The Application of Finite Element Simulation and 3D Printing in Structural Design within Construction Industry 4.0
Abstract
:1. Introduction
1.1. Overview
1.2. Problem Significance and Definition
2. Literature Review
2.1. Construction Industry 4.0
2.2. Background on 3D Printing
2.3. Principles of 3D Printing
2.4. Three-Dimensional (3D) Printing Materials in Construction
2.5. Benefits of 3D Printing in Construction
2.5.1. Constructability Benefits
2.5.2. Sustainability Benefits
2.6. Challenges of 3D Printing in Construction
2.7. Future Direction of 3D Printing in Construction
2.8. Finite Element Method (FEM) and 3D Printing
2.9. Reliability and Constraints of FEM
3. Method
3.1. Tools and Software
3.2. Overview of the Structures
3.2.1. Dubai Future Foundation in UAE
3.2.2. Apis Cor House in Russia
3.2.3. PERI House in Germany
3.3. Types of Analyses
3.3.1. Linear Static Analysis
- (1)
- The response of the structure is linear.
- (2)
- The loading on the structure is static.
3.3.2. Natural Frequency Analysis
3.3.3. Spectral Response Analysis
3.3.4. Steady-State Heat Analysis
3.4. Common Details of All Analyses
3.4.1. Standards
3.4.2. Load Combinations
3.4.3. Material Properties
3.4.4. Boundary Conditions
3.5. Idealisation
3.5.1. Idealisations for DFF
3.5.2. Idealisations for PERIH
4. Results
4.1. Strand7 Results for DFF
4.1.1. Linear Static Analysis of DFF
4.1.2. Natural Frequency Analysis of DFF
4.1.3. Spectral Response Analysis of DFF
4.1.4. Steady-State Heat Analysis of DFF
4.2. Strand7 Results for ACH
4.2.1. Natural Frequency Analysis of ACH
4.2.2. Spectral Response Analysis of ACH
4.3. Strand7 Results for PERIH
4.3.1. Linear Static Analysis of PERIH
4.3.2. Steady-State Heat Analysis of PERIH
5. Discussion
5.1. Validation of the Results
5.1.1. Validation of Linear Static Results
5.1.2. Validation of Natural Frequency Results
5.1.3. Validation of Spectral Response Results
5.1.4. Validation of Steady-State Heat Results
5.2. Errors and Improvements
5.3. Recommendation for Future Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, S.; Prasad, R. Basic Principles of Additive Manufacturing: Different Additive Manufacturing Technologies; Woodhead Publishing: Sawston, UK, 2021; pp. 17–35. [Google Scholar]
- Maskuriy, R.; Selamat, A.; Ali, K.; Maresova, P.; Krejcar, O. Industry 4.0 for the Construction Industry—How Ready Is the Industry? Appl. Sci. 2019, 9, 2819. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, P.; Costa, L.; Rybski, D.; Lucht, W.; Kropp, J. A Systematic Study of Sustainable Development Goal (SDG) Interactions. Earth's Future 2017, 5, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Google Trends. 3D Printing in Construction. 2022. Available online: https://trends.google.com/trends/explore?date=all&q=3D%20printing%20in%20construction (accessed on 16 April 2022).
- Macneal, R.; Harder, R. A proposed standard set of problems to test finite element accuracy. Finite Elem. Anal. Des. 1985, 1, 3–20. [Google Scholar] [CrossRef]
- Abbot, D.; Kallon, D.; Anghel, C.; Dube, P. Finite Element Analysis of 3D Printed Model viaCompression Tests. Procedia Manuf. 2019, 35, 164–173. [Google Scholar] [CrossRef]
- Hossain, M.; Nadeem, A. Towards Digitizing the Construction Industry: State of the Art of Construction 4.0. Proc. Int. Struct. Eng. Constr. 2019, 6, 3–7. [Google Scholar] [CrossRef]
- Li, J.; Yang, H.A. Research on Development of Construction Industrialization Based on BIM Technology under the Background of Industry 4.0. MATEC Web Conf. 2017, 100, 02046. [Google Scholar] [CrossRef]
- Oesterreich, T.D.; Teuteberg, F. Understanding the Implications of Digitisation and Automation in The Context of Industry 4.0: A Triangulation Approach and Elements of a Research Agenda for The Construction Industry. Comput. Ind. 2016, 83, 121–139. [Google Scholar] [CrossRef]
- Chen, Q.; García de Soto, B.; Adey, B.T. Construction Automation: Research Areas, Industry Concerns and Suggestions for Advancement. Autom. Constr. 2018, 94, 22–38. [Google Scholar] [CrossRef]
- Dallasega, P.; Rauch, E.; Linder, C. Industry 4.0 As an Enabler of Proximity for Construction Supply Chains: A Systematic Literature Review. Comput. Ind. 2018, 99, 205–225. [Google Scholar] [CrossRef]
- Wright, S. Why would a Construction Business have a Document Management System? Credit. Control 2013, 34, 70. [Google Scholar]
- Global Industry 4.0 Survey. Engineering and Construction Key Findings. 2016. Available online: https://www.pwc.nl/nl/assets/documents/industry-4-0-engineering-and-construction-key-findings.pdf (accessed on 5 April 2022).
- Keating, S.J.; Leland, J.C.; Cai, L.; Oxman, N. Toward Site-Specific and Self-Sufficient Robotic Fabrication on Architectural Scales. Sci. Robot. 2017, 2, eaam8986. [Google Scholar] [CrossRef] [PubMed]
- Woodhead, R.; Stephenson, P.; Morrey, D. Digital Construction: From Point Solutions to Iot Ecosystem. Autom. Constr. 2018, 93, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Streule, T.; Miserini, N.; Bartlomé, O.; Klippel, M.; de Soto, B.G. Implementation of Scrum in the Construction Industry. Procedia Eng. 2016, 164, 269–276. [Google Scholar] [CrossRef]
- World Economic Forum. Shaping the Future of Construction: A Breakthrough in Mindset and Technology. 2016. Available online: http://www3.weforum.org/docs/WEF_Shaping_the_Future_of_Construction_full_report__.pdf (accessed on 5 April 2022).
- Hager, I.; Golonka, A.; Putanowicz, R. 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? Procedia Eng. 2016, 151, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Davtalab, O.; Kazemian, A.; Khoshnevis, B. Perspectives on a BIM-integrated software platform for robotic construction through Contour Crafting. Autom. Constr. 2018, 89, 13–23. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings-Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef] [Green Version]
- El-Sayegh, S.; Romdhane, L.; Manjikian, S. A critical review of 3D printing in construction: Benefits, challenges, and risks. Arch. Civ. Mech. Eng. 2020, 20, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Kietzmann, J.; Pitt, L.; Berthon, P. Disruptions, decisions, and destinations: Enter the age of 3-D printing and additive manufacturing. IEEE Eng. Manag. Rev. 2017, 45, 98–104. [Google Scholar] [CrossRef]
- Sanjayan, J.G.; Nazari, A.; Nematollahi, B. 3D Concrete Printing Technology: Construction and Building Applications; Butterworth-Heinemann: England, UK, 2019. [Google Scholar]
- Brenken, B.; Barocio, E.; Favaloro, A.; Kunc, V.; Pipes, R.B. Fused filament fabrication of fiber-reinforced polymers: A review. Addit. Manuf. 2018, 21, 16. [Google Scholar] [CrossRef]
- Guenther, D. 3D printing–The state of the technology and the future of this process. Detail–Technol. 2015, 596–600. [Google Scholar] [CrossRef]
- Tahmasebinia, F.; Sepasgozar, S.M.E.; Shirowzhan, S.; Niemela, M.; Tripp, A.; Nagabhyrava, S.; Mansuri, K.K.Z.; Alonso-Marroquin, F. Criteria development for sustainable construction manufacturing in Construction Industry 4.0. Constr. Innov. 2020, 20, 379–400. [Google Scholar] [CrossRef]
- Feng, P.; Meng, X.; Zhang, H. Mechanical behavior of FRP sheets reinforced 3D Elements printed with cementitious materials. Compos. Struct. 2015, 134, 331–342. [Google Scholar] [CrossRef]
- Buswell, R.A.; Soar, R.C.; Gibb, A.G.F.; Thorpe, A. Freeform Construction: Mega scale rapid manufacturing for construction. Autom. Constr. 2007, 16, 224–231. [Google Scholar] [CrossRef] [Green Version]
- World Economic Forum. Winsun: Demonstrating the Viability of 3D Printing at the Construction Scale. 2016. Available online: https://futureofconstruction.org/case/winsun/ (accessed on 15 December 2019).
- Wu, P.; Wang, J.; Wang, X. A critical review of the use of 3-D printing in the construction industry. Autom. Constr. 2016, 68, 21–31. [Google Scholar] [CrossRef] [Green Version]
- García-Alvarado, R.; Moroni-Orellana, G.; Banda-Pérez, P. Architectural Evaluation of 3D Printed Buildings. Buildings 2021, 11, 254. [Google Scholar] [CrossRef]
- Delgado Camacho, D.; Clayton, P.; O’Brien, W.J.; Seepersad, C.; Juenger, M.; Ferron, R.; Salamone, S. Applications of additive manufacturing in the construction industry–A forward-looking review. Autom. Constr. 2018, 89, 110–119. [Google Scholar] [CrossRef]
- Ghaffar, S.H.; Corker, J.; Fan, M. Additive manufacturing technology and its implementation in construction as an eco-innovative solution. Autom. Constr. 2018, 93, 1–11. [Google Scholar] [CrossRef]
- Hoek, M. Why 3D Printing is Key to Sustainable Business–Association of MBAs. Association of MBAs. Available online: https://www.associationofmbas.com/why-3d-printing-is-key-to-sustainable-business/ (accessed on 18 November 2022).
- Labonnote, N.; Rønnquist, A.; Manum, B.; Rüther, P. Additive construction: State-of-the art, challenges and opportunities. Autom. Constr. 2016, 72, 347–366. [Google Scholar] [CrossRef]
- Lim, S.; Buswell, R.A.; Le, T.T.; Austin, S.A.; Gibb, A.G.F.; Thorpe, T. Developments in construction-scale additive manufacturing processes. Autom. Constr. 2012, 21, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Sai Sandeep, U.; Muralidhara Rao, T. A Review on 3D Printing of Concrete-The Future of Sustainable Construction. I-Manag. J. Civ. Eng. 2017, 7, 49. [Google Scholar] [CrossRef]
- Perkins, I.; Skitmore, M. Three-dimensional printing in the construction industry: A review. Int. J. Constr. Manag. 2015, 15, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.C.; Tay, Y.W.D.; Panda, B.; Tan, M.J. Fresh and hardened properties of 3D printable cementitious materials for building and construction. Arch. Civ. Mech. Eng. 2018, 18, 311–319. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Early age mechanical behaviour of 3D printed concrete: Numerical modelling and experimental testing. Cem. Concr. Res. 2018, 106, 103–116. [Google Scholar] [CrossRef]
- Aragón, A.M.; Simone, A. The Discontinuity-Enriched Finite Element Method. Int. Numer. Methods Eng. 2017, 112, 1589–1613. [Google Scholar] [CrossRef] [Green Version]
- Strand7-Overview. Strand7-Finite Element Analysis. Available online: https://www.strand7.com/html/brochure.htm (accessed on 20 November 2022).
- Sakin, M.; Kiroglu, Y.C. 3D Printing of Buildings: Construction of the Sustainable Houses of The Future by BIM. Energy Procedia 2017, 134, 702–711. [Google Scholar] [CrossRef]
- Madeleine, P. What Do We Know About the First 3D-Printed House Inaugurated in Germany?-3Dnatives. 3Dnatives. 5 August 2021. Available online: https://www.3dnatives.com/en/insights-into-germanys-first-3d-printed-house-050820214/#! (accessed on 24 November 2022).
- Hughes, T.J.R. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis; Dover Publications: Newburyport, MA, USA, 2012. [Google Scholar]
- Braun, S.; Ewins, D.; Rao, S.; Leissa, A. Encyclopedia of Vibration: Volumes 1, 2, and 3. Appl. Mech. Rev. 2002, 55, B45. [Google Scholar] [CrossRef]
- Goremikins, V.; Rocens, K.; Serdjuks, D.; Gaile, L. Experimental Determination of Natural Frequencies of Prestressed Suspension Bridge Model. Constr. Sci. 2013, 14, 32. [Google Scholar] [CrossRef] [Green Version]
- Strand7 Solvers-Natural Frequency. Strand7-Finite Element Analysis. Available online: https://www.strand7.com/html/naturalfrequency/ (accessed on 16 November 2022).
- AS 1170.4; Structural Design Actions, Part 4: Earthquake actions in Australia. Standards Australia: Sydney, Australia, 2007.
- Strand7 Solvers-Spectral Response. Strand7-Finite Element Analysis. Available online: https://www.strand7.com/html/spectralresponse/ (accessed on 16 November 2022).
- Strand7 Solvers-Heat. Strand7-Finite Element Analysis. Available online: https://www.strand7.com/html/steadystateheat/ (accessed on 21 November 2022).
- AS/NZS 1170.1; Structural Design Actions—Permanent, Imposed and Other Actions. Standards Australia: Sydney, Australia, 2002.
- AS/NZS 1170.2; Structural Design Actions Wind actions. Standards Australia: Sydney, Australia, 2021.
- AS 3600.3; Concrete Structures. Standards Australia: Sydney, Australia, 2018.
- AS/NZS 4859.1; Materials for the Thermal Insulation of Buildings—General Criteria and Technical Provisions. Standards Australia: Sydney, Australia, 2002.
- EN 1991; Actions on Structures. Standards Australia: Sydney, Australia, 2002.
- AS 4100; Steel Structures. Standards Australia: Sydney, Australia, 2020.
- EN 1991-1; General Actions—Densities, Self-Weight, Imposed Loads for Buildings. Standards Australia: Sydney, Australia, 2002.
- EN 1998-1; General Rules, Seismic Actions and Rules for Buildings. Standards Australia: Sydney, Australia, 2004.
- Daniela, S. Re: In Finite Element Analysis Verification and Validation with Field Tests, Universally What Is the Expected Percentage Fea Should Meet? 2014. Available online: https://www.researchgate.net/post/In_finite_element_analysis_verification_and_validation_with_field_tests_universally_what_is_the_expected_percentage_FEA_should_meet/53fc5da6d039b129198b457c/citation/download (accessed on 17 November 2022).
Sustainable Development Goal (SDG) | Description |
---|---|
SDG 1 | No poverty |
SDG 9 | Sustainable cities and communities |
SDG 12 | Responsible consumption and production |
SDG 13 | Climate action |
Benefits | Comprehensive library for material properties based on the standards |
Integrated modelling and analysis functionality within the software | |
Extensive range of solvers and industry-standard libraries | |
Limitations | Outdated user interface and initial learning curve for new users |
Limited modelling options compared to AutoCAD |
Standards | Description |
---|---|
AS/NZS 1170.1 [52] | Permanent, imposed, and other actions |
AS/NZS 1170.2 [53] | Wind actions |
AS/NZS 1170.4 [49] | Earthquake loads |
AS 3600 [54] | Design properties of material |
AS/NZS 4859.1 [55] | Materials for thermal insulation |
Eurocode 1 [56] | Actions on structures |
Serviceability Limit State (SLS) | Ultimate Limit State (ULS) | ||
---|---|---|---|
Load Combination | Description | Load Combination | Description |
Net destabilising | Permanent and wind action | ||
Permanent and imposed action | Permanent and imposed action | ||
Permanent, imposed and wind action | Permanent, imposed and wind action |
Structural Properties | Value |
---|---|
Compressive strength (After 28 days) | 32 MPa |
Modulus of elasticity | 3.1 × 107 kPa |
Poisson’s ratio | 0.2 |
Density | 2400 kg/m3 |
Thermal Properties | Value |
Thermal expansion | 0.00001/C |
Specific heat | 880 J/kg/C |
Conductivity | 1.37 J/s/m/C |
Structural Properties | Value |
---|---|
Modulus of elasticity | 2 × 108 kPa |
Poisson’s ratio | 0.25 |
Density | 7850 kg/m3 |
Thermal Properties | Value |
Thermal expansion | 1.17 × 10−5/C |
Specific heat | 465 J/kg/C |
Conductivity | 54 J/s/m/C |
Mode | Value |
---|---|
Mode 1 | 8.21 Hz |
Mode 2 | 15.14 Hz |
Mode 3 | 21.66 Hz |
Mode 4 | 33.86 Hz |
Mode 5 | 41.65 Hz |
Mode 6 | 44.65 Hz |
Mode 7 | 57.83 Hz |
Mode 8 | 66.29 Hz |
Mode 9 | 68.14 Hz |
Direction | Base Shear (kN) | Base Moment (kN.m) |
---|---|---|
X | 427,000 | 1,030,000 |
Y | 1,140,000 | −786,000 |
Z | 81,300 | 5,020,000 |
Mode | Value |
---|---|
Mode 1 | 57.1 Hz |
Mode 2 | 57.1 Hz |
Mode 3 | 58.34 Hz |
Mode 4 | 78.45 Hz |
Mode 5 | 86.68 Hz |
Mode 6 | 86.68 Hz |
Mode 7 | 96.88 Hz |
Mode 8 | 96.88 Hz |
Mode 9 | 100.66 Hz |
Direction | Base Shear (kN) | Base Moment (kN.m) |
---|---|---|
X | 274,000 | 217,000 |
Y | 277,000 | −6900 |
Z | 1,350,000 | −19,000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahmasebinia, F.; Jabbari, A.A.; Skrzypkowski, K. The Application of Finite Element Simulation and 3D Printing in Structural Design within Construction Industry 4.0. Appl. Sci. 2023, 13, 3929. https://doi.org/10.3390/app13063929
Tahmasebinia F, Jabbari AA, Skrzypkowski K. The Application of Finite Element Simulation and 3D Printing in Structural Design within Construction Industry 4.0. Applied Sciences. 2023; 13(6):3929. https://doi.org/10.3390/app13063929
Chicago/Turabian StyleTahmasebinia, Faham, Amir Abbas Jabbari, and Krzysztof Skrzypkowski. 2023. "The Application of Finite Element Simulation and 3D Printing in Structural Design within Construction Industry 4.0" Applied Sciences 13, no. 6: 3929. https://doi.org/10.3390/app13063929
APA StyleTahmasebinia, F., Jabbari, A. A., & Skrzypkowski, K. (2023). The Application of Finite Element Simulation and 3D Printing in Structural Design within Construction Industry 4.0. Applied Sciences, 13(6), 3929. https://doi.org/10.3390/app13063929