Consequently, ϕi can be calculated from the ZMS EOS developed in
this work.

Pitzer activity coefficient model [78] is chosen to calculate γi

lnγi = ∑
c

2λi−cmc + ∑
a

2λi−ama + ∑
c

∑
a

ζi−c−amcma (15)

where λ and ζ are second-order and third-order interaction parameters, respectively; c and
a refer to cation and anion, respectively. Substituting Equation (15) into Equation (14) yields

lnmi = lnyiP + lnϕi −
µ

L(0)
i −µ

V(0)
i

RT − ∑
c

2λi−cmc

−∑
a

2λi−ama − ∑
c

∑
a

ζi−c−amcmaa
(16)

As can be seen from Equation (17), mi is related to the difference between µ
L(0)
i and

µ
V(0)
i , and is not related to the specific value of µ

L(0)
i or µ

V(0)
i . Therefore, to simplify the

model, µ
V(0)
i is assumed to be zero. Equation (16) can be simplified as

lnmi = lnyiP + lnϕi −
µ

L(0)
i
RT − ∑

c
2λi−cmc

−∑
a

2λi−ama − ∑
c

∑
a

ζi−c−amcma
(17)

where µ
L(0)
i
RT , λ and ζ are the function of temperature and pressure, and the parameters

can be determined by the solubility model of pure gases (CO2, CH4, N2). Since the 1980s,
many solubility models for CO2, CH4 and N2 gases in pure water and brine have been
developed [79–91], most of which do not exceed 473 K and 1000 bar. Among them, the
solubility models of CH4, CO2 and N2 established by Mao and co-workers [83,86,91] are
applicable to a wider range of temperature, pressure, and salinity with higher accuracy.
They have been chosen as the solubility models of pure CH4, CO2 and N2 gases in this work.
Table 5 lists the applicable temperature, pressure, and salinity ranges of these solubility
models for pure gases.

Table 5. Ranges of pure gas solubility models.

Pure Gas T P Salinity (mNaCl) References

CH4 273–523 K 1–2000 bar 0–6 mol/kg Duan and Mao [83]
CO2 273.15–723.15 K 1–1500 bar 0–4.5 mol/kg Mao et al. [91]
N2 273–590 K 1–600 bar 0–6 mol/kg Mao and Duan [86]

To verify the accuracy of the predictions, the experimental data for the solubility of
the CO2-CH4-N2 gas mixtures are compared with the calculated results. Figure 9 compares
the experimental data on the solubility of the CH4-CO2 mixture in pure water [92,93] for
the temperature range of 324.5–375.5 K and the pressure range of 100–750 bar, and it can be
seen that the agreement is very good.

The solubility experimental data of the CO2-N2 gas mixture in pure water [94]
and the calculated results are compared in Figure 10, where the temperature range is
308.15–318.15 K and the pressure range is 80–160 bar. As can be seen from Figure 10
the predictive results are in good agreement with the experimental data. The average
absolute deviations between the calculated N2 and CO2 solubility of this model and the
experimental data are 6.04% and 1.52%, respectively. Figure 11 compares the solubility
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experimental data of the CO2-N2 gas mixture in saline water. The average absolute devia-
tions between the calculated N2 and CO2 solubility and the experimental data are 2.04%
and 2.49%, respectively.
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Figure 9. Comparisons between experimental and calculated solubilities for the CH4-CO2 mixture in
water. (a) mCH4 -yCH4 figure at 344.15 K; (b) mCO2 - yCH4 figure at 344.15 K;(c) mCH4 -yCH4 figure at
373.5 K; (d) mCO2 - yCH4 figure at 375.5 K; (e) mCH4 -yCH4 figure at 324.5 K; (f) mCO2 - yCH4 figure at
324.5 K. Experimental data (rounds [92], squares [93]), this work (solid curves): mCO2 is the solubility
of CO2, mCH4 is the solubility of CH4.
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Figure 10. Comparisons between experimental and calculated solubilities for the CO2-N2 mixture
in water. (a) mN2 - yN2 figure at 308.15 K; (b) mCO2 - yN2 figure at 308.15 K; (c) mN2 - yN2 figure at
318.15 K; (d) mCO2 - yN2 figure at 318.15 K. Experimental data (squares [94]), this work (solid curves):
mN2 is the solubility of N2.
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Figure 11. Comparisons between experimental and calculated solubilities for the CO2-N2 mixture in
saline water. (a) mN2 - yN2 figure; (b) mCO2 - yN2 figrure. Experimental data (black squares [94]), this
work (solid curves).
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3.3. The Impact of Impurities (CH4 and N2) on the CO2 Storage Capacity

CH4 and N2 are non-condensable impurities, which reduce the CO2 storage capacity
in geological formations. Based on the EOS of the CO2-CH4-N2 fluid mixtures, the impact
of CH4 and N2 on CO2 storage capacity can be calculated quantitatively by the normalized
storage capacity proposed by Wang et al. [9]. For a certain reservoir with a certain volume,
the normalized storage capacity of the CO2-CH4-N2 gas mixtures is shown as

A
ACO2

=
ρ

ρCO2(1 +
MCH4
MCO2

+
MN2

MCO2
)

(18)

where A and ACO2 are the mass of CO2 in the mixtures and the mass of pure CO2 under the
same volume, respectively. ρCO2 and ρ are the density of the pure CO2 and CO2-CH4-N2
gas mixtures, respectively; MCH4 , MN2 and MCO2 are the mass of CH4, N2, and CO2 in
the mixture, respectively. A/ACO2 is the ratio of the mass of CO2 per unit volume in the
mixture to that in the pure state. The value of A/ACO2 can be viewed as the normalized
storage capacity for CO2 (i.e., the storage capacity for structural trapping of CO2). For pure
CO2, the normalized storage capacity (A/ACO2 ) is 1. For the CO2-CH4-N2 gas mixtures of
a given composition, MCH4 , MN2 and MCO2 are also known. ρCO2 can be calculated by the
above-mentioned equation of pure CO2 fluid and ρ can be calculated by the ZMS EOS.

The normalized storage capacity of the CO2-CH4-N2 fluid mixture calculated by the
ZMS EOS is plotted in Figure 12. Figure 12a shows the normalized storage capacity of a
given composition at different temperatures. With the increase in pressure, the normalized
storage capacity decreases at first and then increases, and there is a minimum point. When
the temperature changes, the pressure corresponding to the lowest point of the normalized
storage also changes. Figure 12b shows the normalized storage capacity of different
compositions at the same temperature, which indicates that the content of impurities is
much larger and the normalized storage capacity is much smaller.
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3.4. Isochores of the CO2-CH4-N2 fluid Inclusions

In the studies of fluid inclusions, the isochores (pressure-temperature relation at con-
stant density and composition) are frequently used to estimate the trapping temperatures
and pressures.

Based on the EOS of the CO2-CH4-N2 fluid mixtures, isochores of the CO2-CH4-N2
inclusions can be calculated by the following equation:

P(δ, τ, x) = ρRT[1 + δαr
δ] (19)
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The calculated isochores of the CO2-CH4-N2 inclusions at two different compositions
are plotted in Figure 13, from which it can be seen that the isochores of the CO2-CH4-N2
inclusions are a bit curved.
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This section may be divided into subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

4. Conclusions

A fundamental EOS for the Helmholtz free energy of the CH4-N2 mixture has been
developed by using four binary interaction parameters. Comparisons with experimental
PVTx and VLE data available showed that the EOS can satisfactorily reproduce the experi-
mental volumetric and vapor-liquid phase equilibria data of binary CH4-N2 mixtures up to
673.15 K and 1380 bar, with or close to experimental accuracy. Combining this EOS of the
CH4-N2 fluid mixtures and the EOS of the CH4-CO2 and CO2-N2 fluid mixtures developed
in our previous work, an EOS of ternary CO2-CH4-N2 fluid mixtures has been presented,
which is named ZMS EOS. The ZMS EOS can be applied to calculate excess enthalpies,
predict the solubility of the CO2-CH4-N2 gas mixtures in water and brine, estimate the
impurities CH4 and N2 on the CO2 storage capacity, and calculate the isochores of the
CO2-CH4-N2 fluid mixtures.
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