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Abstract: Fluid wave code communication is used in layered water injection intelligent monitoring
systems, but a model of fluid transient flow wave signal transmission is still unknown. Impedance
and transfer coefficient in power transmission theory were used to describe transient flow waves in
the transmission process of a tubular string in a water injection well and a transient flow wave model
was built based on the transfer matrix method. The relationship between pressure and discharge
was analyzed when the transient flow waves moved along the tubular string, and the influence
of terminal impedance and dip angle of the tubular string on the wave transmission was studied.
Simulations showed that the transient flow waves were with standing wave distribution when the
transient flow wave signals transmitted in the tubular string. Moreover, the transmission volatility
under different terminal impedances was analyzed. The communication frequency was selected
according to the wave amplitude ratio between the two ends of the water injection tubular string. The
relationship between the influence of tubular string parameters and fluid characteristics on the wave
velocity and wave amplitude in the signal transmission process was obtained by simulation analysis.
The wave velocity tended to decrease as the gas content increased. As the tube diameter–thickness
ratio increased, the wave velocity decreased. Taking data from a water injection well in Daqing
Oilfield as an example, a two-layer water injection test platform was built to study the fluctuation of
discharge and pressure at monitoring points in the tubular string. The experiment condition was
that the depth of the injection well was 1400 m. It was verified by the experiments that the pressure
and flow changes in the downhole and wellhead had good consistency during the transmission of
transient flow waves. Comparing the experimental results with the numerical results, the errors of
the wave velocity and wave amplitude were 0.69% and 3.85%, respectively, indicating the verification
of the simulation model. This study provides a theoretical support for the transmission of transient
flow wave signals in a water injection tubular string.

Keywords: stratified water injection; transient flow wave; amplitude-frequency characteristics;
transfer matrix

1. Introduction

Water flooding technology is widely used to improve oil recovery efficiency in oil-
fields [1,2]. The accurate control of the water injection rate for stratified water injection
is a key issue in water injection technology [3–5]. Intelligent stratified water injection
technology without ground mechanical operations has been gradually carried out at home
and abroad [6]. Reliable and efficient wireless intelligent measurement has become a core
technology in the field of water injection wells. In particular, data transmission technology
is the most important part in wireless intelligent measurement technology. Using acoustics
to transmit data in tubular strings has been reported, but the severe water and energy losses
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in these systems has indirectly resulted in the insufficiency and inefficiency of these existing
techniques [7]. There have been many applications for using transient flow transmission
signals to detect pipe blockages and leaks [8–10]. Using transient flow waves to transmit
signals is an effective way to control water injection and provide real-time guidance and
optimization for wireless intelligent measurement and regulation.

Signal transmission techniques using transient flow have been developed and demon-
strated in the engineering field [11,12]. It is well known that the transient wave transmission
signal method is simple to operate. Moreover, the technology is economically efficient and
can provide timely intelligent measurement and adjustment optimization decisions [6].
The drilling fluid pulse in measurement with drilling (MWD) is a typical transient flow
wave communication method. It was developed in the late 1960s, matured and began to be
used commercially in the 1970s [13]. At the beginning, transient flow wave communication
technology was applied to layered oil production and water detecting/plugging on a small
scale. In the late 2010s, it was applied to separated zone water injection, forming a transient
flow wave-controlled separated zone water injection technology [13].

The theory of transient flow wave (water hammer) has been well developed, especially
by the valuable research contributed by Joukowsky and Allievi. Joukowsky [14] produced
the best-known equation in transient flow theory called the “fundamental equation of water
hammer”. Allievi [15] developed a general theory of water hammer from first principles
and showed that the convective term in the momentum equation was negligible. He
introduced two important dimensionless parameters widely used to characterize pipelines
and valve behavior. Further refinements to the governing equations of water hammer
appeared in Wood [16] and Streeter and Wylie [17]. Their combined efforts have resulted
in the following classical mass and momentum equations for one-dimensional (1D) water
hammer. For continuous transient flow waves in pipelines, Ham proposed the use of
transfer functions to describe the transmission process of fluctuations. However, Ham’s
model is based on a simplified vibration model, and the error is relatively large when
calculating long pipes [18]. Due to the low flow velocity of the injection tube, the generation
and transmission of transient flow wave signals in the injection tube are different from that
in measurement with drilling. Therefore, it is significant to study the model of the transient
flow wave in a water injection tubular string.

During the water injection process, the tubular string can be considered as a vertical
hollow tube. A mechanical device is used to generate the transient flow wave at the bottom
of the well, and the wave signal is encoded. Then, the wave signal is transmitted by the
tubular string, measured and decoded on the wellhead. Therefore, usage of the transient
flow waves can pass the downhole measurement information to the wellhead [19]. How-
ever, the propagation mechanism of the transient flow wave is complicated [20]. Many
scholars have studied the propagation mechanism and coding method of the transient
flow wave signal [21,22]. However, because the signal transmission in the tubular string is
affected by many factors, these influences need to be further studied for propagation mech-
anisms for transient flow wave signals. It is necessary to find better mathematical models
to describe the transmission process and amplitude-frequency characteristics of transient
flow waves. The model proposed in this paper can more accurately describe the transient
flow wave transmission characteristics in the tubular string of water injection wells.

The transient flow wave characteristic is very important in long-distance transportation
and valve operation. Therefore, many experimental and numerical studies were conducted
to prevent mistaken operation of valve switches and to ensure the safety of pipelines and
pumps [23–25]. Based on the different pressure transient responses, corresponding algorithms
are developed and applied for blockage or leak detection [26,27]. All the studies can help
to understand the transient flow wave transmission behavior. However, the water hammer
response characteristics of the wellbore system are different from those in the pipeline system.
Thus, experiment and numerical studies are needed to explain the transient flow wave
response characteristics in the wellbore system. Wang et al. [28] studied the transient flow
wave signal in the water injector and verified the water hammer propagation model through
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experiments. Choi et al. [29] conducted a comprehensive study of water hammer effects in
injection wells under different design parameters and operating parameters using OLGA
simulations. In addition, signal analysis of transient flow waves mentioned above is only
considered in time or frequency domain. The transient flow wave transmission behavior
is more complicated. Combining methods in both time and frequency domains can help
to better understand the transient flow wave transmission in a complex system. The gap
between this paper and previous studies is the analysis of transient flow waves using time and
frequency domains in two dimensions. This combination is needed because wave attenuation
mechanisms are frequency- and time-dependent [30].

In this paper, a two-dimensional transient flow wave analysis method in time and
frequency domains is proposed. Meanwhile, the transient flow transmission characteristics
of the wellbore system are sufficiently presented to accurately investigate the transient
flow wave transmission in the wellbore system. First, based on the theory of transient flow,
the matrix calculation model of the transient flow wave signal transmitted in the water
injection tubular string is established. The transient flow wave signal distribution in the
water injection tubular string under the average friction is analyzed. When the continuous
transient flow wave signal is transmitted in the tubular string, if the starting pressure head
amplitude and discharge amplitude are known, the amplitude of the pressure head and
discharge at any position can be calculated. Second, through experiments and calculations,
the transmission characteristics of the transient flow wave signal are verified in the water
injection tubular string. The calculation method of wave velocity and attenuation are
studied. Third, the frequency domain characteristics of the water injection tubular string
is also analyzed. It provides theoretical support for the selection of signal frequency and
signal transmission in the layered water injection process. This study can provide clear
insights into the use of transient flow waves for intelligent measurement and regulation
and improve accurate control of downhole water injection.

2. Model of the Transient Flow Wave in Water Injection Tubular String
2.1. Transient Flow Wave Equations

The classical water hammer equation consists of two governing differential equa-
tions [17], one is the momentum equation, and the other is the continuity equation. Ex-
pressed in terms of pressure head H and discharge Q as:{

∂Q
A∂t +

Q
A2

∂Q
∂x + g ∂H

∂x + λQ|Q|
2DA2 = 0

∂H
∂t + Q

A
∂H
∂x + Q

A sin β + a2

gA
∂Q
∂x = 0

(1)

This equation is a typical nonlinear hyperbolic partial differential equation. In many
literatures, it uses various methods to find its numerical solution [31]. However, the numer-
ical solution alone is obviously not enough for the transmission of continuous transient
flow wave signals. Furthermore, it cannot be used to describe the transmission situation of
continuous waves in the water injection tubular string, nor can they be used to choose the
carrier frequency used by the transmitted transient flow wave signal communication.

In most of the engineering applications, the convective acceleration terms, Q
A

∂H
∂x and

Q
A2

∂Q
∂x , are small as compared to the other terms [32]. Therefore, ignoring these terms from

the governing equations, we obtain
1

gA
∂Q
∂t + ∂H

∂x + λQ|Q|
2gDA2 = 0

∂H
∂t + a2

gA
∂Q
∂x + sin β

A Q = 0
(2)

In steady-oscillatory flow, the instantaneous discharge Q and the instantaneous pres-
sure head H, may be divided into two parts: Q = Q0 + Q′ and H = H0 + H′, where
Q0 = mean discharge; Q′ = discharge deviation from the mean; H0 = mean pressure head;
and H′ = pressure head deviation from the mean.



Appl. Sci. 2023, 13, 3917 4 of 19

Since the mean flow and pressure head are time-invariant ( ∂Q0
∂t = 0 and ∂H0

∂t = 0)

and the mean flow is constant along the tubular length ( ∂Q0
∂x = 0), ∂Q

∂x = ∂Q′
∂x , ∂Q

∂t = ∂Q′
∂t ,

∂H
∂t = ∂H′

∂t [32]. According to Equation (2), when the pressure head is stable, there is
∂H0
∂x = − λQ0|Q0|

2gDA2 .

Because Q′ � Q0, the higher-order term Q′2 can be neglected and λ(Q0+Q′)2

2gDA2
.
=

λQ0
2

2gDA2 +
λQ0Q′
gDA2 . It follows from Equation (2) that:

∂H′
∂x + 1

gA
∂Q′
∂t + RQ′ = 0

∂H′
∂t + a2

Ag
∂Q′
∂x + sin β

A Q′ = 0
(3)

where R = λQ0
gDA2 for turbulent flow. If λ is unchanged during wave transmission, R

represents the average resistance of fluctuations in the tubular string, which is the resistance
of the tube when the fluid stabilizes. Equation (3) can be called the continuous transient
flow wave equations in the tubular string.

2.2. Transient Flow Wave Transmission Model

The field matrix for a tube may be derived by using the separation-of-variable
method [17]. Elimination of Q′ from Equation (3) yields

1
a2

∂2H′

∂t2 −
g sin β

a2
∂H′

∂x
+

RgA
a2

∂H′

∂t
− ∂2H′

∂x2 = 0 (4)

As a result, the differential equation of the pressure head about time and position is
obtained for the water injection tubular string. It can be seen from Equation (4) that there is
a continuous fluctuation of discharge and pressure head in any position in the tube. The
solution of Equation (4) is:

H′ =
(
c1eγ1x + c2e−γ2x)ejωt (5)

where H′ = h(x)ejωt, h(x) represents the amplitude of the pressure head at the x, c1 and c2
are arbitrary constants, and ω = angular frequency in rad/s; j2 = −1. Equation (5) indicates
that the pressure head in any position in the water injection tube can be regarded as a
superposition of pressure head fluctuations in two different directions. The parameters γ1
and γ2 (as the transfer coefficients in the tubular string) can be calculated as:

γ1 =

√
g2 sin2 β− 4(a2ω2 − jωRgAa2)− g sin β

2a2 (6)

γ2 =

√
g2 sin2 β− 4(a2ω2 − jωRgAa2) + g sin β

2a2 (7)

The real part of γ1 and γ2 represents the attenuation of the amplitude during transmis-
sion, and the imaginary part represents the change of phase. g sin β represents the effect of
gravity on the transient flow wave. For a vertical downhole string, there is sin β = 1.

Derivative of Equation (5) for t:

∂H′

∂t
= jωejωt(c1eγ1x + c2e−γ2x) (8)

Substituting Equation (8) into the second formula of Equation (3) can obtain:

∂Q′

∂x
+

g sin β

c2 Q′ = − jωgA
c2

(
c1eγ1x + c2e−γ2x)ejωt
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Thus Q′ can be calculated:

Q′ =
ωgA
ja2

(
c1eγ1x

γ2
− c2e−γ2x

γ1

)
ejωt (9)

Equation (9) shows that there is also a fluctuation of discharge in any position in the
tubular string. In which Q′ = q(x)ejωt, q(x) represents the amplitude of the pressure head
at the x.

In the tubular string, fluctuations in pressure head cause fluctuations in discharge.
The hydraulic impedance Z(x) in a water injection system is defined as the ratio of the
complex head to the complex discharge at a particular point in the tube.

Z(x) =
h(x)
q(x)

= − a2γ1γ2

jωgA
c1eγ1x + c2e−γ2x

(γ1c1eγ1x − γ2c2e−γ2x)
(10)

The impedance of an infinitely long tubular string can be defined as the characteristic
impedance, and the characteristic impedance can be written [17]:

Zc = lim
x→∞
− a2γ1γ2

jωgA
(c1eγ1x + c2e−γ2x)

(γ1c1eγ1x − γ2c2e−γ2x)
= − a2γ2

jωgA
(11)

Equation (11) shows that the characteristic impedance is constant for a fixed frequency
signal and represents the inherent influence of the tube on the transient flow wave signal at
a certain frequency. For an infinitely long tubular string, the fluctuations are transmitted in
only one direction of the wave, without the presence of reflected waves. For the integration
constants c1, c2, which need to be found using the boundary conditions, they are related to
the pressure head and discharge at the beginning of the fluctuation.

At x = 0, h(0) = c1 + c2, q(0) = ωgA
ja2

(
c1
γ2
− c2

γ1

)
. Thus,

c1 =
γ2

γ1 + γ2
h0 +

γ1

γ1 + γ2
Zcq0, c2 =

γ1

γ1 + γ2
h0 −

γ1

γ1 + γ2
Zcq0 (12)

The expressions for h(x) and q(x) can be written as:

h(x) =
(

γ2

γ1 + γ2
eγ1x +

γ1

γ1 + γ2
e−γ2x

)
h(0) + Zc

γ1

γ1 + γ2

(
eγ1x − e−γ2x)q(0) (13)

q(x) =
1

Zc

γ2

γ1 + γ2

(
eγ1x − e−γ2x)h(0) +( γ1

γ1 + γ2
eγ1x +

γ2

γ1 + γ2
e−γ2x

)
q(0) (14)

Equations (13) and (14) illustrate that when the continuous transient flow wave signal
is transmitted in the tubular string, if the starting pressure head amplitude and discharge
amplitude are known, the amplitude of the pressure head and discharge at any position
can be calculated.

2.3. Transient Flow Wave Transfer Matrix in a Water Injection Tubular String

The transfer matrix method is used for the analysis of steady oscillatory flows and the
determination of the frequency response of hydraulic systems [17]. According to Equations
(13) and (14), the transfer matrix of transient flow wave fluctuations in the tubular string can
be defined, and the fluctuations of pressure head hi and qi at the beginning are used to define
the fluctuations of pressure head hx and discharge qx at position x in the tubular string:[

hx
qx

]
=

[
A(x) B(x)
C(x) D(x)

][
hi
qi

]
(15)
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where

A(x) =
γ2

γ1 + γ2
eγ1x +

γ1

γ1 + γ2
e−γ2x, B(x) = Zc

γ1

γ1 + γ2

(
eγ1x − e−γ2x) (16)

C(x) =
1

Zc

γ2

γ1 + γ2

(
eγ1x − e−γ2x), D(x) =

γ1

γ1 + γ2
eγ1x +

γ2

γ1 + γ2
e−γ2x (17)

Equation (15) illustrates that matrix Ml =

[
A(x) B(x)
C(x) D(x)

]
can be defined as the transfer

matrix of a single tubular string. From the definition of Ml , it is known that the determinant
value is |Ml | = e(γ1−γ2)x 6= 0. So Ml must be reversible, indicating that if the end pressure
head amplitude hl , the discharge amplitude ql and length l of a tubular string are known,
the pressure head amplitude and discharge amplitude at any position can be calculated.
The relationship among inputs hi and qi at the beginning and outputs of the tubular string,
hi and qi at the end can be represented by a four-port model shown in Figure 1.
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Figure 1. Single pipe four-port equivalence model.

A junction of two tubes that have different diameters, wall thicknesses, wall materials
or any combination of these variables is called a series junction. It follows from the
continuity equation with ql = qi and hl = hi. The point transfer matrix for a series junction
can be expressed as:

MD =

[
1 0
0 1

]
(18)

Since Equation (18) is a unit matrix, for a series connection of multiple tubes, the
transfer matrix of the whole tubular string can be expressed as:

M∗ = Ml1Ml2 . . . Mln (19)

The relationship between these series tubes can be represented by the multiple series
four-port model shown in Figure 2.
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Figure 2. Four-port equivalent model when multiple tubes are connected in series.

When the continuous transient flow wave is transmitted in a series of tubes, according
to the model shown in Figure 2 and Equation (19), the transmission matrix when multiple
tubes are connected in series can be simplified to an equivalent transmission matrix M∗

according to the matrix multiplication method, so that the transmission process can be
expressed as: [

pl
ql

]
= M∗

[
pi
qi

]
=

[
A∗ B∗

C∗ D∗

][
pi
qi

]
(20)
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During the water injection process, if the downhole distributor is considered as the
signal source, the transmission of the transient flow wave signal in the tubular string and
the amplitude reaching the wellhead can be calculated by Equation (20).

3. Transient Flow Wave Transmission Characteristics in Tubular String
3.1. Transient Flow Wave Velocity in Tubular String

The wave velocity is related to the components of the fluid, the tube characteristic and
the environmental parameters [13]. The wave velocity has been estimated from Korteweg’s
formula [33]; the expression of wave velocity can be derived from the continuity equation
as well as the equation of motion.

a =

√
Ke

ρ
(21)

From the above theoretical study, it is clear that the main parameter that now deter-
mines the wave velocity is the apparent bulk modulus of elasticity of the system Ke.

1
Ke

=
1
Kl

[
1 + ψ

Kld
Ee

+ βg

(
Kl
Kg
− 1
)]

(22)

Based on the total volume of the mixed fluid, the formula for the density of the
transport fluid can be obtained. The solid content in the tubular string of the water injection
well is negligible, and the density formula of the mixed fluid is as follows:

ρ =
(
1− βg

)
ρl + βgρg (23)

The gas density is determined from the equation of state as:

ρg =
P

ZRT
(24)

where P is the absolute pressure, Pa; Z is the compression coefficient of the actual gas; T is
the temperature, K; and R is the gas constant, R .

= 287.4 N ·m/Kg · K .
The transient flow wave velocity in the tubular string is as follows:

a =

√
Ke

ρ
=

√√√√ Kl/ρ

1 + ψ Kl d
Ee + βg

(
KI
Kg
− 1
) =

√√√√√ Kl
(1−βg)ρl+βgρg

1 + ψ Kld
Ee + βg

(
Kl
Kg
− 1
) (25)

MATLAB software was used to analyze the relationship between the effects of different
parameters on the signal of transient flow wave. Taking data from a water injection well
in Daqing Oilfield as an example, the depth of a water injection well is 1400 m, the inner
diameter of injection tube d is 25 mm, the wall thickness e is 3.5 mm, the average pressure
in the injection well is 3 MPa, the average temperature is t = 30 ◦C and the gas content is
βg = 0.5%. The modulus of elasticity of the tube is E = 2.1× 105 MPa and the modulus of
elasticity of water is Kl = 2.04× 103 MPa. The density of water is ρ = 997.87 kg/m3. The
specific heat ratio of the gas is m = 1.2, Kg = mP = 1.2 × 30 = 36 MPa; the Poisson’s ratio
of the tube is 0.3. Only axial restraint is applied to the tube at the wellhead, ψ = 1.1096.
The liquid density ρl and the gas density ρg depend on the pressure and temperature in the
tubular string.

As shown in Figure 3, the pressure in the well has a large impact on the transmission
rate. The higher the pressure, the greater the transmission rate. At constant pressure, the
density of water and gas decreases with the increasing temperature, which in turn leads to
a decrease in the density of the mixed water, resulting in an increase in wave velocity. The
gas content has a significant impact on the compressibility of the water. A large gas content
will have a large attenuation pulse amplitude. As shown in Figure 4, the wave velocity
tends to decrease as the gas content increases. The diameter–thickness ratio only affects the
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characteristics and support of the tube. As the diameter–thickness ratio increases, the wave
velocity decreases.
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3.2. Transient Flow Wave Amplitude Attenuation in the Tubular String

The attenuation of the wave signal amplitude is related to the transmission distance of
the signal in the tubular string and the characteristics of the transmission fluid. Most of the
loss of transient flow wave transmission along the tubular string comes from the friction
of the tube wall; the wave signal in the tubular string also conforms to the exponential
attenuation law. According to Lambert’s law [34], the quantitative relationship between
the transmission characteristics of the wave signal in the tube, the amplitude of signal
attenuation and the transmission distance in a tube filled with a mixture of fluids is
expressed as:

P(x) = P0e−x/s (26)
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Therefore, the transfer function is as follows:

H =
P(x)

P0
= exp(−x/s) (27)

In which

S =
aD
2

√
ρ

π f ω
(28)

It follows from Equations (25) and (28) that

S =
D
2

√√√√ Kl

π f ω
[
1 + ϕ Kl D

Ee + βg

(
Kl
Kg
− 1
)] (29)

where P(x) is the pressure head at the transmission distance x, Pa; P0 is the pressure head
at the beginning, Pa.

This paper mainly analyzed the effects of temperature, signal frequency and gas
content on the signal attenuation for transient flow waves, and H = P(x)/P0 was used as an
evaluation index of amplitude attenuation for signal waves. Three different temperatures
20 ◦C, 30 ◦C and 40 ◦C were selected for the transmission fluid (water). As can be seen
from Figure 5, at a given transmission distance, the higher the temperature, the lower the
signal attenuation. At the same temperature, as the transmission distance increases, the
transmitted signal amplitude decreases exponentially with the transmission distance in a
non-linear relationship. Because more energy is consumed the further the distance of pulse
signal transmission, the received signal amplitude is relatively small.
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Three signals with different frequency 1 Hz, 2 Hz and 3 Hz were selected. From
Figure 6, it can be concluded that the frequency causes a nonlinear near-exponential
decrease in wave transmission amplitude with the transmission distance at the same
distance. The higher the frequency, the smaller the signal amplitude.
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Three gas contents of 0.5%, 1.0% and 1.5% were selected for analysis. As shown in
Figure 7, the increase in gas content dramatically decreases wave amplitude. The main reason
is that when the wave encounters the gas in the dispersed phase, scattering loss is caused by
the diffuse reflection at the interface due to the great difference of gas and liquid impedance.
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Attenuation of the wave amplitude is caused by two frequency-dependent mecha-
nisms, fluid-related and scattering. The fluid-related mechanism is caused by the wave-
induced frictional movement between fluid and tubular wall, known by wave-induced
fluid flow (WIFF) [35]. Scattering, which is an elastic mechanism, is caused by hetero-
geneities in media; for instance, the heterogeneity caused by gas content in this case [36].
The gas content causes the two mechanisms since the compressibility of gas stimulates
frictional losses and increases the heterogeneity. However, several studies have shown that
when the gas content exceeds 5% the effect of gas on attenuation stagnates [37].
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3.3. Transmission Characteristics Verification Experiment

In order to verify the accuracy of the transient flow wave velocity and wave attenuation
calculation formula, an experiment was carried out, as shown in Figures 8 and 9.
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Figure 9. Two-layer stratified water injection test platform.

The experimental conditions were as follows: the depth of the injection well was
1400 m with a two-layered water injection, the length of the simulated tubular string from
the water distribution room (injection room) to the first layer section was 1200 m, the length
of the tubular string between the first layer and the second layer was 200 m. The test
conditions are shown in Table 1. The gas density could be obtained from the equation of
state as ρg = 34.43 kg/m3. The specific heat ratio of the gas was m = 1.2; the Poisson’s ratio
of the tube was 0.3; only axial restraint was applied to the tube at the wellhead, ϕ = 1.1096.
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Table 1. Two-layer stratified water injection test conditions.

Tube 1 Length (m) Tube 2 Length (m) Average
Pressure (MPa)

Average
Temperature (◦C) Gas Content (%)

1200 200 3 30 0.5

The procedure was as follows: Install the wave generator D1 at the beginning of the
tube. It represents the transient flow wave signal at the wellhead generated by the variation
of the ground valve opening. Install pressure sensor A1.2 near the wave generator D1 and
record the measured pressure as p0. Install flowmeter C1 near the wave generator and
record the measured discharge as q0. Similarly, install pressure sensor A3.1 near the wave
generator D3 and record the measured pressure as p2. Install flowmeter C3 near the wave
generator D3 and record the measured discharge as q2.

The control valve produced a continuous ‘on–off’ signal with a flow rate of 30 m3/d.
Stable transient flow fluctuations were generated in the pipeline and the values of p0, p2,
q0 and q2 were recorded. The pressure and discharge fluctuation curves were plotted, and
the test results are shown in Figures 10 and 11.
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The rise and fall attenuation time of the transient flow wave was about 1.9 s, which
can be obtained experimentally. The wave transmission velocity can be obtained by
Equation (25) as a = 725.27 m/s. Therefore, the transfer attenuation time was t = l/a =
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1400/725.27 .
= 1.93 s. Compared to the wave velocity test results with the calculated results,

the error was 0.69%, indicating that the formula for calculating the fluctuation velocity of
transient flow is correct.

The amplitude ratio of the monitoring point at 1400 m can be calculated by Equation (29)
as P(x)/P0 = e(−x/s) = e(−1400/5696.2) .

= 0.78. The pressure values of the stable section
at the upstream and downstream monitoring points were approximately 0.47 MPa and
0.58 MPa, in that order, and the ratio was P2/P0 = 0.47/0.58 .

= 0.81. The error between the
experimental value and the calculated value was 3.85%, which proves the correctness of
the formula for calculating the attenuation of transient flow fluctuations.

4. Simulation of Transient Flow Wave Signals in Tubular Strings
4.1. Transient Flow Wave Signal Distribution along the Tubular String

During the water injection process, the modulated sinusoidal transient flow wave signals
need to be transmitted from the well to the ground. The main concern in this process is the
attenuation of the signal; the pressure fluctuation amplitude at the transmitting start point
is pi and the pressure fluctuation amplitude at the receiving point is pl. The larger the pl/pi
ratio, the stronger the received signal, and hence, the better signal transmission effect.

The ratio of the head amplitude hl/hi and the ratio of the pressure amplitude pl/pi at
the two ends of the tubular string are equal. If defining Zl = hl/ql as a terminal impedance,
according to Equations (16) and (17) it can be deduced:

hl
hi

=
pl
pi

=
A(l)D(l)− B(l)C(l)

D(l)− B(l) 1
Zl

=
eγl l−γ2l

D(l)− B(l) 1
Zl

(30)

Equation (30) represents the value of amplitude transmission losses in the wave signal
transmission. It can also be seen that the amplitude of the transient flow wave in the
tubular string is influenced not only by the initial pressure head hi, but also by the terminal
impedance Zl .

For a fixed frequency signal, it is assumed that the friction force is constant throughout
the wave signal transmission process. The effect of the change in density of the gas content
of the injection well fluid on the wave velocity is neglected. The effect of gas spillage on
the signal is ignored, while the tubular string is considered rigid and its expansion and
deformation during the transient flow wave transmission is ignored. Using the transfer
matrix method derived earlier, the transfer process of the downhole continuous wave signal
in the tubular string can be calculated.

According to the previous analysis, if the amplitude and frequency of pressure and
discharge fluctuations at the begin of fluctuating signal are known, the amplitude of
pressure and discharge fluctuations at any point in the tubular string can be calculated for
a determined terminal impedance. Assume that the tube diameter D is 100 mm. The length
l of the tubular string is 1500 m. The fluid viscosity is 3.81 mPa·s.

First, calculate the frictional resistance R, the transfer matrix Ml and the characteristic
impedance Zc. Set the terminal impedance value Zl , and define the pressure value at posi-
tion x between the beginning and the terminal as px; according to Equations (15) and (30),
the following relationship can be obtained:

hx

hi
=

px

pi
=

A(x)D(l)− 1
ZL

A(x)B(l)− B(x)C(l) + 1
Zl

A(l)B(x)

D(l)− B(l) 1
Zl

(31)

According to the matrix expression of Equation (12), when x = l, there is A(l)D(l)−
B(l)C(l) = e(γ1−γ2)l . From Equation (31), the pressure wave amplitude distribution curve
along the tubular string can be calculated, as shown in Figure 12.
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Figure 12. Wave amplitude distribution when the wave frequency is 1 Hz.

The wave frequency of the starting signal is 1 Hz. It can be seen that the wave
amplitude of the pressure at any position in the tubular string is also fixed when the wave
at the beginning is a periodic fluctuation state.

When Zl 6= Zc, the amplitude of the pressure wave in the tubular string fluctuates
with the increasing x. Even zero can be observed at some positions, indicating that no
fluctuation occurs at this position. Throughout the tubular string, the waves show a
standing wave distribution. When the terminal impedance is smaller than the characteristic
impedance, the ratio of the pressure head fluctuation is relatively small, while when the
terminal impedance is larger than the characteristic impedance, the ratio of the pressure
head fluctuation is relatively large.

Taking the terminal impedance Zl = Zc, the length of the tubular string is 3000 m.
As shown in Figure 13, the tube resistance directly affects the magnitude of fluctuation
amplitude in the tubular string, and the larger the peak value of fluctuation as the tube
resistance R increases.
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Figure 13. Effect of different tube resistances on fluctuations.

Taking the tube resistance as R = 24 s/m3 and the length l as 1500 m, the distribution
of the along-range fluctuation amplitude under the fluctuation frequency 1 Hz is shown in
Figure 14. As the terminal impedance of the tube increases, the ratio peak of the pressure head
fluctuation is larger and the hydraulic components with small terminal impedance reach the
peak of fluctuation earlier than the hydraulic components with large terminal impedance.
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4.2. Frequency Response of the Tubular String

For Equation (30), only frequency f is kept variable (varying from 0.1 Hz to 20 Hz)
under the conditions of the tube diameter 0.1 m, wave velocity 1260 m/s, fluid density
1200 kg/m3, dynamic viscosity 3.81 × 10−3 Pa·s and terminal impedance Zl = 4Zc. Then
the amplitude-frequency characteristics of the whole tubular string within 20 Hz can
be calculated.

As seen in Figure 15, when the frequency of the signal gradually increases, multiple
peaks can be observed, indicating that the signal is fluctuating. When the fluctuation
frequency is very low, the ratio of the end amplitude to the beginning amplitude for the
pressure head fluctuation is close to 1. When the length of the tubular string increases to
1000 m, the number of wave peaks increases and their amplitude becomes larger. For a
short tubular string length of 100 m, the end amplitude showed multiple peaks over the
entire frequency range, peaking at 3 Hz, 9 Hz and 16 Hz, and the end amplitude is greater
than the beginning amplitude near all three frequency points. In deep wells, the ratio of the
end amplitude to beginning amplitude fluctuates sharply as the signal frequency increases,
and the signal frequency becomes more influential on the ratio of the end amplitude to
beginning amplitude. If the interference signal is strong, the signal for communication is
easily drowned in the interference signal, making it difficult to process the signal. Therefore,
it is necessary to select the frequency corresponding to the peak of the ratio of the end
amplitude to the beginning amplitude for signal transmission.
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During the signaling of transient flow fluctuations, it is desirable that the signal has
a relatively large amplitude after it has been transmitted to the surface. Since the well
depth is always changing, the optimal communication frequency f is also always changing.
For Equation (31), if the parameters other than tube length l and fluctuation frequency f
are fixed, it is also possible to plot the amplitude–frequency space for different lengths
of tubular strings, as shown in Figure 16. Once the length of the tubular string and the
fluctuation frequency are determined, the corresponding amplitude ratio can be determined.
If the signal processing capability of the ground equipment is limited and the signal is
required to reach the ground with a higher amplitude, calculations can determine the
appropriate frequency range for different lengths of tubular strings used for signal carriers.
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5. Conclusions

In this paper, a matrix transfer model of transient flow wave in tubular strings and
its transmission characteristics in stratified water injection are investigated. The effects of
tubular string parameters and fluid properties on the waves of pressure and discharge are
studied. The results show that:

(1) The transfer process of transient flow waves in a tubular string is studied, and a
continuous transient flow wave transmission model based on transfer coefficient is
proposed. The model defines the transfer coefficient to reflect the influence of tube
size and fluid properties on the wave transmission and considers that the wave at any
position in the tubular string can be regarded as the superposition of the wave in both
directions along the tubular string. The analysis of the model shows that when one
end of the tubular string is in the forced vibration state, the fluctuation in the tubular
string shows a standing wave state. When the terminal impedance of the tubular
string is small, the fluctuation amplitude in the tubular string is small. The model
provides a powerful tool for analyzing the fluctuation wave in the tubular string. This
study can provide clear insights into the use of transient flow waves for intelligent
measurement and regulation and improve accurate control of downhole cableless
intelligent water injection.

(2) An analytical method is proposed to calculate the transmission of fluctuations in the
tubular string using a continuous transient flow wave transmission matrix model. The
validity of the model based on the transfer matrix has been verified [32]. By analyzing
the transmission of fluctuations, it is shown that the range of carrier frequencies suit-
able for communication is constantly changing as the well depth increases. Therefore,
it is necessary to calculate the carrier frequency suitable for communication based on
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specific parameters. The transfer matrix method allows a simple expression of the
complex transmission process of wave signals in a tubular string. It is applicable to
the analysis of wave signals in series tubular strings with various materials and sizes.

(3) The calculation methods of wave transmission velocity and wave attenuation are
studied. The relationship between the influence of tubular string parameters and
fluid characteristics on the wave transmission velocity and wave signal strength is
obtained by simulation analysis. A two-layer stratified water injection test platform
was built to study the fluctuation of discharge and pressure at monitoring points in
the tubular string. The error of wave velocity was 0.69% and the error of wave signal
amplitude was 3.85%, indicating the verifications of the calculation and simulation.
The practical application of this work mainly provides theoretical support for the
cable-free intelligent water injection technology of two-way signal transmission.
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Nomenclature

A Area of the tube, (m2)
a Velocity of the pressure wave, (m/s)
g Acceleration due to gravity, (kg/m3)
t Time, (s)
x distance, (m)
V velocity, (m/s)
λ Darcy–Weisbach friction coefficient, dimensionless
D Diameter of the tube, (m)
x Distance along the tube, (m)
j Plural, j2 = −1
β Angle between the tubular string and the horizontal plane, (rad)
Q Discharge, (m3/s)
Q0 Mean discharge, (m3/s)
Q′ Discharge deviation from the mean, (m3/s)
H Pressure head, (m)
H0 Mean pressure head, (m)
H′ Pressure head deviation from the mean, (m)
K Elasticity modulus of the fluid, (MPa)
E Young modulus of the tube material, (MPa)
e Thickness of the tube, (m)
ρl Liquid density, (kg/m3)
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ρg Gas density, (kg/m3)
ρ Fluid density, (kg/m3)
βg Volumetric gas content, (%)
Kl Liquid bulk modulus of elasticity, (Pa)
Kg Gas bulk modulus of elasticity
m Specific heat ratio of the gas
ψ Parameter depends on the tube geometry and constraint conditions
s Transmission distance when the signal attenuates to the source strength 1/e, (m)
f Frequency of the signal, (Hz)
ω Viscosity of the transmission fluid, (Pa·s)
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