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Abstract: The Solar Wind Ion Focusing Thruster (SWIFT) is a highly-innovative propellantless
propulsion concept, recently proposed by Gemmer and Mazzoleni. In its nominal configuration, a
SWIFT consists of a conically-shaped mesh of positively-charged conducting tethers, with its vertex
linked to the spacecraft and its axis oriented towards the Sun. The SWIFT collects and filters the solar
wind plasma and suitably directs the positive ions, which are then accelerated by an ion thruster.
Such a device is theoretically able to generate a deep-space propulsive acceleration that comes, in
part, from the solar wind dynamic pressure impinging on the conical grid and, in part, from the
positive ion beam. In particular, the orientation of the ion beam may be chosen in such a way as to
set the resultant propulsive acceleration and steer the spacecraft. The aim of this paper is to analyze
the performance of a SWIFT-propelled spacecraft in an orbit-to-orbit two-dimensional interplanetary
transfer. To that end, some mission scenarios are studied, in an optimal framework, by minimizing the
total flight time necessary for the spacecraft to complete the transfer as a function of the propulsion
system performance parameters. Numerical simulations are used to compare the optimal flight times
calculated in simplified Earth–Venus and Earth–Mars transfers with those obtained by considering
other propellantless propulsion systems.

Keywords: Solar Wind Ion Focusing Thruster; optimal transfer; heliocentric mission analysis

1. Introduction

Propellantless systems are the frontier of current and near-term technology for space
propulsion and are likely to become the only viable way to realize new advanced mis-
sion concepts, such as reaching high-energy orbits of comets [1,2] or Solar System small
bodies [3–5], rectilinear trajectories [6,7], displaced orbits [8–11], or the creation and main-
tenance of artificial Lagrangian points [12–14] and hovering conditions over asteroids [15].
Solar sails and electric solar wind sails (E-sails) are currently the most promising types of
propellantless systems. They are both able to gain energy from the Sun, although with differ-
ent physical mechanisms. On one side, solar sails are propelled by the momentum transfer
of solar photons impinging on a large, lightweight, and reflecting membrane [16–20]. E-
sails, instead, produce a propulsive thrust by extracting momentum from the solar wind
ions, which are shielded by an electric field generated around a large grid of conducting
tethers [21,22]. Despite their different working principles, the common feature of solar sails
and E-sails is that both require large surfaces to produce thrust and that those surfaces must
be suitably oriented with respect to the Sun–spacecraft (that is, radial) direction to generate
a thrust component capable of modifying the spacecraft orbital momentum [16,23,24]. Their
other common feature is that the maximum thrust magnitude, for a given distance from the
Sun, is obtained when the reference plane (either the reflecting membrane or the nominal
plane containing the conducting tethers) is placed normal to the radial direction [25].

The need to reorient the reference plane for guidance and navigation purposes gives
rise to a double issue. In the first place, the rotations of the plane may represent a complex
task to carry out, especially when large reorientation angles are involved. However, even
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more important is the propulsive effect caused by the rotation, since, as the reference plane
strays from a Sun-facing orientation, the solar wind ions and photons “see” a smaller
surface to hit, with a consequent reduction of thrust magnitude. Alternative configurations
have been proposed to mitigate these drawbacks. For example, in the case of photonic
propulsion systems, the functions of collecting and directing the solar radiation may be
separated by means of an arrangement that is called Solar Photon Thrustor (SPT), according
to its original definition by Robert Forward [26]. In that system, the solar rays impinging
on a collector (a large curved reflecting surface) are first directed on a small flat mirror,
the reflector, which redirects them on a second steerable mirror, the director, used to suitably
orient the force acting on the SPT. Since the collector is always oriented orthogonal to the
Sun-pointing direction, it always produces the maximum allowable thrust magnitude
for a given collector reflecting surface. Due to its special arrangement, a typical SPT
configuration is, in principle, superior to a conventional solar sail, as it may be concluded
from simulations of Earth escape trajectories [27] or interplanetary trajectories [28,29].
Updated results, made on realistic SPT configurations, have however called into question
the actual effectiveness of this advanced propulsion concept [30].

Returning to systems that extract momentum from the solar wind ions, the Solar Wind
Ion Focusing Thruster (SWIFT) is a new propellantless device, which may be thought of
as an evolution of the E-sail concept [31–33]. It essentially consists of a grid of conducting
tethers, electrostatically charged at a positive electric potential, arranged in a conically-
shaped mesh with a circular base that has a radius of some kilometers and is supported
by a few auxiliary booms with stiffening purposes. The solar wind ions are filtered by the
charged SWIFT cone and the collected positive ions are accelerated by an ion thruster and
then ejected in a beam that can be suitably oriented to provide the desired thrust component.
The propulsion system also includes a cathode (or other suitable electron source) to prevent
the thruster from accumulating a net charge. Since the SWIFT cone axis always points to the
Sun, the functions of collecting and directing the solar wind ions are separated, and for this
reason the SWIFT concept has interesting similarities with the Forward’s SPT configuration.
So far, however, a reasonable estimate of the SWIFT capabilities is still lacking and is
confined to the preliminary analysis in Ref. [34], where Gemmer et al. have reported some
parametric studies about flyby missions to Venus and Mars. The aim of this paper is to
fill that gap and quantify the SWIFT’s performance in a systematic way, by translating the
analysis into the solution of a minimum-time interplanetary transfer problem. In this case,
the optimal (i.e., minimum-time) trajectories are obtained with an indirect approach by
enforcing the necessary conditions for optimality according to the Pontryagin’s maximum
principle [35]. In particular, the Hamiltonian associated to the problem is maximized at any
time by maximizing the projection of the propulsive acceleration vector along the direction
of the Lawden’s primer vector [36,37].

This paper is organized as follows. The next section describes the spacecraft dynamics
in a heliocentric mission scenario and provides an extension of the thrust model recently
discussed in Ref. [34]. The analytic expression of the spacecraft propulsive acceleration
vector is then used in Section 3 to optimize the spacecraft transfer trajectory in a circle-
to-circle coplanar orbit transfer, while Section 4 discusses the optimal results obtained by
numerically simulating two potential (and simplified) interplanetary missions towards
Mars and Venus. Finally, the last section summarizes and highlights the main outcomes of
this work.

2. Mathematical Model

The performance of a SWIFT-based spacecraft is here investigated assuming that the
mission consists of a heliocentric transfer trajectory between two circular and coplanar
orbits. Such a two-dimensional spacecraft motion may be conveniently described with the
aid of a heliocentric polar reference frame T (O; r, θ), whose origin O coincides with the
Sun’s center of mass; r is the Sun–spacecraft distance, and θ is the spacecraft polar angle
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measured counterclockwise from a fixed direction, which coincides with the Sun–spacecraft
line at the initial time t = t0 , 0; see Figure 1.

Sun
0r

r
�

initial
position

to
S
un

O

T

�

ˆ
r

i

ˆ
θ

i

propelled

trajectory

spacecraft

fixed
direction

D

Figure 1. Sketch of the polar reference frame and SWIFT-induced thrust contributions.

The fundamental unit vectors of T are denoted by {îr, îθ}, where îr is the outward
radial unit vector, and îθ is the circumferential unit vector, so that the spacecraft position (r)
and velocity (v) vectors can be written in T as

r = r îr , v = vr îr + vθ îθ , (1)

where vr (or vθ) is the radial (or circumferential) component of v. In the polar reference
frame, the SWIFT-induced propulsive acceleration is written as a function of the radial (ar)
and circumferential (aθ) components as

a = ar îr + aθ îθ , (2)

so that the spacecraft equations of motion are

ṙ = vr (3)

θ̇ =
vθ

r
(4)

v̇r =
v2

θ

r
− µ�

r2 + ar (5)

v̇θ = −vr vθ

r
+ aθ , (6)

where the dot symbol denotes a derivative with respect to time t, and µ� is the Sun’s
gravitational parameter. The resultant (spacecraft) heliocentric trajectory requires a suitable
model describing the SWIFT-induced propulsive acceleration components as a function of
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the solar wind properties and of the propulsion system design parameters. Such a model is
illustrated in the next section.

Thrust Vector Description

According to Refs. [31–33], the SWIFT propulsion system concept consists of a conically-
shaped mesh grid of conducting tethers, which are electrostatically charged with a nominal
positive voltage φ0, and a few auxiliary booms, used as supporting structural elements,
as illustrated in Figure 2, where δ is the cone aperture angle.
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(a) Spacecraft main elements.
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(b) Geometric design parameters.

Figure 2. Conceptual scheme of a SWIFT-based spacecraft (main body not to scale).

The solar wind dynamic pressure impinging on the conically-shaped mesh grid of the
SWIFT produces a propulsive force component D, usually referred to as “drag” because it
opposes the Sun’s gravitational pull, which is aligned with the outward radial direction îr
(see Figure 1), and given by [34]

D = nsw mp v2
sw A, (7)

where nsw and vsw are the local solar wind particle density and bulk velocity, respectively,
mp is the proton mass, A , π R2 denotes the SWIFT cone base area, R being the cone’s
base radius. The latter is here considered a geometric design parameter. The values of mp
and vsw, along with other physical parameters later defined and used in the numerical
simulations, are reported in Table 1.

Table 1. Constants and physical parameters used in the thrust model and in numerical simulations.

Parameter Value Units

e 1.60217663× 10−19 C

me 9.1093837× 10−31 kg

mp 1.67262192× 10−27 kg

n⊕ 7.3× 106 particles/m3

r⊕ 1 au

vsw 400 km/s

µ� 132,712,439,935.5 km3/s2

ρw 2700 kg/m3
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There exists a second contribution to the SWIFT-induced total force [34], that is,
the steerable component T of Figure 1, obtained by accelerating the collected solar wind
positive ions and then ejecting them in a beam that can be suitably oriented by means of
a dedicated assembly. In a two-dimensional mission scenario, the orientation of the ion
beam (an so the direction of T) is defined by a single reference angle α, that is, the thrust
angle, where α ∈ [−αmax, αmax] (with αmax > 0) is measured counterclockwise from îr as
illustrated in Figure 1. Note that α is constrained to a maximum (αmax) and a minimum
(−αmax) value by the presence of the conical structure. Bearing in mind the scheme of
Figure 2b, the maximum thrust angle cannot exceed π rad− δ/2, while in the rest of the
paper αmax is calculated as

αmax = π rad− δ

2
− ∆α, (8)

where ∆α ≥ 0 is a contingency factor that is added to the nominal value of (π rad− δ/2)
to account for possible uncertainties on the SWIFT cone geometry. According to Ref. [34],
the magnitude of T is given by

T = nsw mp vsw vex A ≡ nsw mp vsw vex π R2, (9)

where vex is the ion beam exhaust velocity so that, from Equations (7) and (9), it can be
observed that the steerable thrust and the drag are related by the simple relation

T = k D, (10)

where
k ,

vex

vsw
. (11)

In a preliminary mission analysis, the solar wind velocity vsw can be assumed to be
practically constant, that is, nearly independent of both r and t. This means that the value
of k, defined in Equation (11), may be modified by simply varying the ion beam exhaust
velocity vex. In this sense, k is here considered a propulsive design parameter. Since the
particle density nsw scales as the inverse square of the heliocentric distance, that is,

nsw = n⊕
( r⊕

r

)2
, (12)

where r⊕ = 1 au is a reference distance and n⊕ the solar wind particle density at r = r⊕,
the force components D and T may be written in a compact form as

D = D⊕
( r⊕

r

)2
(13)

T = k D⊕
( r⊕

r

)2
, (14)

where D⊕ denotes the value of D calculated at r = r⊕. Note that the previously described
model assumes that the solar wind density is stationary, i.e., that it does not fluctuate
over time. This simplifying assumption is reasonable in a preliminary mission analysis,
although data collected by several space missions [38–40] clearly indicate that the plasma
parameters undergo chaotic temporal fluctuations. Using Equation (7), the expression of
D⊕ is

D⊕ , n⊕ mp v2
sw π R2, (15)

which is a function of the (geometric) design parameter R. To obtain the expressions of the
propulsive acceleration components {ar, aθ} in Equation (2), the reference drag force D⊕ is
rewritten in terms of force-to-mass ratio as

aD⊕ ,
D⊕
m

, (16)
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where m is the total spacecraft mass, here considered as a constant.
The value of m may be estimated with a spacecraft mass breakdown model. To that

end, we adopted the original approach reported in Ref. [34], which has been suitably refined
and extended. More precisely, the total spacecraft mass is considered as the sum of four
contributions, that is,

m = mw + ms + mps + mb, (17)

where mw is the total mass of conducting wires, ms is the total mass of supporting booms,
mps is the mass of the power generation subsystem, and mb is the mass of the main
spacecraft, including the payload and the other typical subsystems. In this analysis, mb is a
sort of inertial design parameter that depends on the characteristics of the scientific mission
to be fulfilled. The total mass of the conducting wires composing the (conical) mesh grid is
evaluated as

mw = π ρw r2
w Lw, (18)

where ρw is the density of the wire material, rw is the wire radius, and Lw is the total length
of the conducting wires. The latter is the sum of the total length of the straight wires and
the circular wires, viz.

Lw =

[
Ne R

sin(δ/2)
+ 2 π d tan(δ/2)

Nc

∑
i=1

i

]
, (19)

where Ne and Nc are the number of external (straight) and circular conducting wires,
respectively, and d is the spacing distance between two consecutive circular wires; see
Figure 2. Unlike Ne, which is a design parameter, Nc is calculated as

Nc = ceil
[

R
d tan(δ/2)

]
, (20)

where ceil(x) denotes the ceil function of the argument x, which gives a smaller integer
number greater than x.

The second contribution to the total spacecraft mass is given by the structural elements
necessary to support the SWIFT, that is, ms. According to Gemmer et al. [31], the supporting
structure comprises a main boom, which extends from the spacecraft’s main body to the
cone base, a ring-shaped structure around the cone base, and a number Ns of auxiliary
radial elements connecting the main boom and the base ring; see Figure 2. The total length
Ls of the supporting structural elements is therefore given by

Ls = 2 π R +
R

tan(δ/2)
+ Ns R, (21)

so that
ms = ρlb Ls, (22)

where ρlb is the linear mass density of the structural elements. The mass mps of the power
generation subsystem is estimated by writing the total electric power P required by the
spacecraft as a function of the design parameters. To this end, two main contributions are
accounted for, that is, the electric power Pex used to accelerate the (steerable) ion beam,
and the electric power Pw required to maintain the conical grid voltage, viz.

P = Pex + Pw, (23)

in which the value of Pex is calculated as

Pex =
1
2

n⊕ mp A vsw v2
ex ≡

1
2

n⊕ mp π R2 v3
sw k2, (24)
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while Pw is given by

Pw = 2 n⊕ rw

√
2 e3 φ3

0
me

Lw, (25)

where e is the elementary charge, me is the electron mass, and Lw is obtained from
Equation (19). Note that the power consumption estimation involves the solar wind ion
density at Sun–Earth distance, so it is valid as long as the Sun–spacecraft distance is not too
far from 1 au. Finally, the mass of the power generation system mps is considered a linear
function [31] of P through the (assigned) power subsystem specific mass β, that is,

mps = β P ≡ β

1
2

n⊕ mp π R2 v3
sw k2 + 2 n⊕ rw

√
2 e3φ3

0
me

Lw

. (26)

Note that, in the right hand side of Equation (26), the dependence on the base radius
R also appears in Lw; see Equation (19).

Based on the previous discussion, the two propulsive acceleration components {ar, aθ}
can be calculated using Equations (7), (9) and (17), recalling that the drag force component
D is radial, while the steerable thrust component T forms an angle α with îr; see Figure 1.
The expressions of {ar, aθ} are therefore

ar =
D + T cos α

m
≡ aD⊕

( r⊕
r

)2
(1 + k cos α) (27)

aθ =
T sin α

m
≡ aD⊕

( r⊕
r

)2
k sin α, (28)

where aD⊕ and k are given by Equations (16) and (11), respectively. The magnitude of the
propulsive acceleration vector can be calculated by means of Equations (27) and (28) as

‖a‖ = aD⊕

( r⊕
r

)2√
1 + k2 + 2 k cos α. (29)

Its maximum value, for a given solar distance, is obtained when α = 0, that is, when T
is aligned with the outward radial direction, so that the expression of amax depends on the
Sun–spacecraft distance as

amax = aD⊕

( r⊕
r

)2
(1 + k). (30)

The value of ‖a‖ or amax can be used to obtain the dimensionless version of the
propulsive acceleration components as a function of the pair {α, k}, viz.

ar

amax
=

1 + k cos α

1 + k
,

aθ

amax
=

k
1 + k

sin α (31)

or
ar

‖a‖ =
1 + k cos α√

1 + k2 + 2 k cos α
,

aθ

‖a‖ =
k sin α√

1 + k2 + 2 k cos α
. (32)

In this regard, Figure 3 shows the propulsive acceleration, normalized with amax, as a
function of k and α.

Figure 4, instead, illustrates the dimensionless components of the propulsive accel-
eration as a function of α for different values of the propulsive parameter k. While the
maximum value of ar is obtained with α = 0, the circumferential component aθ is maxi-
mized by values of the thrust angle that vary with the design parameter k.
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Figure 3. Dimensionless propulsive acceleration magnitude as a function of α and k.
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Figure 4. Dimensionless radial and circumferential components of a as functions of α and k.

Finally, Figure 5 shows the classical force bubble [41] for different values of k, sug-
gesting that a larger value of k may provide a larger circumferential component of the
propulsive acceleration, with the drawback of a corresponding necessary increase of the re-
quired power for ion acceleration, as shown by Equation (24). Note that Figure 5 takes into
account the presence of a conical grid with aperture angle δ = 60 deg and a contingency
∆α = 0, thus implying that the thrust angle ranges in the interval α ∈ [−150, 150]deg.

From the viewpoint of interplanetary transfer performance, the possibility of gener-
ating a significant value of circumferential acceleration aθ is of primary concern. In this
regard, from Equation (28), the maximum value of aθ is reached when α = 90 deg and is
given by

max(aθ) = aD⊕

( r⊕
r

)2
k. (33)

Bearing in mind Equation (31), it is found that

max(aθ)

amax
=

k
1 + k

. (34)

The preceding equation allows us to compare the thrust capabilities of the SWIFT
concept and that of an ideal (i.e., perfectly reflecting) flat solar sail in terms of the dimen-
sionless ratio max(aθ)/amax. In fact, in an ideal solar sail (subscript ss), the circumferential
component of the propulsive acceleration can be written as [16]
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aθss = amaxss sin αss cos2 αss, (35)

where αss is the angle between the sail thrust vector (whose direction coincides with that
of the unit vector normal to the sail-shaded plane [42]) and the radial direction, while
amaxss is the (local) maximum propulsive acceleration magnitude obtained in a Sun-facing
condition [43]; see Figure 6.
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Figure 5. SWIFT force bubble with different values of k, when the cone aperture is δ = 60 deg and
the contingency is ∆α = 0.
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Figure 6. Ideal (photonic) flat solar sail thrust angle.

The value of max(aθss)/amaxss is reached when αss = arcsin(1/
√

3), with

max(aθss)

amaxss

=
2

3
√

3
. (36)
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Equating the right hand sides of Equations (34) and (36), one obtains the value of k nec-
essary for the SWIFT thruster to be equal to the dimensionless circumferential component
of the solar sail-induced acceleration, that is,

k = k? =
2

3
√

3− 2
' 0.6258. (37)

As a result, when k > k?, the maximum value of aθ for a SWIFT-based spacecraft is
greater than the corresponding value of an ideal solar sail of equal amax. In the special
case when k = k?, δ = 60 deg and ∆α = 0, Figure 7 compares the force bubbles of the two
propulsion systems.

max
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k =

-

Figure 7. Comparison between the force bubble of a SWIFT and an ideal (photonic) flat solar sail
when k = k?, δ = 60 deg and ∆α = 0.

With the aid of Equations (27) and (28), the last two equations of motion (5) and
(6) become

v̇r =
v2

θ

r
− µ�

r2 + aD⊕

( r⊕
r

)2
(1 + k cos α) (38)

v̇θ = −vr vθ

r
+ aD⊕

( r⊕
r

)2
k sin α, (39)

in which the thrust angle α is the control variable, while aD⊕ and k may be thought of
as the design parameters that define the propulsive performance of the SWIFT system.
For a given pair {aD⊕ , k}, the time variation of the thrust angle α = α(t) is obtained as the
solution of an optimal control problem in which the transfer trajectory minimizes the flight
time between the parking and the target orbit, as discussed in the next section.

3. Trajectory Optimization

Consider a circle-to-circle (coplanar) orbit transfer, where the SWIFT-based spacecraft,
which initially (at t0 = 0) tracks a heliocentric circular orbit of radius r0 , r(t0) = r⊕,
reaches a target circular orbit of given radius r f , r(t f ) at time t f . It is assumed that at time
t0 the spacecraft leaves the Earth along a parabolic (escape) orbit. In addition, without loss
of generality, the spacecraft’s initial polar angle is set equal to zero, while the final value of
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θ is left free, that is, it is an output of the optimization process. Accordingly, the initial and
final constraints on the spacecraft state variables {r, θ, vr, vθ} are

r(t0) = r⊕ , θ(t0) = 0 , vr(t0) = 0 , vθ(t0) =

√
µ�
r⊕

(40)

r(t f ) = r f , vr(t f ) = 0 , vθ(t f ) =

√
µ�
r f

. (41)

The orbit transfer is analyzed in an optimal framework [44–46], in which the trajectory
is found by minimizing the flight time necessary for the spacecraft to reach the target orbit.
This amounts to maximizing the performance index

J , −t f , (42)

where t f coincides with the total flight time to be calculated. The optimal control problem
is faced with an indirect approach [47,48], in which the Hamiltonian H is obtained from
Equations (3), (4), (38) and (39) as

H = λr vr + λθ vθ + λvr

[
v2

θ

r
− µ�

r2 + aD⊕

( r⊕
r

)2
(1 + k cos α)

]
+

+ λvθ

[
−vr vθ

r
+ aD⊕

( r⊕
r

)2
k sin α

]
, (43)

where {λr, λθ , λvr , λvθ
} are the variables adjoint to the spacecraft states. The time variation

of the adjoint variables is described by the Euler–Lagrange equations [47,48],

λ̇r = −
∂H
∂r

, λ̇θ = −∂H
∂θ

, λ̇vr = −
∂H
∂vr

, λ̇vθ
= − ∂H

∂vθ
, (44)

whose explicit expressions are here omitted for the sake of brevity. It can be easily verified
that λ̇θ = 0 (in factH does not explicitly depend on the polar angle), so that λθ is a constant
of motion. Its value is found from the transversality condition that, in this case, reads

λθ(t f ) = 0 , H(t f ) = 1, (45)

from which λθ = 0 during the whole flight.
The optimal control law α = α?(t), that is, the optimal time variation of the thrust

angle, comes from the Pontryagin’s maximum principle [48], according to which α must
maximize the Hamiltonian at any time instant. Observing from Equation (43) that

H′ , aD⊕ k
( r⊕

r

)2
[λvr cos α + λvθ

sin α] (46)

coincides with that part of H that explicitly depends on α, and recalling that the thrust
angle modulus is upper constrained by αmax of Equation (8), the optimal control law is
found to be

α? =


αmax if σ > αmax

−αmax if σ < −αmax

σ otherwise,

(47)

where σ ∈ (−π, π] rad is an auxiliary angle defined as

sin σ ,
λvθ√

λ2
vθ
+ λ2

vr

, cos σ ,
λvr√

λ2
vθ
+ λ2

vr

. (48)
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The optimal control law for a SWIFT system is different from that of an ideal solar
sail. This is clearly shown in Figure 8, which, with the aid of Sauer’s results [37], compares
the optimal thrust angle as a function of σ for an ideal solar sail and a SWIFT propulsion
system with an aperture angle δ = 60 deg and a contingency ∆α = 0.
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Figure 8. Comparison between the optimal control law SWIFT (black line) and an ideal flat solar sail
(red line) when δ = 60 deg and ∆α = 0, that is, αmax = 150 deg.

The associated two-point boundary value problem is described by the eight differ-
ential Equations (3), (4), (38), (39) and (44) with the eight boundary conditions given by
Equations (40) and (41) and the first of Equation (45), while the last of Equation (45) allows
the minimum flight time to be calculated. The two-point boundary value problem has
been solved with a hybrid numerical technique that combines genetic algorithms with
gradient-based methods [49]. The next section analyzes the results obtained by numerically
solving the optimal control problem in a pair of typical mission scenarios.

4. Numerical Simulations and Mission Applications

The previous SWIFT thrust model is now used to evaluate the spacecraft propulsive
performance for a given set of design parameters. To that end, we use the main assumptions
made in the original work by Gemmer et al. [34], with a few changes. More precisely,
the main differences between the data reported in Table 2 and those indicated in Ref. [34]
are the values of {d, Ns} that were originally chosen as {1 m, 1}. In addition, recall that
in this work the thrust model accounts for the presence of a sort of “payload” mass
term (which coincides with the term mb in the current notation), a contingency angle ∆α,
and a maximum thrust angle constraint, which are not considered in the simplified model
discussed in Ref. [34].

The design parameters of the SWIFT-based spacecraft are summarized in Table 2,
where the main spacecraft mass mb is assumed to be 250 kg, while β is a trade-off value
between flight-qualified solar panels (i.e., 10−3 kg/W) and cutting-edge photovoltaic (i.e.,
5× 10−2 kg/W) [34,50]. Using these design parameters, the spacecraft characteristics
and its propulsive performance are those detailed in Table 3. In particular, according to
Equation (8), the assumed values of δ and ∆α provide αmax = 90 deg, so that the steerable
propulsive force T has a non-negative radial component, as happens in a typical solar
sail [16] or E-sail [22] mission scenario. This aspect is highlighted in Figure 9, which shows
the SWIFT force bubble used in the numerical simulations at a distance r = r⊕ from the Sun.
Note that, according to Equation (11), the value k = 1 gives a steerable thrust magnitude
equal to D and an exhaust velocity of 400 km/s. The assumed value of vex is well above the
current typical range, but it is consistent with the recent development in the area of electric
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propulsion systems [51]. Figure 9 shows that in this case the maximum radial acceleration
ar is equal to twice the maximum transverse component aθ .

Table 2. SWIFT propulsion system design parameters used in the thrust vector mathematical model.

Parameter Value Units

d 10 m

mb 250 kg

Ne 100 −

Ns 4 −

R 3 km

rw 2× 10−5 m

vex 400 km/s

β 2× 10−3 kg/W

δ 120 deg

∆α 30 deg

φ0 10 kV

ρlb 4× 10−2 kg/m

Table 3. Characteristics and propulsive performance of the SWIFT-based spacecraft used in the
numerical simulations.

Parameter Value Units

aD⊕ 0.035 mm/s2

D⊕ 0.0552 N

m 1 582 kg

P 11.1 kW

k 1 −

αmax 90 deg
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Figure 9. SWIFT force bubble when r = r⊕, k = 1, αmax = 90 deg and aD⊕ = 0.035 mm/s2.
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Case Study

Two specific mission applications are considered to estimate the optimal performance
of a SWIFT-based spacecraft, the main characteristics of which are detailed in Table 3.
In particular, an orbit raising with r f = r♂ , 1.524 au, and an orbit lowering with
r f = r♀ , 0.723 au have been studied. Recalling that the radius of the initial circular orbit is
r0 = r⊕ = 1 au, the case of r f = r♂ (or r f = r♀) is representative of a simplified, ephemeris-
free, Earth–Mars (or Earth–Venus) interplanetary transfer in which the eccentricity and
the inclination over the Ecliptic of both planetary orbits are neglected. The results of
the numerical optimization for the Earth–Mars transfer give a minimum flight time that
is slightly shorter than 8.1 years, with an optimal transfer trajectory that completes five
revolutions around the Sun before reaching the target Mars orbit. This aspect is confirmed
by Figure 10a, which shows the optimal transfer trajectory in a polar reference frame.
According to Figure 10b, which shows the optimal time variation of the thrust angle, α
reaches six times the maximum value αmax with a mean value (over the entire transfer) of
about 84 deg.
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(a) Polar form of the transfer trajectory.
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(b) Optimal control law α = α(t).

Figure 10. Optimal transfer trajectory and control angle history in an Earth–Mars transfer. Black
circle (or square) refers to the start (or arrival) point.

The time variations of the spacecraft states {r, θ, vr, vθ} are reassumed in Figure 11.
Note that the radial spacecraft velocity vr remains small during the whole transfer, so that
the optimal transfer trajectory can be approximated with a sort of tight spiral connecting
the initial and final (circular) orbits. This feature of the transfer trajectory is the result of
a propulsive acceleration that is small, in comparison with the (local) Sun’s gravitational
acceleration. Figure 11 also shows that the time variation of the Sun–spacecraft distance r
(or the transverse component of the inertial spacecraft velocity vθ) may be thought of as
a superposition of a secular increase (or decrease) and a short period of oscillation. As a
result, the SWIFT system’s performance is similar to that obtained using a solar sail [52–54],
an E-sail [25], a Heliogyro [55], or a low-performance electric thruster [56,57] as a primary
propulsion system.
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(b) Polar angle.
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(d) Transverse component of velocity.

Figure 11. Time variation of the spacecraft states in an Earth–Mars transfer. Black circle (or square)
refers to the start (or arrival) point.

Similar considerations can be made for an Earth–Venus transfer (when r f = r♀), which
is completed with a flight time of slightly above 3.6 years. In that case, the optimal transfer
trajectory and the time variation of the thrust angle are shown in Figure 12, while the
spacecraft states are reassumed in Figure 13. Note that α < 0 during the entire transfer, that
is, the steerable thrust T has a negative circumferential component. In that case, the value
of −αmax is reached five times, with a mean value of the thrust angle of about −80 deg.
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(a) Polar form of the transfer trajectory.
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(b) Optimal control law α = α(t).

Figure 12. Optimal transfer trajectory and control angle history in an Earth–Venus transfer. Black
circle (or square) refers to the start (or arrival) point.
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Figure 13. Time variation of the spacecraft states in an Earth–Venus transfer. Black circle (or square)
refers to the start (or arrival) point.

5. Conclusions

This paper has analyzed the performance of a SWIFT-based spacecraft in a heliocentric
and two-dimensional mission scenario. In particular, an improved version of the thrust
vector mathematical model has been discussed with the aim of obtaining a set of analytical
equations useful for a preliminary trajectory analysis. The optimal control law has been
obtained with an indirect approach, and the corresponding two-point boundary value
problem has been solved using a hybrid numerical technique. The numerical results show
that the typical propulsive performance of a SWIFT-based spacecraft, in a simplified inter-
planetary trajectory, provides a minimum flight time of some years for a mission towards
Mars (or Venus) without ephemeris constraints. These numbers, which are comparable to
more conventional propellantless systems such as solar sails or E-sails, prevents the use
of this propulsion concept from a manned interplanetary mission, as expected. However,
the intrinsic characteristic of a SWIFT propeller of providing a continuous thrust for a
long period of time allows this propulsion system to be an interesting option in advanced
high-energy missions such as the generation of artificial equilibrium points or displaced
non-Keplerian orbits. These two latter applications are the focus of our current research
and represent the natural extension of this work.
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Abbreviations

Notation
A SWIFT cone base area [m2]
aD⊕ design parameter; see Equation (16) [mm/s2]
a propulsive acceleration vector [mm/s2]
amax maximum propulsive acceleration magnitude [mm/s2]
ar radial component of a [mm/s2]
aθ transverse component of a [mm/s2]
D radial thrust (“drag”) [N]
d spacing between circular conducting wires [m]
e elementary charge [C]
H SWIFT cone height [m]
H Hamiltonian
k dimensionless design parameter; see Equation (11)
k? critical value of k; see Equation (37)
îr radial unit vector
îθ circumferential unit vector
J performance index
Ls total length of structural elements [m]
Lw total length of conducting wires [m]
m total spacecraft mass [kg]
mb spacecraft main body mass [kg]
me electron mass [kg]
mp proton mass [kg]
mps SWIFT power generation system mass [kg]
ms SWIFT structure mass [kg]
mw SWIFT wires total mass [kg]
Nc number of circular conducting wires
Ne number of straight conducting wires
Ns number of radial support booms
nsw solar wind density [particles/m3]
n⊕ value of nsw at 1 au from the Sun
O Sun’s center of mass
P total power required by the SWIFT [W]
Pex power required by ion acceleration [W]
Pw power required by wire grid [W]
R SWIFT cone base radius [m]
r Sun-spacecraft radial distance [au]
r spacecraft position vector [au]
rw conducting wire radius [m]
r⊕ reference distance [1 au]
T steerable thrust [N]
t time [days]
T polar reference frame
v spacecraft velocity vector [km/s]
vr radial component of the spacecraft velocity [km/s]
vsw solar wind velocity [km/s]
vex exhaust velocity [km/s]
vθ transverse component of the spacecraft velocity [km/s]
α thrust angle [deg]
α? optimal thrust angle [deg]
∆α contingency value [deg]
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β power system specific mass [kg/W]
δ SWIFT cone aperture [deg]
φ0 conducting wire electric potential [V]
λr variable adjoint to r
λvr variable adjoint to vr
λvθ variable adjoint to vθ

λθ variable adjoint to θ

µ� Sun’s gravitational parameter [km3/s2]
ρlb support boom linear density [kg/m]
ρw conducting wire density [kg/m3]
θ spacecraft polar angle [deg]
Subscripts
0 initial, parking orbit
f final, target orbit
♂ Mars
♀ Venus
ss ideal flat solar sail
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