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Abstract: Trends of environmental awareness, combined with a focus on personal fitness and health,
motivate many people to switch from cars and public transport to micromobility solutions, namely
bicycles, electric bicycles, cargo bikes, or scooters. To accommodate urban planning for these changes,
cities and communities need to know how many micromobility vehicles are on the road. In a previous
work, we proposed a concept for a compact, mobile, and energy-efficient system to classify and
count micromobility vehicles utilizing uncooled long-wave infrared (LWIR) image sensors and a
neuromorphic co-processor. In this work, we elaborate on this concept by focusing on the feature
extraction process with the goal to increase the classification accuracy. We demonstrate that even
with a reduced feature list compared with our early concept, we manage to increase the detection
precision to more than 90%. This is achieved by reducing the images of 160 × 120 pixels to only
12 × 18 pixels and combining them with contour moments to a feature vector of only 247 bytes.

Keywords: micromobility; thermal imaging; long-wave infrared; neuromorphic processing; machine
learning; machine vision; traffic data; urban planning

1. Introduction

In the last few years, the combined advances in battery technology and compact
electric motors led to a wave of innovations and products of compact electrically powered
or supported vehicles. For these vehicles, their unelectrified predecessors, and other small
vehicles, the term micromobility was coined. Depending on the context, this term can cover
vehicles as small as skateboards and kickscooters as well as small, electrically powered
vehicles with up to a 500 kg capacity. In this work, we specifically use this term to describe
vehicles designed for a single person and powered by muscles or electricity. This includes
bicycles, e-bikes, kickscooters, e-scooters, pedelecs, cargo bikes, and bikes with trailers.
The relatively low cost, compact nature, and ease of use opened up these vehicles as a new
mode of transportation for many people. They are often used to bridge the last or first mile
to public transport by commuters while also increasing the effective range for commuting
and offering an alternative to crowded public transport. These factors, combined with the
advent of shared mobility and an overall trend of environmental awareness, have currently
caused a surge in the number of micromobility vehicles. For future city development plans
and new construction, cities and communities are now challenged to incorporate these
micromobility vehicles into daily traffic. A study by the U.S. Consumer Product Safety
Commission estimated that there were 190,500 visits to the emergency department between
2017 and 2020 caused by micromobility vehicles. They recorded 71 confirmed fatalities in
the same time span, of which 40 were caused by other motor vehicle accidents. [1] Cities
either need to make the existing roads safer for mixed traffic or create new and more traffic
lanes for micromobility vehicles.

In this work, we will evaluate and further improve our concept for a mobile micromo-
bility counting system and show methods to improve the classification accuracy, which
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were introduced in our previous work [2]. After the discussion of state-of-the-art sensor
systems employed for traffic counting in Section 2, we will introduce our hardware and
software concept, together with the mounting concept, in Section 3. We will describe
the long-wave infrared (LWIR) sensors and the NM500 neuromorphic processor used in
our concept. Following the concept, we will evaluate different approaches for feature
extraction that are suitable in combination with the NM500 in Section 4. We will show how
a combination of a scaled region of interest and contour moments can be used to improve
the classification accuracy for certain classes to over 90% and to an average of 87%. In
Section 5, we will discuss our results, draw our conclusions from our findings, and define
points for future work in Section 6.

2. State of the Art

Before constructing new roads or modifying existing ones, cities need to perform
counting and conduct surveys about the amount of actual traffic. For motorized traffic,
the vehicles are often classified by their weight, the number of wheels, or the number
of axes. This categorization varies from country to country but is mostly well defined.
In the weight class of micromobility vehicles, no such clear definition exists yet, and
most surveys have only differed between pedestrians and bicycles thus far. A study by
Ozan et al. [3] states that currently, only 8% of the questioned state agencies in the US
store data on micromobility, compared with 100% for bicycles and 92% for pedestrians.
Additionally, out of 10 questioned companies, only 4 reported the capability of counting
micromobility vehicles, and only 3 offered the capability of counting bicycles, pedestrians,
and micromobility at the same time. One of these systems is a mobile app that requires the
voluntary participation of people to install the app, and the other systems are camera-based
or use a combination of different sensors for counting and classification. For the future, it
will be important to be capable of distinguishing subclasses such as cargo bikes, bicycles
with trailers, or e-scooters.

Pedestrians and micromobility traffic undergo significant variation due to commuting,
weather, and seasonal changes, making regular surveys necessary. These can be performed
either manually or be automated by sensor systems. Manual counting is mostly used to
establish a baseline or as a reference for automated systems because of its high accuracy.
However, it is not applicable on a large scale or in continuous data acquisition due to the
high amount of labor required. Installing an automated counting device in each street of
a city is also not feasible. Therefore, mobile counting devices are often used to perform
short countings, and the average annual daily bicycle traffic is estimated. A study by
Nordbeck et al. [4] investigated the best duration for counts. The complete results are
shown in Table 1 and suggest an optimal duration of one week.

Table 1. Average annual daily bicycle estimation error according to [4].

Duration 1 h 2 h 3 h 9 h 12 h 24 h 1 w 2 w 4 w

Average error 48% 46% 40% 34% 35% 38% 22% 19% 15%

Automated Counting

Common technologies for counting micromobility vehicles and pedestrians are pneu-
matic tubes, piezoelectrics, induction loops, infrared, radar, and cameras. A recent investi-
gation by North Carolina State University [3] reported the use of commercially available
systems based on these principles. Table 2 provides an overview of these technologies,
summarizes their advantages and disadvantages, and gives values for the average accuracy
achieved, as stated by [3,5,6].

Pneumatic tubes and piezo cables require contact with the vehicle and need to be
surface-mounted. They can detect wheels very reliably, but pedestrians may walk over the
sensors without making contact. This can be compensated for in part by deploying these
sensors in the form of pressure-sensitive mats. The deformation of the sensor required to
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generate a signal can cause a high amount of wear on the sensors when used in mixed
traffic. The surface mounting can also cause hazards for pedestrians and vehicles with
small wheels such as kickscooters, skateboards, and inline skates. When the tubes and
cables are mounted incorrectly or come loose because of wear, small wheels can become
stuck and cause tripping. Additionally, these systems can be understood as obstacles,
causing people to slow down or avoid contact and therefore have an unintended influence
on the obtained traffic data.

Table 2. Technology overview [3,5].

Technology Pro Con Accuracy

Pneumatic tube easy set-up
long battery life

surface-mounted
only vehicles
tripping hazard

85% [3]

Piezo cable easy set-up
long battery life

surface-mounted
only vehicles 76% [3]

Induction loop high accuracy
long battery life

only vehicles
requires ground work 87% [3]

IR spot
high accuracy
easy set-up
long battery life

shading
quantity only 62% [3]

IR array high accuracy
classification

mostly indoors
power consumption? 88% [6]

Radar easy set-up
side-mounted

shading
cost

Camera easy set-up
classification

power consumption
varing accuracy
privacy

83–49% [3]
83–26% [6]

Induction loops are not surface-mounted, not exposed to wear, or able to come loose.
The in-ground installation requires opening the ground or making incisions. This requires
time and heavy tools and destroys the sealed surface. Special induction systems can
be surface-mounted in a similar way to the piezo cables but then suffer from the same
shortcomings. In addition, the induction loop can only detect ferromagnetic objects. Thus,
pedestrians cannot be detected. Using the concepts of pattern matching as described by
Gajda et al. [7] allows distinction into different classes.

Radar can be placed on the side of the road, and if a suitable mounting spot is available,
then no construction is necessary. Objects in front of the sensor may cast a shadow and
obstruct objects in the background, making distinctions and classification difficult in groups.
Spot infrared (IR) systems come with similar advantages and disadvantages to radar but
with much lower power consumption.

Automated systems utilizing cameras are the newest technology on this list. They
only became feasible with the latest advances in modern image processing. They allow a
good distinction between different vehicle classes, and they can be mounted to existing
structures while requiring very little set-up time. The shortcomings of camera-based
counting systems are the huge amount of data that cameras generate. This leads to large
memory or bandwidth requirements to store or transmit the raw data or large requirements
for processing power if the processing is performed locally. In both cases, good ambient
lighting is required, and the accuracy can vary significantly depending on the location [3,6].
In addition, cameras can pose privacy problems if the image data are stored or transmitted,
potentially leading to acceptance problems for the public.
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3. System Concept and Hardware

For our work, we decided to use passive infrared arrays, also known as long-wave
infrared (LWIR) sensor arrays, which provide thermal images. These sensors offer the same
advantages as conventional black-and-white or RGB cameras (see [6,8]), while the aspect
of privacy is less significant due to the reduced lateral resolution and unfamiliar image
content of the thermal image. Thermal cameras come with the added advantage of not
requiring external lighting, and they are less susceptible to the influences of weather and
ambient lighting compared with conventional cameras.

3.1. Concept

In our previous work, we identified five essential requirements for a new micromobil-
ity counting system [2]:

1. Noninvasive;
2. Location-independent;
3. Easy set-up;
4. Low power consumption;
5. Enables classification.

In order to meet these requirements, we proposed and evaluated a concept using a
low-resolution LWIR sensor combined with a neuromorphic processor for classification.
To help with the classification, we estimated that the system should be mounted on the
side of the road at about 3 m in height and pointing toward the road, as shown in Figure 1.
Preliminary testing showed that higher mounting positions were better for counting, as the
occlusion of one object by another object was minimized. However, for classification, we
observed better results when using profile views from lower mounting positions. As easy
installation was one of our goals, we decided on the compromise of 3 m, as this was also a
height which could easily be reached by using a ladder while conforming to official safety
regulations. To keep the power consumption low, we proposed the use of low-resolution
sensors with a resolution of less than 20,000 pixels, drastically reducing the computational
load compared with a high-resolution camera. To further reduce the power consumption,
we evaluated the use of a low-power neuromorphic processor for classification, while
preprocessing was performed by the main processor.

We evaluated the concept in multiple series of indoor and outdoor tests. The tests
showed that by using the low-resolution thermal images, the system was capable of
monitoring different scenes independent of the lighting conditions, fulfilling requirements
1 and 2. In our test, the prototype was mounted on the side of the road using a tripod
for mobile lighting installations and mounting clamps for consumer cameras as seen in
Figure 1b,c. The prototype was powered by a consumer-grade powerbank. Even with the
sensors and optics detached for transport, the system could be set up by a single person
within 10–15 min.

Based on a series of field tests, we concluded that positioning the LWIR camera at a
height of 3 m and angled toward the ground yielded the most accurate results (see Figure 1
for details). With this position, objects in the front do not fully obstruct objects in the back.
Thus, people walking or driving side by side can be distinguished easier. At the same time,
a partial profile view leads to better classification results than a full frontal view.

Based on our observations during our field tests, we extended our concept with an
additional low-power radar sensor. Figure 2 shows a rendering of the extended prototype
with an additional radar module. The prototype was designed as an extension board
compatible with the Raspberry Pi platform. It comprises integrated voltage regulators that
allow the use of a 12 V lead acid battery as a power supply. The purpose of the additional
radar is to work as a trigger for the other sensors. This allows one to power down most
components during periods of no activity to extend the battery life.
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(a)

(b) (c)

Figure 1. (a) Schematic mounting concept of sensor showing alignment and field of view, (b) close up
of mounted sensor system consisting of (1) an NM500 evaluation USB stick, (2) an 80× 64 sensor, (3) a
160 × 120 sensor, (4) a Raspberry Pi4, and (5) a battery pack. (c) Full view of mounted sensor system.

1

2

3

4

5

Figure 2. Rendering of the extended prototype, showing (1) radar, (2) 80 × 64 pixel LWIR sensor,
(3) 160 × 120 pixel LWIR sensor, (4) Raspberry Pi 4, and (5) power supply and Radar-MCU.

3.2. Sensors

As stated by Planck’s law, all objects emit radiation in a wide range of wavelengths [9].
The maximum of this radiation depends on the body’s temperature, as visualized in
Figure 3. For bodies colder than 3000 K, most of the emitted radiation lies in the infrared
spectrum. Therefore, to measure the temperature of most bodies, it is necessary to use
sensors sensible for wavelengths above 1 µm.

DIN 5031 and the International Commission on Illumination define areas IR-A, IR-B,
and IR-C, while ISO 20473 gives the designations and classifications in the near-infrared
(NIR), middle-infrared (MIR) and far-infrared (FIR) ranges. The term LWIR is not officially
defined by a norm but is commonly used and encompasses the area of 8–15 µm, therefore
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lying in the range of MIR and IR-C. Translated to emitting temperatures, long-wave infrared
(LWIR) radiation is emitted by objects of a temperature between 193 K and 362 K. For this
reason, LWIR sensors are well suited to monitoring everyday objects.

Figure 3. Black–body spectrum for different temperatures. Temperature of the Sun is marked in
yellow, and typical ambient temperature is marked in red [10].

The two most common types of sensors for detecting LWIR radiation are photon
detectors and bolometers. Photon detectors consist of semiconductor chips which detect
incoming light, similiar to digital cameras, by utilizing the inner photoelectric effect [11]. It
is necessary to cool these detectors to low temperatures because the necessary bandgaps
only become available at low temperatures. This additional cooling is the reason why
most of these cameras are quite large and require a high amount of power. The other kind
of sensor is bolometers. Bolometers work through the absorption of incoming light and
detecting the resulting rise in temperature. Modern advances in micro-manufacturing
techniques allow for the construction of arrays of bolometers with a pixel pitch below
12 µm. Such bolometers are often referred to as microbolometers, offering the advantages
of a lower size and lower cost and power consumption, but they typically have more noise
and lower sensetivity when compared with photon detectors.

Due to power and cost constraints, we decided to use bolometer sensors for our project.
In preceding projects, we compared different bolometer sensors with different resolutions,
technologies, and fields of view (FoVs). For our proof-of-concept system, we settled on a
sensor with a resolution of 160 × 120 pixels and a FoV of 57°. In our previous work, we
showed that sensors with lower resolutions are also suitable [2]. The decision was based
on a lower noise-equivalent temperature difference (NETD) and a more suitable FoV of the
160 × 120 pixel sensor.

3.3. The Neuromorphic Processor

The neuromorphic processor used for our application was the NM500, developed
by Nepes and General Vision. The decision to use this chip was made based on the three
main features of this chip: low power consumption (7 mW), fixed latency (classification
in 19 clock cycles, only requiring 9.1 µs for classification and readout), and self-learning
(the chip can perform learning operations on its own within the time it takes to perform
a classification).
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The chip’s architecture was based on the NeuromMem technology developed by
General Vision [12]. In contrast to multipurpose processors, the NM500 utilizes 576 iden-
tical components called neurons, forming a neural network which can approximately be
described as a three-layer radial basis function (RBF) network. Additionally, the chip can
switch between RBF and k-nearest-neighbors (KNN) classification. Each neuron contains
memory for storing a feature vector called a model, an arithmetic unit, and registers for
configurations. This configuration allows each neuron to perform operations independent
of each other. Multiple chips can be used in parallel to increase the capacity of the network.
For added flexibility, the neurons can be configured as subnetworks, called context, either
within one single chip or within a cluster of multiple chips. This allows performing multiple
classification tasks without the need of loading a new network from memory or retraining
the chip. This is helpful if multiple sensors are used for classification or to accommodate
certain conditions, such as night and day.

When performing a classification, a feature vector is transmitted to the network
together with a context identifier. After receiving the feature vector, each neuron in the
requested context will calculate the distance between the input vector and the stored model.
The arithmetic unit of each neuron is capable of calculating the distance using Supremus-
or L1-Norm:

DLsup(M̄, V̄) = max |Mi −Vi| (1)

DL1(M̄, V̄) = ∑
i
|Mi −Vi| (2)

Based on the chip’s setting and the distance, the neuron decides if it enters the firing
stage. In KNN mode, every neuron will fire, while in RBF mode, only neurons with a
distance inside the active influence field will fire. The active influence field is set during
training. All neurons in the firing stage will then compete for the lowest distance, and the
chip will signal when it is ready. When querying the results, the chip will always return the
neuron in the firing stage, starting with the lowest distance. This way, it is not necessary to
read numerous neurons after each classification.

A powerful feature of this architecture is the capability of performing supervised
learning with no external processing required. To perform learning, the process is similar
to the process of classification described above. In addition to a feature vector and context
identifier, a class ID is transmitted to the chip. The network will then perform a regular
classification. Depending on the classification results, the chip will either commit a new
neuron or adapt the active influence fields of the neurons already committed. If no neuron
is in the firing stage, a new neuron will be committed, and the active influence field will
be set to the default value of the maximum influence field. A new neuron will also be
committed if only neurons with wrong class IDs are in the firing stage. The active influence
field of the new neuron will be set to the distance value of the first neuron in the firing stage.
Then, the active influence field of each neuron in the firing stage will be reduced below the
active influence field of the new neuron. If neurons of the right and the wrong class IDs are
present in the firing stage, then no new neuron will be committed. The active influence field
of neurons with the wrong class IDs will be reduced below the distance value of the closest
neuron with the correct class ID. If no uncommitted neurons are available, hten only the
reduction of the influence fields will be performed. If the active influence field of a neuron
is set below the threshold of the minimal influence field, then the neuron will be flagged as
degenerated. It will still take part in classification and learning, but the active influence
field will not be reduced any further. Degeneration of a neuron either designates a bad
sample or that a clear distinction between two classes is not possible, with the latter being
the case for multiple neurons degenerating. The values of the maximum and minimum
influence fields can be set individually for each context.
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3.4. Software Concept

Before being provided to the NM500 neuromorphic processor, the raw data need to be
preprocessed. Figure 4 visualizes the flow of data from the source, sensor, or memory to the
NM500, as designed in our previous work. On the right side, the intermediary steps of one
exemplary image processing flow are shown. The task of the image processing flow is data
reduction from a 160 × 120 array (38.4 kB) to a feature vector of 256 bytes for classification.
To avoid extensive on-site sensor calibration, our algorithms only use relative temperature
differences for classification rather than the absolute temperatures.

Processor

Trainingsdata

SD/Flash

Sensor
SPI, I2C, 

Ethernet, ...

Main

Result Feature 

Vector

Raw Data

Preprocessing

Segmentation

Feature
Extraction

Image Processing

NM500

Training

Classification

Image Processing
Raw Data

Feature Vector

Figure 4. Conceptual data flow.

Figure 5 shows the next evolution stage of our preprocessing chain. One of our goals
was to implement a modular design to easily change parts of the implementation to evaluate
different algorithms. The main difference in the new data flow is that preprocessing is no
longer an independent component, and segmentation was split into background subtraction
and detection. In addition, feature extraction now has two inputs: (1) the original image and
(2) an object list. The object list contains information about the objects present in the image
(e.g., the object’s contour). These changes were made because background substraction and
feature extraction were implemented independent of one another and required different
image preprocessing steps.



Appl. Sci. 2023, 13, 3795 9 of 18

Image 
Processing

Background
Subtraction Detection

Feature
Extraction

Classification

NM500

Feature Vector

Result

Object List

Images

Figure 5. Data processing implemented with NM500.

4. Evaluation
4.1. Set-Up

For the evaluation of our concept, we designed a simple prototype based on a Rasp-
berry Pi 4 (RPI4) to interface with development kits for the sensors and the NM500. This
allows for easy implementation of data logging and processing while still being mobile
and compact. The LWIR sensor used had a resolution of 160 × 120 pixels for a field of view
(FOV) of 57° and a frame rate of 9 frames per second. Our protorype set-up is shown in
Figure 1b,c. We performed a series of indoor and outdoor tests. The outdoor tests were
performed in different locations in a public park. In the park, we tested the performance
with different surfaces, including gravel, asphalt, and grass. Due to privacy concerns, the
performance in these outdoor settings was only judged using the live image, and no data
including persons were stored and processed further. To acquire data without privacy
concerns for further testing, we performed an indoor test with a small group of participants.
During the indoor test, we took images of bikes, e-bikes, scooters, e-scooters, and cargo
bikes. The sensors were mounted at a height of 3.5 m and an inclination of 20° and rotated
45° toward the road.

During the indoor test, we acquired more than 40,000 images. This set of images
was then filtered. First, all images without objects of interest were excluded, and then
the labeling was performed. During labeling, the classes of bike (Bike), pedestrian (Pede),
scooter (Scoo), and cargo bike (Carg) were distinguished. In addition, objects overlapping
each other were given an additional label. After labeling, the images were downsampled to
simulate a frame rate of two frames per second to match our concept and reduce similarities
inside the dataset. Lastly, it was decided to exclude overlapping objects from the scope of
this work and evaluate these cases in a future work. After filtering, 4400 objects of interest
remained in the dataset. All further development of the algorithms was performed using
this dataset.

4.2. Evaluation Method

The previous work already proved that our concept is capable of performing multi-
class classification tasks. The focus of this work is the comparison of different feature
extraction methods. For each change in the feature extraction algorithm, a seperate test
was performed as visualized in Figure 6. First, the dataset was shuffled and split into 70%
training data and 30% validation data. If required by the feature extraction method, a
mapping function was calculated based on the training data. The mapping function was not
calculated using the whole dataset to ensure that no information from the validation data
was present in the training process. After that, the feature vector was calculated, and the
training was performed. Following the reference guides [13], the training data were then
ordered such that repetition in the class ID would only appear after each additional class ID
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was trained. This structuring ensures that the chip always learns enough counterexamples
to set the influence field for existing neurons. Training was repeated until no more new
neurons were committed and no changes in the influence fields occurred. This usually took
four to five epochs.

Calculate
Mapping Function

Split

Dataset

70% 

Trainings Data

30% 

Validation Data

Calculate 

Feature Vector

Calculate 

Feature Vector

Train

Validate

Store Results20 Repetitions

Figure 6. Steps performed for training and evaluation.

Preliminary tests showed that the random selection of images could influence the
results. To obtain an average performance, all tests were repeated 20 times with randomly
picked data before being evaluated.

4.3. Metrics

To measure the performance of the classification, we used a system of four binary
classifiers and sorted the results as shown in Figure 7. Based on this sorting, we calculated
the performance metrics. We used the F1 score to measure the performance per class:

F1 = 2 · precision · recall
presicion + recall

=
2TP

2TP + FP + FN
(3)

We used the weighted average score to compare different test series:

weighted avg =
1

∑C∈N |ŷC| ∑
C∈N
|ŷC|MC (4)

Here, N is the number of classes, MC is the F1 score for class C, and ŷC is the number
of correct results in class c. If not otherwise stated, the F1 score along the standard deviation
(sigma) of the test series is given in all following tables and plots.

Result
Positive Negative
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io
n

Po
si

ti
ve True Positive

(TP)
False Negative

(FN)

N
eg
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e

False Positive
(FP)

True Negative
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Figure 7. Possible results for binary classifiers.
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4.4. Feature Extraction

We focus on four ways to extract feature sets, namely the scaled region of interest
(ROI), ROI histogram, contour features, and moments. For each, we also test different
implementations and combinations of preprocessing algorithms and the combination of
different feature sets for classification.

Scaled ROI: We created the first feature set the same way as in the preliminary proof
of concept by first extracting the ROI and then scaling the image segment down to less
than 256 pixels before flattening the segment row by row. As a way of preprocessing the
data, we focused on normalization, as our preliminary tests showed that other contrast
enhancement methods, such as histogram equalization and contrast-limited adaptive
histogram equalization (CLAHE), yielded worse results. First, we examined the difference
between global and local normalization of the ROI while keeping the final segment size
of 16 × 16 pixels. The result was a slightly better performance of the local normalization,
as shown in Table 3. The second series of tests focused on the size and aspect ratio of the
extracted image segment. We performed three tests with sizes of 10 × 20, 13 × 19, and
12 × 19 pixels. Then, the sizes of 13 × 19 and 12 × 19 pixels were chosen because they were
close to the median aspect ratio of all objects in the dataset, while 10× 20 pixels was chosen
as an example in which neither aspect ratio was ideal, nor was the whole feature vector
used. The results show that all feature sets performed similar and that local normalization
was slightly better than global normalization.

Table 3. F1 score results of the test series with normalized image segments (scaled ROI) for k-nearest
neighbors (KNN) and radial basis function (RBF) modes.

Global Local 10 × 20 12 × 19 13 × 19

RBF KNN RBF KNN RBF KNN RBF KNN RBF KNN

Median 83 83 84 84 84 83 84 84 84 84
Sigma 1.2 1.5 1.0 1.4 0.8 1.2 1.0 1.6 0.9 1

ROI histogram: The second series of feature sets was created using the histogram
of the pixel values in the ROI. The histogram was defined to have 256 bins, and the sizes
of the bins were defined dynamically for each image. We examined the performance of
two approaches for how to handle bins that contain more than 255 elements. The first one
was normalizing all histograms between 0 and 255, and the second approach was limiting
the size of a bin to 255. The results in Table 4 show that limiting the bins achieved better
classification results.

Table 4. F1 score results of the test series with histograms.

Norm. Limited

RBF KNN RBF KNN

Median 52 59 59 66
Sigma 1.6 1.6 1.5 1.7

Contour features: The next set of features was not extracted from the image region
itself but from the geometric attributes of the object’s contour. The specific features used
were the height, width, circumference, aspect ratio, area, extent, solidity, and orientation.
The extent was calculated as the quotient of the contour area and bounding box area.
Solidity is the ratio between the contour area and the area of a convex hull around the
contour [14].

To use these features for classification, it is necessary to perform a transformation to fit
the data into one byte of resolution available per feature. Each feature requires a specific
transfer function, as the range of possible values differs greatly. An additional consideration
is that not all possible values were actually present in the dataset. For example, the aspect
ratio could be any value between 0 and 160 in theory, but the dataset contained no objects
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with an aspect ratio larger than 5, and most aspect ratios were below 1. This fact could be
used to increase the available resolution for the significant range of values.

We investigated the performance of three different transfer functions in combination
with the geometric contour features (Table 5). For each transfer function, we first identified
the actual range of values in the training dataset and defined an expected value range.
Values outside this expected range would be mapped to 0 for values lower than expected
and 255 for higher values. Figure 8 shows these transfer functions and the histogram of the
original and resulting values for the example of the aspect ratio. The first transfer function
is a linear transformation, normalizing the expected values into the range between 0 and
255. Figure 8b shows that the shape and distribution of the histogram remained unchanged.
The second transfer function we investigated was the histogram equalization. Figure 8c
shows that the resulting histogram then spread over the entire value range, which should
have resulted in a more efficient use of the available feature size. However, histogram
equalization is computation-intensive. As a compromise between efficient linearization
and histogram equalization, we investigated a third transfer function: partial linearization.
For this, we first identified the 10th and 90th percentiles and defined a normalization for
the equivalent value range in the feature vector. The results of partial linearization are
presented in Figure 8d.
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Figure 8. Visualization of the transfer function and the value range before and after mapping at the
example for the aspect ratio. (a) Original value range and transfer functions (b) with linear mapping,
(c) with histogram equalization, and (d) with partial linear mapping.

Table 5. F1 score results of the test series with contour properties.

Linear Part. Linear Hist. Euq.

RBF KNN RBF KNN RBF KNN

Median 68 70 68 69 28 30
Sigma 1.3 1.2 1.0 1.6 3.7 3.9

Moments: The last method of feature extraction we investigated was the use of image
moments. In addition to the common moments defined by Equation (5), multiple subsets of
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moments can be derived with different properties [15]. We investigated three additional sets
of moments: (1) the translation-invariant central moments calculated using Equation (7), (2)
the scaling-invariant normalized moments (see Equation (8)), and (3) the rotation-invariant
Hu moments (see Equations (9)–(15)):

Mji = ∑
x,y

pvx,y · xj · yi (5)

µji = ∑
x,y

pvx,y · (x− x̄)j · (y− ȳ)i (6)

x̄ =
M10

M00
; ȳ =

M01

M00
(7)

ηji =
µji

M(i+j)/2+1
00

(8)

I1 = η20 + η02 (9)

I2 = (η20 − η02)
2 + 4η2

11 (10)

I3 = (η30 − 3η12)
2 + (3η21 − η03)

2 (11)

I4 = (η30 + η12)
2 + (η21 + η03)

2 (12)

I5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2] (13)

+ (3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]

I6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2] + 4η11(η30 + η12)(η21 + η03) (14)

I7 = (3η21 − η03)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2] (15)

− (η30 − 3η12)(η21 + η03)[3(η30 + η12)
2 − (η21 + η03)

2]

In the following, we used moments up to the third order and omitted moments
that were either duplicates or constants, as these contained no additional information.
The whole feature vector consisted of 31 features, 10 basic moments, 7 central moments,
7 normalized moments, and 7 Hu moments.

Similar to the contour properties, the moments had to be mapped to values between 0
and 255. For this, we used the same functions as before. The results are shown in the first
two major columns of Table 6, indicating a performance of less than 40. The value ranges
and mapping functions were identified as the root cause for the poor performance:

M′ = sign(M) · log(|M|) (16)

Mapping the moments to a logarithmic scale and keeping the sign (see Equation (16))
yielded improvements. As shown in the last three major columns of Table 6, we could
nearly double the performance.

Table 6. F1 score results of the test series with image moments.

Linear Part. Linear Log Linear Log P.L. Log H.E.

RBF KNN RBF KNN RBF KNN RBF KNN RBF KNN

Median 32 34 36 38 61 61 58 60 66 66
Sigma 2.0 2.3 1.6 1.5 1.1 1.3 1.9 1.6 1.3 1.2

In addition to using the image moments, we investigated the contour moments calcu-
lated using Green’s theorem and the line integral of the object’s contour. Again, we used
the same mapping functions as before, including the logarithm. The results are shown in
the first three columns of Table 7. The last two columns contain the results for a series of
tests that did not include all previously mentioned moments but only basic moments and
central moments.
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Table 7. F1 score results of the test series with log contour moments.

Linear Part. Linear Hist. Euq. Reduced P.L. Reduced H.E.

RBF KNN RBF KNN RBF KNN RBF KNN RBF KNN

Median 71 70 70 69 76 77 70 70 74 74
Sigma 1.1 1.7 1.4 1.3 1.4 1.7 1.4 1.6 1.6 1.4

Combined feature sets: As a last set of features, we investigated the combination
of different feature extraction methods. First, we combined the contour properties and a
reduced set of 16 contour moments and used histogram equalization as a mapping function.
The moment M0,0 was omitted, as it was equal to the contour surface and already part of the
contour properties. The results are shown in Table 8, where in column (a), the performance
was slightly better than the results of the reduced moments.

Table 8. F1 score results of the test series with combined feature extraction methods. (a) Combination
of contour properties and contour moments. (b) Image moments of a downscaled ROI. (c,d) Combi-
nation of scaled ROI and contour moments. (c) The 12 × 19 pixel resolution and 24 moments. (d) The
12 × 18 pixel resolution and 31 moments.

(a) (b) (c) (d)

RBF KNN RBF KNN RBF KNN RBF KNN

Median 77 77 57 59 86 87 87 87
Sigma 1.0 1.2 1.9 2.0 1.0 1.2 0.9 1.1

The second combination we tried reduced the computational load by first downscaling
the ROI to 16 × 16 pixels and then calculating the image moments. The results are shown
in Table 8, where column (a) shows that the performance was 7–9 percent worse than the
performance of the unscaled image moments.

The last combination tested was a combination of the scaled ROI and the image
moments. We already showed that by changing the aspect ratio of the final feature segment,
the classification results were nearly unaffected, and the necessary amount of features
could be reduced. We used an ROI 12 × 19 pixels in size in combination with the reduced
set of 24 moments. The results are shown in the last two columns of Table 8, where for
column (c), an ROI of 12 × 19 pixels and a reduced set of 24 moments were used, and for
column (d), an ROI of 12 × 18 pixels and the full set of moments were used.

4.5. Training Behavior

In another series of tests, we focused on the training behavior of the NM500. Our goal
was to estimate the number of neurons required to perform classification. This number
would then yield the number of NM500 ICs required. The results are shown in Figure 9.
The number of committed neurons increased nearly linearly with the number of training
images. The accuracy, however, did not follow the same trend. The accuracy for both the
KNN and RBF modes approached a fixed value. Additionally, the number of neurons
committed to a class was not connected to the accuracy. The pedestrian and bike classes had
similar numbers of committed neurons but achieved very different classification accuracies.
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(a)

(b) (c)

Figure 9. Training behavior of the NM500 with increased number of images in the training dataset,
with feature extraction using scaled region of interest of 16 × 16 pixels. (a) Neurons committed per
class. (b) Classification accuracy in KNN mode. (c) Classification accuracy in RBF mode.

5. Results

Table 9 summarizes the best results of each approach, and Figure 10 shows the re-
sults for each class of these feature sets. Each of these plots show a similar outline, with
pedestrian as the worst recognized class and cargo bike as the best one, except for the
contour features, where cargo bike was the second-worst class. The general distribution
of the results can partially be explained by the size of the vehicle compared with the size
of the driver and the variety of vehicles. We only had a single cargo bike, and it was the
largest vehicle in our test set-up. Changing the driver did not influence the overall appear-
ance or silhouette of the object as much as in other classes. This is further supported by
Figure 11, which shows that the cargo bike class was the only class with no significant
amount of unknown classifications. The bike, as the second-largest vehicle, had the second-
highest score on average. Even if the contrast did not always allows seeing the bike in
the thermal image, the vehicle forced the driver into a certain position, which could be
distinguished. The same applied to the scooter; all scooters forced the driver into a certain
position. Pedestrians that were not constrained by a vehicle had the largest variety in
posture and were therefore the hardest to distinguish.

Table 9. Best F1 score results of the tested feature extraction methods.

Scaled ROI Histogram Properties Moments Combination

RBF KNN RBF KNN RBF KNN RBF KNN RBF KNN

Median 84 84 59 66 68 70 76 77 87 87
Sigma 1.0 1.4 1.5 1.7 1.3 1.2 1.4 1.7 0.9 1.1

In addition, further inspection of the results shows that the errors in the classification of
the cargo bike could also be attributed to partially inadequate labeling (see Figure 12). The
manual process allowed for labeling images in the context of the previous and following
images, which in turn allowed for the labeling of small object segments. These rare and
adverse occurrences led to errors in classification.

Figure 11 shows the confusion matrices of the results for the RBF mode of the initial
tests with a scaled ROI and the final test with a scaled ROI combined with the contour
moments. On the left axis, the expected label is shown, and on the bottom axis, the
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predicted label is shown. The “0” row and column show the results if no decision could
be made. The first row is empty because the datasets did not contain any examples for no
classes. The confusion matrices show that the change in the aspect ratio and the addition of
moments had no adverse effects, the classification accuracy for each class went up, and a
wrong detection did not shift classes.
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Figure 10. Best results for the tested feature extraction methods: (a) scaled ROI, (b) contour features,
(c) contour moments, and (d) combined moments and scaled ROI.

(a) (b)

Figure 11. Row-wise normalized RBF confusion matrices of (a) 16 × 16 scaled ROI and (b) 12 × 18
combined scaled ROI and contour moments, with true labels on the y axis and predicted labels on the
x axis.

Figure 12. Examples for adverse labeling, the red box marks the ROI of the labeld object.
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6. Conclusions

In this paper, we demonstrated the significant improvement of our previous concept
for a low-power multi-class micromobility vehicle counting system utilizing neuromorphic
processing and low-resolution thermal imaging arrays. In field tests, we verified that the
sensors are capable of performing under real-world conditions and that our concept for
the set-up is feasible. We improved on both our hardware and software design with our
prototype. By combining the features extracted from the image and the object’s contour, we
improved our classification accuracy (F1 score) to over 90% (compare with Figure 10) for
certain classes and to an average of 87% (compare with Table 9). We used fully automated
data segmentation algorithms, and we are confident that these approaches can be developed
further to obtain a classification accuracy close to those of the hand-segmented approaches.
With outdoor tests, we could demonstrate that the implemented concept is feasible.

For future work, we suggest the following aspects to be considered:

1. Training data:
Most important for the next step in development is to conduct further testing in an
outdoor environment, acquiring more data.

2. Self-learning:
The current approach does not yet fully utilize the NM500’s capability for self-learning.
It could be used to allow the system to learn during operation and thus independently
adapt to new environments.

3. Multi-step classification:
In this work, we optimized the performance by combining features from different
sources into one feature vector. It could also be feasible to perform multiple classifica-
tions using different feature sets and interpret the different results in combination.

4. Utilization of the NM500:
The current task of the NM500 is just the final classification, as preprocessing, segmen-
tation, and detection are still performed on the host system. It should be evaluated
which tasks could also be performed by the NM500.

5. Sensor fusion:
The new generation of our prototype utilizes a low-power radar as a trigger for the
infrared sensors. It should be investigated how the information of both sensors could
be used in a sensor fusion approach to further enhance the performance.

In addition, the current concept of using radar information as a trigger and only
reduced thermal still images may give away a lot of information potential. While evaluation
of the complete LWIR full motion data flow does not comply with the power consumption
requirements, using a sequence of at least multiple (3–5) frames could further improve
the overall performance. For application scenarios allowing wall plug power, additional
processing concepts might be considered, making use of the full motion data of the LWIR
camera. Finally, different sensor sets could then be considered, including 3D time-of-flight
cameras [16,17]. Such systems have also shown promising results in a parallel development
path of this project. These results will be presented in a separate publication.
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