Investigation of the Microseismic Response Characteristics of a Bottom Structure’s Ground Pressure Activity under the Influence of Faults
Abstract
:1. Introduction
2. Experimental System
2.1. Monitoring Program
2.2. Configuration of the System
2.3. Monitoring System Error and Sensitivity Calibration
3. Theoretical Foundation
4. Analysis of the Microseismic Event Monitoring Results
4.1. Analysis of the Detection Results of the Number of Microseismic Anomalies over Faults
4.2. Verification of the Monitoring Results and Site Conditions
5. Discussion
6. Conclusions
- (1)
- On the basis of the original monitoring system, a monitoring system suitable for the bottom stability of the first mining section of the Pulang copper mine was established, and the design of the bottom structural stability monitoring scheme and system construction were completed on the premise of ensuring the accuracy and reliability of monitoring data and reducing the maintenance of the system, which met the testing requirements after the error and sensitivity calibration and debugging.
- (2)
- Using the cumulative apparent volume and energy indices to visualize the propensity for rockbursts, the rise in the cumulative apparent volume leads to an increase in the number of rock ruptures, while the rise in energy index indicates a continuous accumulation of energy density with a tendency to rockburst; the timeliness of both makes the cumulative apparent volume predictive of rock rupture and rockburst occurrence.
- (3)
- The test results are timely and standardized compared with conventional monitoring and physical simulation. In addition, the test results guide the prediction of rockburst propensity, the analysis of fault activation mechanisms, and the safety of over-fault coal mine operations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdul-Wahed, M.K.; Al Heib, M.; Senfaute, G. Mining-induced seismicity: Seismic measurement using multiplet approach and numerical modelling. Int. J. Coal Geol. 2006, 66, 137–147. [Google Scholar] [CrossRef]
- Driad-Lebeau, L.; Lahaie, F.; Al Heib, M.; Josien, J.; Bigarré, P.; Noirel, J.F. Seismic and geotechnical investigations following a rockburst in a complex French mining district. Int. J. Coal Geol. 2005, 64, 66–78. [Google Scholar] [CrossRef]
- Lasocki, S.; Orlecka-Sikora, B. Seismic hazard assessment under complex source size distribution of mining-induced seismicity. Tectono-Phys. 2008, 456, 28–37. [Google Scholar] [CrossRef]
- Leśniak, A.; Isakow, Z. Space–time clustering of seismic events and hazard assessment in the Zabrze–Bielszowice coal mine, Poland. Int. J. Rock Mech. Min. Sci. 2009, 46, 918–928. [Google Scholar] [CrossRef]
- Mansurov, V.A. Prediction of rockbursts by analysis of induced seismicity data. Int. J. Rock Mech. Min. Sci. 2001, 38, 893–901. [Google Scholar] [CrossRef]
- Šílený, J.; Milev, A. Source mechanism of mining induced seismic events—Resolution of double couple and non double couple models. Tectonophysics 2008, 456, 3–15. [Google Scholar] [CrossRef]
- Hudyma, M.; Potvin, Y.H. An engineering approach to seismic risk management in hardrock mines. Rock Mech. Rock Eng. 2010, 43, 891–906. [Google Scholar] [CrossRef]
- Dong, L.J.; Wesseloo, J.; Potvin, Y.; Li, X.B. Discrimination of mine seismic events and blasts using the Fisher classifier, naive Bayesian classifier and logistic regression. Rock Mech. Rock Eng. 2016, 49, 183–211. [Google Scholar] [CrossRef]
- Dong, L.J.; Wesseloo, J.; Potvin, Y.; Li, X.B. Discriminant models of blasts and seismic events in mine seismology. Int. J. Rock Mech. Min. Sci. 2016, 86, 282–291. [Google Scholar] [CrossRef]
- Lu, C.P.; Liu, Y.; Wang, H.Y.; Liu, P.F. Microseismic signals of double-layer hard and thick igneous strata separation and fracturing. Int. J. Coal Geol. 2016, 160–161, 28–41. [Google Scholar] [CrossRef]
- Dong, L.; Li, X.; Xie, G. Nonlinear methodologies for identifying seismic event and nuclear explosion using random forest, support vector machine, and naive Bayes classification. Abstr. Appl. Anal. 2014, 2014, 459137. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Wang, E.; Li, Z.; Qiu, L.; Xu, Z. EMR: An effective method for monitoring and warning of rock burst hazard. Geomech. Eng. 2017, 12, 53–69. [Google Scholar] [CrossRef]
- Hirata, A.; Kameoka, Y.; Hirano, T. Safety management based on detection of possible rock bursts by AE monitoring during tunnel excavation. Rock Mech. Rock Eng. 2007, 40, 563–576. [Google Scholar] [CrossRef]
- He, J.; Dou, L.; Gong, S.; Li, J.; Ma, Z. Rock burst assessment and prediction by dynamic and static stress analysis based on micro-seismic monitoring. Int. J. Rock Mech. Min. Sci. 2017, 93, 46–53. [Google Scholar] [CrossRef]
- Zhao, T.B.; Guo, W.Y.; Yu, F.H.; Tan, Y.L.; Huang, B.; Hu, S.C. Numerical investigation of influences of drilling arrangements on the mechanical behavior and energy evolution of coal models. Adv. Civ. Eng. 2018, 2018, 3817397. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Song, D.; Li, Z.; Liu, B.; Liu, J. Research on AE and EMR response law of the driving face passing through the fault. Saf. Sci. 2019, 117, 184–193. [Google Scholar] [CrossRef]
- Zhang, Z.Z.; Gao, F.; Shang, X.J. Rock burst proneness prediction by acoustic emission test during rock deformation. J. Cent. South Univ. 2014, 21, 373–380. [Google Scholar] [CrossRef]
- Wang, E.; He, X.; Wei, J.; Nie, B.; Song, D. Electromagnetic emission graded warning model and its applications against coal rock dynamic collapses. Int. J. Rock Mech. Min. Sci. 2011, 48, 556–564. [Google Scholar] [CrossRef]
- He, X.; Chen, W.; Nie, B.; Mitri, H. Electromagnetic emission theory and its application to dynamic phenomena in coal-rock. Int. J. Rock Mech. Min. Sci. 2011, 48, 1352–1358. [Google Scholar] [CrossRef]
- He, M.C.; Miao, J.L.; Feng, J.L. Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions. Int. J. Rock Mech. Min. Sci. 2010, 47, 286–298. [Google Scholar] [CrossRef]
- Cai, W.; Dou, L.; Zhang, M.; Cao, W.; Shi, J.Q.; Feng, L. A fuzzy comprehensive evaluation methodology for rock burst forecasting using microseismic monitoring. Tunn. Undergr. Space Technol. 2018, 80, 232–245. [Google Scholar] [CrossRef]
- Dong, L.; Sun, D.; Li, X.; Du, K. Theoretical and Experimental Studies of Localization Methodology for AE and Microseismic Sources Without Pre-Measured Wave Velocity in Mines. IEEE Access 2017, 5, 16818–16828. [Google Scholar] [CrossRef]
- Huang, L.Q.; Hao, H.; Li, X.B.; Li, J. Source identification of microseismic events in underground mines with interferometric imaging and cross wavelet transform. Tunn. Undergr. Space Technol. 2018, 71, 318–328. [Google Scholar] [CrossRef]
- Chen, X.H.; Li, W.Q.; Yan, X.Y. Analysis on rock burst danger when fully-mechanized caving coal face passed fault with deep mining. Saf. Sci. 2012, 50, 645–648. [Google Scholar] [CrossRef]
- Liu, C.; Li, S.G.; Cheng, C.; Xue, J.H. Activation characteristics analysis on concealed fault in the excavating coal roadway based on microseismic monitoring technique. Int. J. Min. Sci. Technol. 2017, 27, 883–887. [Google Scholar] [CrossRef]
- Zhang, C.; Jin, G.H.; Liu, C.; Li, S.G. Prediction of rockbursts in a typical island working face of a coal mine through microseismic monitoring technology. Tunn. Undergr. Space Technol. 2021, 113, 103972. [Google Scholar] [CrossRef]
- Wang, C.L.; Liu, Y.B.; Hou, X.L.; Elmo, D. Investigation of the spatial distribution pattern of 3D microcracks in single-cracked breakage. Int. J. Rock Mech. Min. Sci. 2022, 154, 105126. [Google Scholar] [CrossRef]
- Wang, C.L.; Zhou, B.K.; Li, C.F. Experimental investigation on the spatio-temporal-energy evolution pattern of limestone fracture using acoustic emission monitoring. J. Appl. Geophys. 2022, 206, 104787. [Google Scholar] [CrossRef]
- Wang, C.L.; Hou, X.L.; Liu, Y.B. Three-Dimensional Crack Recognition by Unsupervised Machine Learning. Rock Mech Rock Eng. 2021, 54, 893–903. [Google Scholar] [CrossRef]
- Peng, K.; Tang, Z.; Dong, L.; Sun, D. Machine Learning Based Identification of Microseismic Signals Using Characteristic Parameters. Sensors 2021, 21, 6967. [Google Scholar] [CrossRef]
- Wamriew, D.; Pevzner, R.; Maltsev, E.; Pissarenko, D. Deep Neural Networks for Detection and Location of Microseismic Events and Velocity Model Inversion from Microseismic Data Acquired by Distributed Acoustic Sensing Array. Sensors 2021, 21, 6627. [Google Scholar] [CrossRef]
- Hu, S.C.; Tan, Y.L.; Ning, J.G. Multiparameter Monitoring and Prevention of Fault-Slip Rock Burst. Shock Vib. 2017, 2017, 7580109. [Google Scholar] [CrossRef] [Green Version]
- Sainoki, A.; Mitri, H.S.; Chinnasane, D. Characterization of Aseismic Fault-Slip in a Deep Hard Rock Mine Through Numerical Modelling: Case Study. Rock Mech. Rock Eng. 2017, 50, 2709–2729. [Google Scholar] [CrossRef]
- Qu, X.C.; Jiang, F.X.; Yu, Z.X.; Ju, H.Y. Rockburst monitoring and precaution technology based on equivalent drilling research and its applications. Chin. J. Rock Mech. Eng. 2011, 30, 2346–2351. [Google Scholar]
- Liu, J.H.; Di, M.H.; Guo, X.S.; Jiang, F.X.; Sun, G.J.; Zhang, Z.W. Theory of coal burst monitoring using technology of vibration field combined with stress field and its application. J. China Coal Soc. 2014, 39, 353–363. [Google Scholar] [CrossRef]
- Cao, A.; Dou, L.; Cai, W.; Gong, S. Case study of seismic hazard assessment in underground coal mining using passive tomography. Int. J. Rock Mech. Min. Sci. 2015, 78, 1–9. [Google Scholar] [CrossRef]
- Wang, C.L.; Chen, Z.; Liao, Z.F.; Hou, X.L. Experimental investigation on predicting precursory changes in entropy for the dominant frequency of rockburst. J. Cent. South Univ. 2020, 21, 2834–2848. [Google Scholar] [CrossRef]
- Wang, C.L.; Li, C.F.; Chen, Z.; Liao, Z.F. Experimental investigation on multi-parameter classification predicting degradation model for rock failure using Bayesian method. Geomech. Eng. 2020, 20, 113–120. [Google Scholar] [CrossRef]
- Wang, C.L.; Chuai, X.S.; Hou, X.L.; Chen, Z. Experimental investigation of predicting points using Tangent damage factor for limestone failure. J. Appl. Geophy. 2020, 178, 104056. [Google Scholar] [CrossRef]
- Jiang, J.Q.; Wu, Q.L. Characteristic of mining stress evolution and activation of the reverse fault below the hard-thick strata. J. China Coal Soc. 2015, 40, 267–277. [Google Scholar] [CrossRef]
- Chen, Z.H.; Hu, Z.P.; Li, H.; Chen, Q.F. Fracture mechanical model and criteria of insidious fault water inrush in coal mines. J. China Univ. Min. Technol. 2011, 40, 673–677. [Google Scholar]
- Zhu, S.T.; Jiang, F.X. Fault activation of fully mechanized caving face in extra-thick coal seam of deep shaft. Chin. J. Rock Mech. Eng. 2016, 35, 50–58. [Google Scholar] [CrossRef]
- Guo, X.Q.; Dou, L.M. Research on the Microseismic activity of fault reaction induced by coal mining. Saf. Coal Mines 2011, 42, 26–30. [Google Scholar] [CrossRef]
Date | Coordinates | Actual Blasting Coordinates/m | Microseismic System Positioning Coordinates/m | Error/m | |
---|---|---|---|---|---|
Coordinates | Straight Line | ||||
18 March 2017 19:01:04 | E | 17,597,327.3 | 17,597,330.8 | 3.5 | 5.9 |
N | 3,103,174.1 | 3,103,172.3 | 1.8 | ||
U | 3731.0 | 3735.5 | 4.5 | ||
20 March 2017 19:05:55 | E | 17,597,296.4 | 17,597,294.9 | 1.5 | 6.1 |
N | 3,103,174.1 | 3,103,174.0 | 0.1 | ||
U | 3731.0 | 3725.1 | 5.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Zhang, D.; Zuo, C.; Wang, P.; Liu, Q.; Shi, F. Investigation of the Microseismic Response Characteristics of a Bottom Structure’s Ground Pressure Activity under the Influence of Faults. Appl. Sci. 2023, 13, 3796. https://doi.org/10.3390/app13063796
Chen Z, Zhang D, Zuo C, Wang P, Liu Q, Shi F. Investigation of the Microseismic Response Characteristics of a Bottom Structure’s Ground Pressure Activity under the Influence of Faults. Applied Sciences. 2023; 13(6):3796. https://doi.org/10.3390/app13063796
Chicago/Turabian StyleChen, Zeng, Da Zhang, Chang Zuo, Ping Wang, Qiang Liu, and Feng Shi. 2023. "Investigation of the Microseismic Response Characteristics of a Bottom Structure’s Ground Pressure Activity under the Influence of Faults" Applied Sciences 13, no. 6: 3796. https://doi.org/10.3390/app13063796
APA StyleChen, Z., Zhang, D., Zuo, C., Wang, P., Liu, Q., & Shi, F. (2023). Investigation of the Microseismic Response Characteristics of a Bottom Structure’s Ground Pressure Activity under the Influence of Faults. Applied Sciences, 13(6), 3796. https://doi.org/10.3390/app13063796