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Abstract

:

Chronic kidney disease (CKD) refers to the gradual decline of kidney function over months or years. Early detection of CKD is crucial and significantly affects a patient’s decreasing health progression through several methods, including pharmacological intervention in mild cases or hemodialysis and kidney transportation in severe cases. In the recent past, machine learning (ML) and deep learning (DL) models have become important in the medical diagnosis domain due to their high prediction accuracy. The performance of the developed model mainly depends on choosing the appropriate features and suitable algorithms. Accordingly, the paper aims to introduce a novel ensemble DL approach to detect CKD; multiple methods of feature selection were used to select the optimal selected features. Moreover, we study the effect of the optimal features chosen on CKD from the medical side. The proposed ensemble model integrates pretrained DL models with the support vector machine (SVM) as the metalearner model. Extensive experiments were conducted by using 400 patients from the UCI machine learning repository. The results demonstrate the efficiency of the proposed model in CKD prediction compared to other models. The proposed model with selected features using mutual_info_classi obtained the highest performance.
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1. Introduction


1.1. Overview


The kidney is the main organ that controls the human body’s blood balance and blood pressure; it also plays a role in producing important hormones. Kidney Disease Improving Global Outcomes (KDIGO) defined chronic kidney disease (CKD) as a structural or functional abnormality of the kidney, which persists for more than three months [1].



Several conditions and disorders may lead to kidney diseases, including kidney stones, nephrolithiasis, kidney cyst formation, a rare blood disorder, muscle tissue breakdown, hemolytic uremic syndrome, blood clots, and glomerulonephritis, etc. [2,3].



Many cases of CKD do not present symptoms until the late stages of the disease; this makes estimating the actual prevalence of the disease complicated [4]. However, according to medical statistics, in 2005, CKD caused the death of approximately 38 million out of 57 million cases of CKD. During the COVID-19 period, the mortality rate among COVID-19 patients with CKD was 44.5%, whereas it was 4.5% among non-COVID-19 CKB patients. According to World Health Organization (WHO), by 2050, more than 150 million will have type 2 diabetes, which is considered the leading cause of several kidney disorders [5]. Common kidney abnormalities, such as hydronephrosis, cysts, and stones, are easily avoided and treated in early stages [6]. However, such disorders may lead to CKD and kidney tumors (i.e., cardiorenal syndrome, uremia). CKD is associated with primary adverse outcomes, but cardiovascular disease (CVD) is considered the leading cause of death in this population [7]. Consequently, screening and identification of chronic kidney disease patients during earlier stages can provide interventions that may modify the natural history and reduce the risk of progression to end-stage kidney disease and major cardiovascular events [8].




1.2. Problem Statement


An early diagnosis of such CKD is crucial and can save a patient’s life. Medical experts utilized several fundamental approaches to gather precise insights about renal disease identification, such as medical examinations and lab tests (i.e., blood tests and urine tests). The blood test determines the glomerular filtration rate (GFR), which could be used to indicate kidney function. The urine test is used to determine albumin level, indicating whether the kidney is working correctly. With promising data sources that could help in medical diagnosis, developing robust and generalized diagnosis models that could assist medical experts and give accurate and timely decisions is crucial.



Recently, machine learning (ML) has contributed to developing effective models in the medical diagnosis domain, which could make accurate and timely decisions. Deep learning (DL) is a subsection of ML that seeks to find underlying links within a dataset through a set of operations that occurred while training. DL is a multilayer DL model that could theoretically handle nonlinear data; it significantly affects medical applications. For example, Fenglong et al. [9] utilized DL to develop a predictive model that predicts CKD based on several medical examination data. The same statement applies to [10]. Unless DL progresses in various applications, it has several limitations due to the heterogeneity of the medical data, which exacerbates the generalization and robustness of the developed model, resulting in misleading rules and reproducible diagnostic models. Therefore, the training process in DL does not always guarantee achievement of optimal weights and may end with a high-variance model. This challenge could be overcome by using diverse and various DL models. This process is called ensemble learning. Ensemble learning handles single model limitations by combining the advantage of traditional and ensemble learning to give more flexibility and a more generalization model [11]. Ensemble learning has two main types: the base learner and the diversity [12]. First, homogenous learning is achieved by using different data samples. Secondly, heterogeneous learning is achieved by using other models. The many combinations utilized to construct ensemble classifiers include bagging [13], boosting [14], and stacking [15]. In our study, the stacking ensemble model provides a generalized, robust, and flexible model. Several studies demonstrated that ensemble learning results in an accurate and effective model.



Choosing the optimal feature list is the main point in building an efficient model. Feature selection has been intensively investigated in the ML domain, achieving promising results in biomedical applications. Feature selections are classified into three main types: wrapper, filter, and embedded [16]. Our study utilized four feature selection methods to choose the optimal feature list. According to all the above, the main objective of the current paper is to develop an ensemble DL that could improve the prediction performance with the optimal feature subset. From a clinical perspective, our proposed feature list demonstrates the effectiveness in early prediction of CKD compared with the state of the art.




1.3. Paper Contribution


The main motivation for our work is summarized in the following points.



	
We explore different feature selection techniques to select the optimal features from an AI perspective.



	
We study the prediction of CKD from the medical side, working side by side with a medical expert to choose the most affected features from the medical side perspective.



	
We choose the optimal feature subset that is selected from an AI perspective and confirmed medically.



	
We develop novel stacking ensemble DL based on LSTM, CNN, and GRU in the base learning layer and SVM in the meta layer.



	
We train and test the base-learning models based on the CKD dataset with different feature subsets.



	
We compare the proposed ensemble model’s performance with other DL models.



	
We evaluate models’ performance with standard metrics, such as precision, recall, F score, and accuracy.



	
We ensure the superiority of our proposed model outcomes through calculating various evaluation metrics, as well as comparing with the state of the art.







1.4. Paper Organization


The rest of the paper is organized as follows. Section 2 describes the related work in the CKD domain. Dataset details and the proposed framework are discussed in Section 3. Section 4 shows the results and discussion. The paper concludes in Section 5.





2. Related Work


CKD is a critical and complex disease that affects a patient’s life. Unfortunately, the early symptoms of CKD may be subtle, and several symptoms overlap with other diseases. For example, kidney diseases are usually associated with decreased albumin levels, increased blood pressure, and a high decrease in white blood cells, which may overlap with other diseases such as hypertension, liver diseases, anemia, and heart diseases. Therefore, the existence of an efficient and accurate system that could assist the medical expert in data analysis and prediction is highly required.



This section discusses the state of the art of CKD diagnosis and prediction. We mainly focus on ML and DL models and feature-selection methods. Several studies depend on historical and lab test data to provide promising predictive models. For example, Shahriar et al. [17] provided a predictive model for CKD based on Gaussian naive Bayes (GNB) and decision tree (DT); the authors utilized all features in the used dataset and provided the best performance based on GNB. Wassel et al. [18] used statistical, RF-, and DT-based models to predict the existence of CKD. They reported that RF gives the best accuracy, outperforming other algorithms. In [19], the authors utilized recursive feature elimination (RFE) to choose the feature list, then built an ensemble model of several algorithms, including NB, SVM, multilayer perceptron, and logistic regression (LR). Their proposed model achieved promising performance in terms of different classification metrics. In [20], the authors proposed a neural network (NN) SVM model to predict CKD based on patients’ historical and clinical examination data. First, the data was preprocessed by replacing missing values with the column mean. The parameters were then calculated based on numerical analysis and then chose the optimal feature list based on information gain (IG). Their proposed model achieved the best accuracy. In [9], the authors utilized NN to develop a predictive model that predicts CKD based on medical examination, patient characteristics, and family history. Their proposed model achieved promising performance in terms of different evaluation metrics. The same is true in [21]; the only difference is the utilization of pretrained DNNs in building their predictive model. In [22], the authors explored the use of ML in analyzing datasets for CKD and employed LR and feedforward neural networks to achieve promising results. In [23], the authors selected features by using the XGBoost feature-selection algorithm and applied ML models: RF, SVM, RT, NN, and the bagging tree model (BTM) with selected features to predict CKD. In [24], the authors used recursive feature elimination (RFE) with ML models: SVM, KNN, DT, and RF for early diagnosis to avoid developing kidney failure. The result showed that RF achieved the best performance. In [25], the authors proposed a DL model and compared its performance to ML models: SVM, KNN, LR, RF, and NB. RFE and chi-square were used to select important features from CKD. Their proposed approach achieved the best performance. In [26], the authors used J48 and random forest to predict the various stages of CKD. J48 provided better accuracy compared to RF. In [27], the authors used the chi-squared test to extract highly correlated features with the target. The SMOTE algorithm was used to handle unbalanced data and RF and SVM were applied with selected features. SVM achieved better results than RF with a 10-fold CV. In [28], the authors optimized different models: CC, ANN, and LSTM, which are called OCNN, OANN, and OLSTM, respectively. OCNN achieved the highest validation accuracy. In [29], the authors proposed multilayer perceptron to diagnose CKD and compared it with SVM and NB. Experiments showed that multilayer perceptron achieved the highest accuracy. In [30], the authors used LR, RF, SVM, KNN, and NB and a feedforward neural network. KNN was used to fill in the missing values. RF achieved the best accuracy. In [31], the authors compared ML models NB, MLP, quadratic discriminant analysis (QDA), RF, KNN, and LR by using different evaluating parameters. RF displayed the highest accuracy. In [32], the authors used ML models DT, LR, RF, and KNN to predict CKD disease. In [33], the authors applied LR, DT, and SVM and used the bagging ensemble method; the bagging ensemble obtained the best result.



Other studies depend on temporal electronic health records (EHR) to predict CKD; for example, Ren et al. [34] developed a predictive model for patients based on clinical and laboratory data. They first preprocess the data by using undersampling to maintain the balance of the data, using an autoencoder to encode text data, then building NN model-based bidirectional LSTM and autoencoder. The proposed model achieved 87.9 in terms of classification accuracy with 10-fold cross-validation. In [35], the authors developed a model that could predict the onset of CKD prediction within the next 3, 6, and 12 months based on data aggregated through 24 months. The authors used various ML algorithms, including (RF, LR, DT) and DL algorithms (CNN, Bi-LSTM). The best accuracy was obtained from the CNN model. Other studies use nontemporal features to develop a prediction model. For example, Song et al. [36] depend on nontemporal EHR data in building prediction models. They first utilized three feature-selection techniques to extract features from EHR, then used DNN to build a predictive model that achieved the best AUCROC. The same is true in [37], which builds predictive models for CKD among diabetes patients. The developed model is based on demographic data and lab test data.




3. Methodology


The paper aims to introduce a novel ensemble DL approach to detect CKD; feature-selection methods were used to select the optimal selected features. Medically, the chosen features affect CKD. As shown in Figure 1, the proposed framework has a set of phases: the selected dataset, preprocessing step, feature-selection methods, our proposed model, and optimization methods. Each stage will be described in detail as follows.



3.1. Dataset Description


The benchmark Chronic Kidney Disease dataset utilized in this study was aggregated from the UCI machine learning repository [38]. Many authors used this dataset to make experimental observations [23,25,39]. It includes data for 400 cases distributed between 150 negative CKD and 250 positive CKD. The utilized dataset consists of 24 features divided into 13 categorical features and 11 numeric features, and one class label has two values: 1 and 0 for positive CKD and negative CKD, respectively. Table 1 details the categorical and numeric features.




3.2. Data Preprocessing


Medical data usually suffer from different problems (i.e., the existence of null values or extreme values (outliers)) due to the sensor, network, and data entry failure. When it comes to building an ML model, dataset problems have a negative effect on ML and DL models. The main objective of this stage is to increase data quality by handling missing values and outliers.



	
Data encoding: In the utilized dataset, a combination of categorical and numeric features exists. Unfortunately, two feature-selection techniques—ML and DL—perform better with numeric features than categorical ones. Therefore, we utilized the label encoder module in the Scikit-learn library to encode all categorical features.



	
Filling missing values: Several statistical methods have been developed to deal with missing data, but it mainly depends on how much data is missing and how important the missing feature is [40]. Classic statistical techniques such as mean, maximum, and mode perform well with a low percentage of missing values (5% to 10%), with increasing percentage of missing values (20–50%); other complex techniques like expectation maximization [41] are appropriate. In our study, this is due to the low percentage of missing values. The feature means are used to impute missing values.



	
Removing outliers: Outliers are values that lie far from the normal range of all feature values. It considers a critical problem in building a robust and generalized model [42]. In our current study, all data is analyzed from a statistical point of view to specify the outliers and then ensure the outlier’s values from a medical point of view. All outliers in the utilized data were replaced by feature mean.







3.3. Feature-Selection Methods


Feature selection (FS) is the process of extracting a subset of features from the whole dataset, such that the new feature space is reduced within specific criteria [43]. FS considers a critical step in the feature engineering process as it allows the model to concentrate on the important features and remove the less important features. FS has several advantages in terms of model performance, including the following. (i) FS contributes to increasing the prediction accuracy, (ii) it reduces the model complexity, and (iii) it makes the developed model easier to understand and interpret. FS has three main types, including the filter approach, wrapper approach, and embedded approach [44]. Figure 2 show the main categories of FS. Our work explores three feature selection methods: the chi-square test (Chi2), recursive feature elimination (RFE), and mutual information.



	
The filter approach tries to rank features based on descriptive and statistical measures. The optimum feature subset selection is based on the ranking of features according to the correlation of each feature with the desired output [45]. The types of filter methods are person correlation, information gain, and mutual information. The chi-squared test compute chi-squared stats between each nonnegative feature and class and calculates the score for each feature. This score is used to select the important features that have the highest score. We used Chi2 [46], a library built in Python. Mutual information (MI) [47] is a nonnegative value that expresses how dependent two random variables are on one another. Higher values indicate greater dependence, and it equals 0 only when two random variables are independent. We used mutual_info_classif() [47], a library built in Python.



	
The wrapper approach mainly depends on the performance of the developed model. The core part of the wrapper approach is the utilized algorithm, which tries to find the optimum feature subset that gives the best performance. Initially, the process starts with a few features, and the performance is evaluated [48,49]. This process iterated with the different number of features until reaching the optimal feature subset. Types of wrapper methods include the forward feature selection, backward feature selection, and recursive feature elimination (RFE). By using RFE feature selection, each feature is ranked according to its score in order to help the model select the best features.



	
The embedded approach considers part of the training process, and the feature-selection process is an integral part of the classification model [50]. This approach lies between the filter and wrapper approach, as the feature-selection process is made during the model tuning process. Lasso, ridge, and tree-based algorithms (i.e., decision tree, random forest, etc.) are the common ways of embedding feature selection [51]. We used RF, which uses a mean decrease impurity (Gini index) to estimate a feature’s importance.







3.4. The Proposed Model


In this study, we develop a novel prediction model for CKD. The model is divided into two main levels: Level 1 and Level 2, as shown in Figure 3.



	
The first level is the base learning, in which three optimized pretrained models are included— recurrent neural network (RNN), gated recurrent unit (GRU), and long short-term memory (LSTM)—with one and two hidden layers. Each model is loaded and frozen in all layers without the final layers. Each output probability prediction of the training set and testing set are combined in stacking training and testing stacking, respectively.



	
The second level is called the metalearner level. We fuse the optimized base learner from the previous layer, train the SVM as a metalearner by using training stacking, and evaluate by using testing stacking by exploring the stacking ensemble’s role in predicting the final output.






3.4.1. DL Model Architectures


We proposed and optimized three DL models, including the input, hidden, and output layers. The output layer has two neurons that are identical to the classes. The Adam optimizer [52] was employed, and the activation function is sigmoid [53]. Each DL model will be explained as follows.



	
The RNN is a type of neural network that is best suited for sequence inputs when used with feedforward networks. The neural network will need to be modulated in order to recognize dependencies between data points in sequence data. RNNs can store previous input states or data to create the subsequent output of the [54].



	
LSTM is an attention RNN architecture employed in the field of DL. LSTM has feedback connections. It can analyze complete data sequences in addition to single data points. A memory cell, called a “cell state”, which preserves its state over time, plays a crucial role in an LSTM mode. The input gate, forget gate, and output gate are the three gates that regulate the addition and deletion of data from the cell state in the LSTM. New information from the current input that is added to the cell state is controlled by the input gate. The forget gate regulates what data is erased from memory. The output gate conditionally decides what to output from memory [55].



	
The gated recurrent unit (GRU) is one of the most common RNN types. GRU uses an identical process as the RNN. GRU creates each recurrent unit to capture dependencies on various time scales. The GRU has gating units that control the information flow within the unit without using specific memory cells [56].







3.4.2. Optimization Methods


We used two optimization methods: Keras–Tuner and grid search with cross-validation to optimize DL and metalearner.



	
In DL, Keras–Tuner is a scalable, easy-to-use framework for optimizing hyperparameters that deals with the problems associated with hyperparameter search [57]. For optimized DL models, we adapted the number of neurons in layer1 and layer2 for RNN, LSTM, and GRU: range (20,700).



	
Grid search with cross-validation is employed to fine tune hyperparameters of SVM: C: [0.1, 1, 10, 100], gamma: [1, 0.1, 0.01, 0.001], kernel: [‘rbf’, ‘poly’, ‘sigmoid’].









4. Experiments Results


This section presents the performance of the DL models with different layers and the proposed ensemble models on the CKD dataset by using feature-selection methods.



4.1. Experiment Setup


All models were implemented by using the TensorFlow library along with Keras. DL models were optimized by the Kerse tuner. The metalearner classifier was optimized by grid search. All experiments were run using Google Colaboratory. In our work, we conducted two experimental results on the CKD dataset. First, it is split into two sets by using a stratified sampling method—80% training set and 20% testing sets—and secondly, it is split into a 70% training set and a 30% testing set. We trained and optimized models by using the training set and evaluated models by using the testing set.




4.2. Performance Metrics


Several metrics are commonly utilized in evaluating classification performance, including precision, recall, F measure, and accuracy. All of them are calculated in terms of true positive (TP), false positive (FP), true negative (TN), and false negative (FN). TN showed that the result was negative, and it correctly returned as positive. For TP, the result returned as positive, and it was actually positive. In contrast, TP means that the result returned was positive, and it is actually positive, and the same for TN. We have


  Accuracy =   TP + TN   TP + FP + TN + FN   .  



(1)






  Precision =  TP  TP  +  FP    



(2)






  Recall =  TP  TP + FN    



(3)






   F 1 - score  =   2 · precision · recall   precision + recall   .  



(4)








4.3. Training Parameters


For training RNN, LSTM, and GRU with layer1 and layer2, some of the hyperparameters were adapted: 50 epochs with a learning rate of 104, the loss function is binary_crossentropy, and the Adam optimizer was used with a batch size of 100. The values of the hyperparameters optimized by the Kerse tuner are listed below in Table 2.




4.4. Feature-Selection Methods


In the experiments, we explore the essential features of applying feature-selection methods to the CKD dataset.



4.4.1. Features Scores by Chi-Squared


Figure 4 shows the score for each feature after applying chi-squared. We can see that wc has the highest score at 9701.05 and sg has the lowest score at 0.00503. In addition, bu and bgr have the second-best scores, approximately the same score at 2343.0971 and 2241.651, respectively. Moreover, sc, pcv have the third-best scores, approximately the same at 357.79 and 308.18, respectively. Pe, ane, rbc, sod, pcc, cad rc, ba, pot, sg registered the lowest score, below 0.005.




4.4.2. Features Scores by Mutual_Info


Figure 5 shows the score for each feature after applying mutual_info_classes. Home has the highest score at 0.460012675, and pcc has the lowest score at 0.035396758. In addition, pcv has the second-highest score at 0.41338565. Moreover, sc and rc have the third-best scores, approximately the same score at 0.379678331 and 0.373807073, respectively. Finally, sg and al have the fourth-best scores, approximately the same at 0.299693288 and 0.296662486, respectively.




4.4.3. Features Ranking by RFE


Figure 6 shows the ranking of features selected by REF. REF sets ranking for each feature. Ranking 1 means the best features: age, bp, sg, al, bgr, bu, sc, sod, hemo, pcv, rc, htn, and dm. The worst feature with the highest ranking is ba at 12. The second-worst feature is cad at 11. The third-worst feature, pcc, has 10.




4.4.4. Feature Importance by Tree_Based (RF)


Figure 7 shows the feature’s importance of Tree_based (RF). Sc has the highest importance at 0.17015. The pcv has the second-highest score at 0.161880. In addition, rc and al have approximately the same importance at 0.08108 and 0.0808, respectively. Finally, ane, pcc, and cad record the lowest importance at 0.000691, 0.000406, and 0.000138.





4.5. Performance of Applying DL Models and the Proposed Model with Feature-Selection Methods


In this subsection, we explore the performance of DL models (RNN, LSTM, and GRU) with layer1 and layer2 and the proposed model (Proposed-Layer1, Proposed-Layer2) with SVM as metalearners with different selected features by REF, Chi2,mutual_info and tree based. Proposed Layer1 refers to stacking of (RNN Layer1, LSTM Layer1, and GRU Layer1). Proposed-Layer1 refers to (stacking of RNN Layer1, LSTM Layer1, and GRU Layer1) and Proposed Layer12 refers to (stacking of RNN Layer2, LSTM Layer2, and GRU Layer2). We conducted two experiments with a different spiriting ratio for different experiments: Experimental 1 is explained the performance of splitting the CKD dataset into 80% training and 20% testing sets. Experimental 2 explains the performance of splitting the CKD dataset into 70% training and 30% testing sets.




4.6. Experimental 1


In this section, we explore the possibility of enhancing the performance of using a stacking ensemble deep learning model over DL models by using an 80% training and 20% testing set, as shown in Table 3. We make the following observations. The performance of Proposed Layer2 improved by about 1–3%. We can see that DL models with two layers achieve the best performance compared to DL models with one layer.



	
For Chi2, Proposed Layer2 achieves the highest scores—95.0, 95.59, 95.0, and 95.05, in accuracy, precision, recall, and F1 score, respectively—compared to other models. Proposed Layer2 improved accuracy by 1, precision by 1.59, recall by 1, and F1 score by 1.05 compared to LSTM Layer2. LSTM Layer2 has the third-highest performance. GRU Layer1 registers the lowest performance accuracy = 86.25, precision = 87.62, recall = 86.25, and F1 score = 85.6.



	
For mutual_info, we can see that in the table, Proposed Layer2 achieves the highest scores at 99.69, 99.71, 99.69, and 99.69 in accuracy, precision, recall, and F1 score, respectively, compared to other models. Proposed Layer2 improved accuracy by 2.19, precision by 2.05, recall by 2.18, and F1 score by 2.29 compared to LSTM Layer2. Proposed Layer1 registers the second-highest performance. LSTM Layer2 has the third-highest performance. RNN Layer1 registers the lowest performance accuracy = 93.75, precision = 94.32, recall = 93.75, and F1 score = 93.61.



	
For RFE, Proposed Layer2 achieves the highest scores at 98.75, 98.79, 98.75, and 98.75 in accuracy, precision, recall, and F1 score, respectively, compared to other models. Proposed Layer2 improved accuracy by 2.22, precision by 2.39, recall by 2.22, and F1 score by 2.29 compared to RNN-Layer2. RNN Layer2 registers the third-highest accuracy = 96.53, precision = 96.4, recall = 96.53, and F1 score = 96.46. LSTM Layer1 registers the lowest performance accuracy = 91.25, precision = 91.68, recall = 91.25, and F1 score = 91.06.



	
For Tree based, Proposed Layer2 achieves the highest accuracy, precision, recall, and F1 score at 99.38, 99.42, 99.38, and 99.38, respectively, compared to other models. Proposed Layer2 improved accuracy by 0.92, precision by 0.96, recall by 0.93, and F1 score by 0.92 compared to RNN Layer2. RNN Layer2 achieves the third-highest performance. RNN Layer1 registers the lowest performance accuracy = 96.25, precision = 96.59, recall = 96.25, and F1 score = 96.28.







4.7. Experimental 2


In this section, we explore the possibility of enhancing the performance of using a stacking ensemble deep learning model over DL models by using a 70% training and a 30% testing set, as shown in Table 4. We make the following observations. The performance of Proposed Layer2 improved by about 1–3%. We can see that DL models with two layers achieve the best performance compared to DL models with one layer.



	
For Chi2, Proposed Layer2 achieves the highest scores 94.9, 94.43, 94.01, and 94.62, in accuracy, precision, recall, and F1 score, respectively, compared to other models. Proposed Layer2 improved accuracy by 1.5, precision by 0.54, recall by 0.26, and F1 score by 0.94 compared to LSTM Layer2. LSTM Layer2 has the third-highest performance. GRU Layer1 registers the lowest performance accuracy = 89.67, precision = 89.5, recall = 89.93, and F1 score = 89.74.



	
For mutual_info, Proposed Layer2 achieves the highest scores at 98.75, 98.88, 98.75, and 98.76 in accuracy, precision, recall, and F1 score, respectively, compared to other models. The proposed Layer2 enhanced precision by 1.02, recall by 0.8, and accuracy by 0.87 and F1 score by 0.85 compared to RNN Layer2. RNN Layer2 has the third-highest performance. LSTM Layer2 registers the lowest performance accuracy = 94.83, precision = 94.77, recall = 95.03, and F1 score = 94.9.



	
For RFE, Proposed Layer2 achieves the highest scores at 96.31, 96.34, 96.23, and 96.28 in accuracy, precision, recall, and F1 score, respectively, compared to other models. Proposed Layer2 improved accuracy by 0.69, precision by 0.59, recall by 0.61, and F1 score by 0.7 compared to LSTM Layer1. LSTM Layer1 registers the third-highest performance. GRU Layer2 registers the lowest performance accuracy = 92.5, precision = 93.0, recall = 92.5, and F1 score = 92.34.



	
For Tree based, Proposed Layer2 achieves the highest accuracy, precision, recall, and F1 score at 97.92, 98.19, 97.92, and 97.94, respectively, compared to other models. Proposed Layer2 improved accuracy by 2.89, precision by 3.17, recall by 2.8, and F1 score by 2.87 compared to RNN Layer2. RNN Layer2 achieves the third-highest performance. RNN Layer1 registers the lowest performance accuracy = 93.49, precision = 93.87, recall = 93.12, and F1 score = 93.46.







4.8. Discussion


In this section, a discussion of the summarized experimental results is introduced. In addition, we discuss the best models for each feature-selection method. Moreover, we compare the proposed model with the literature studies and from the medical side.



4.8.1. The Best Models


Figure 8 shows the best models for each feature selection method of 20–80 splitting. The Proposed Layer2 with mutual_info achieves the highest accuracy, precision, recall, and F1 score at 99.69, 99.71, 99.69, and 99.69, respectively. The Proposed Layer2 with Chi2 registers the lowest and achieves the highest accuracy, precision, recall, and F1 score at 95.0, 95.59, 95.0, and 95.05, respectively.



Figure 9 shows the best models for each feature selection method of 30–70 splitting. The Proposed Layer2 with mutual_info achieves the highest accuracy, precision, recall, and F1 score at 94.9, 94.43, 94.01, and 94.62, respectively. The Proposed Layer2 with Chi2 registers the lowest and achieves the highest accuracy, precision, recall, and F1 score at 94.9, 94.43, 94.01, and 94.62, respectively.




4.8.2. Comparison with Literature Studies


Table 5 compares previous studies and the proposed model. In [17,18,28], the data was partitioned into 80% for training and 20%. The data was partitioned into 70% for training and 30% for training. In [19,26,31], the authors made results by using 15-fold cross-validation.



We can see that the proposed model with mutual_info gives the highest accuracy at 99.69. In [17], GNB was registered as 94% of accuracy, and accuracy of 91% was recorded in [18]. In [20], NN SVM was recorded at 89% accuracy. In [9], autoencoder and NN had 94%. NN in [21] had 92% accuracy. In [58], CNN was recorded at 95.4. In [37], DNN had 74.7%. The authors used feature-selection methods. In [19], REF and the ensemble model recorded 94% accuracy. The authors [22] used a wrapper approach with LR, NN that was recorded with 96% accuracy.





4.9. Model Explanationabiity


Machine learning and deep learning have become integral to modern world functions. It is utilized to automate several tasks and discover patterns in data to make complex decisions. Like any decision-making tool, the degree of trust and confidence determines the decision [59]. Explainability is the process of providing information that clarifies why and how the model takes the decision and provides an explanation of the decision of the algorithm that could be understood by humans [60]. In order to make our proposed model more understandable, in this section, we explain our proposed model in terms of global and local explanations.



4.9.1. Global Feature Importance (Global Explainability)


To ensure the efficiency of our proposed model, we utilized the LIME library to show the behavior of the proposed model in terms of different features. As shown in Figure 10, each horizontal represents the impact of the feature in the overall decision. From Figure 10, we make the following conservation. (i) sg and hemo have the most significant impact on the overall decision. (ii) htn, sc, and PVC have a similar impact on prediction. (iii) All selected features greatly impact the overall decision. Figure 10 shows the density and the score of the high-impact features.




4.9.2. Local Explainability


In this subsection, we utilize LIME plots to explain each sample’s output decision. As shown in Figure 11A,B, CKD in case 8 shows a case with a probability of 2 not to have a CKD with a probability of 1. It also shows the most impact features that contribute to moving the decision to the negative class (hemo = 8.00, Sc = 2.90, pvc = 24.00). In Figure 11B, the predicted class was 1, which was the actual class. Figure 11B shows the high-impact features with their values that contribute to giving the positive class (rc = 5.28, hemo = 17, sc = 0.70, PVC = 52). These plots have high importance not only to show the predicted class versus the actual, but also to give a clear explanation of the reasons that move the final decision toward the class, which ensures the importance of our chosen features and their high impact on the final decision.





4.10. Medical Side


The proposed model with mutual_info gives the best performance in several evaluation metrics (accuracy = 99.69, precision = 99.71, recall = 99.69, and F1 score = 99.69). The improved performance returned to the chosen and appropriate model and the selected feature selection, which extracts the essential features. This importance is also affirmed from the medical side. Traditionally, CKD is identified through medical examination with some lab tests, such as urine analysis and blood urea nitrogen (BUN). Notwithstanding the importance of these examinations, there are less common factors that should be considered in CKD prediction that have a significant effect in predicting CKD diseases. The following points summarize the importance of the chosen features in CKD prediction.



	
Hemoglobin level was previously associated with heart failure, and many studies examined the relation between hemoglobin and kidney diseases and differences in the treatment process, and risks of death. For example, in [61], the authors aggregate the data of 722 adults from health plan records in California, analyze the correlation between hemoglobin level and other kidney functions, and then make the following observations. (i) The death level increased with lower hemoglobin with 95%, and the confidence interval ranged from 1.11 to 1.22 for hemoglobin from 12 to 12.8 g/dL, 94% with CI between 2.18 to 2.44 for hemoglobin (9.0 to 9.9). (ii) Relations are approximately the same for risk of hospitalization. (iii) The outcome of kidney functions significantly changed with hemoglobin level. (iv) This finding has no significant changes with systolic functions. The same is found true in [62].



	
Packed cell volume (PVC) also has a significant effect on CKD [63]. In a study that was conducted to investigate the impact of the PVC, as well as reticulocyte count among 96 (62% male and 38% female) subjects aged 24–60 (mean age 35 ± 12.8) with CKD. The PVC calculated the Hawksley microhaematocrit centrifuge (Hawksley, UK). The mean PVC among CKD patients was 33 ± 7.98 among CKD compared to 37 ± 5.11 among control subjects. The difference was statistically significant (p = 0.001) [63].



	
Serum creatine (SC) was utilized in a study conducted on 84 patients to determine whether serum creatine could be considered a marker in CKD. They concluded that there is a positive relationship between SC and EKD (p < 0.001) [64].



	
In terms of red cells (RC), in the following study [65], the authors examined the relation between blood parameters such as WBC, RBC, and CKD. The study was conducted on patients aged 60–70 years with CKD. The results showed that CKD led to significant decrees in RBC count and lymphocyte count at 83.44%, and 76.1%, as well as a small decrease in platelets, counted at 6.28%, and WBC at 48.73% [66]. Urine tests could also be used to find red blood cells, which are used as an indicator of kidney disease (i.e., stone, cyst, failure, and bladder cancer infection) [67]



	
Regarding sugar (SC) and diabetes mellitus (DM) and blood glucose random (BGR), several studies were conducted to study the correlation between diabetes mellitus and kidney disease occurrence [68], the authors concluded with several points as follows. (i) Nephrolithiasis, which is a symmetric disorder with CKD, increased with type 2 diabetes and metabolic syndrome. Glycemic control could contribute to delaying the progression of CKD. (ii) Dose adjustment among hypoglycemic patients is crucial. (iii) All drugs that are cleared by the kidney (i.e., glyburide) should be taken with caution, whereas other drugs that could be cleared by the liver and such sodium cotransporter (i.e., inhibitors) need to reduce in dose, practically when GFR < 30 mL/min.



	
In terms of serum albumin (al), previous studies associate between kidney function decline and albumin. Recently, several studies explored serum albumin as a risk factor for CKD. For example, in [69], authors made a cohort study among CKD aged from 70 to 79, estimating the association through GFR values. The results showed that lower albumin levels were strongly associated with kidney function decline (−0.12 mL/min/1.77 m   2   per year, with a standard deviation of −0.01, −0.020) when the results are divided into quarters. Serum albumin levels < 3.80 g/dL are associated with kidney function decline (ratio 1.59; 1.22–2.27). This increased the risk of CKD incidence (ratio 1.29; 1.03–1.62). Urine albumin and creatinine levels are highly associated with kidney function decline (−0.08 mL/mil/1.72 per year for urine (ACR > 30 mg/g; −0.088 to −0.12) [70].



	
In [71], authors explored the relationship between sodium, potassium, and kidney decline functions and concluded with a significant correlation between positum and urea (p = 0.005, r = 0.441). In terms of the correlation between creatine and sodium, it did not show a significant relation (p = 0.890, r = 0.023).



	
Blood pressure hypertension considers one of the main causes of kidney diseases as it leads to increased salt sensitivity, sympathetic tone, and upregulation of the aldosterone system [72]. Blood pressure also contributes to decreasing the slow progression of CKD as well as the risk of cardiovascular (CV) diseases [72]. Unless the certain relation between high blood pressure and CKD progression, a considerable debate still exists about optimal blood pressure [73].



	
Blood urea considers the main source of nitrogen in a patient’s body, which is filtered by the kidney to pass out through urine [74,75]. The main function of the kidney is to get rid of metabolic waste and maintain water PH. A high amount of urea in the blood significantly affects kidney function and may lead to kidney failure [76].



	
In terms of blood edema (PE), it has a relation with kidney failure (AKF). Multiple organ dysfunction syndrome (MODS) is commonly associated with AKF, but edema occurs in septic patients with severe inflammatory response syndrome even without ARF (SIRS) [6].








5. Conclusions


The paper proposed an ensemble DL model for chronic kidney disease prediction by using different feature-selection methods. First, the data were preprocessed for encoding text features via label encoding, handling missing values, and detecting outliers. Secondly, different feature selection techniques were applied to choose the optimum feature list, including mutual information, chi-squared, RFE, and tree-based (RF). Thirdly, a stacking ensemble DL model was developed by combining the output of RNN, LSTM, and GRU in level-1 learning and using them to train and evaluate SVM in terms of metalearning in level 2. The performance of models was evaluated in terms of different metrics. The result showed that the proposed ensemble model with mutual_info_classi achieved the highest performance (accuracy = 99.69, precision = 99.71, recall = 99.69, and F1 score = 99.69).



Our proposed model is medically intuitive, as it is based on features that have proven to affect CKD diagnosis significantly. In the future, we intend to extend our work by collecting real datasets for university hospitals to ensure the generalization ability of our proposed model. Secondly, chronic kidney diseases overlap with other diseases; therefore, we intend to study and explore the correlation between all diseases and disorders and CKD health status. Thirdly, we intend to study the computational complexity of the realized algorithm.
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Figure 1. The phases of prediction CKD. 
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Figure 2. The different types of feature-selection methods. 
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Figure 3. The proposed model of prediction CKD. 
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Figure 4. Features scores by chi-squared. 
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Figure 5. Feature scores by mutual_info_classif. 
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Figure 6. The ranking features selected by RFE. 
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Figure 7. Feature Importance by Tree_Based (RF). 
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Figure 8. The best models for all feature selection methods of 20–80 splitting. 
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Figure 9. The best models for all feature selection methods of 30–70 splitting. 
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Figure 10. Global feature importance. 
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Figure 11. Local explanation of the proposed model. 
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Table 1. Dataset description details.
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	#
	Column Name
	Abb
	D.T
	Range
	Description





	1
	Age
	Age
	N
	(2 to 90)
	Patient’s age in years



	2
	Blood Pressure
	PB
	N
	(50 to 180)
	Patient’s blood pressure in mmHG



	3
	Specific gravity
	SG
	C
	(1.025, 10.20, 1.015,

1.010, 1.005)
	The ratio between urine

density to water density



	4
	Albumin
	AL
	C
	(0, 1, 2, 3, 4, 5)
	Protein percentage in blood plasma



	5
	Sugar
	SU
	C
	(0, 1, 2, 3, 4, 5)
	The sugar level in blood plasma



	6
	Red blood cells
	RBC
	C
	(Abnormal, Normal)
	Percentage of red blood

cells in blood plasma



	7
	pus cell
	PC
	C
	(Abnormal, Normal)
	White blood cells in urine



	8
	Pus cell clumps
	PCC
	C
	(Abnormal, Normal)
	Sign of bacterial infection



	9
	Bacteria
	BA
	C
	(Present, Not Present)
	Sign of bacterial existence in urine



	10
	Blood glucose random
	BGR
	N
	(22 to 490)
	A random test of glucose

in the blood in mg/dL



	11
	Blood urea
	BU
	N
	(1.5 to 391)
	Percentage of urea nitrogen

in blood plasma



	12
	Serum creatine
	SC
	N
	(0.4, 76)
	Creatine level in patient

muscles in mg/dL



	13
	Sodium
	SOD
	N
	(4.5 to 163)
	Sodium mineral level in blood



	14
	Potassium
	POT
	N
	(2.5 to 47)
	Potassium mineral level in blood



	15
	Hemoglobin
	HEMO
	N
	(3.1 to 17.8)
	Red protein that responsible

of transport oxygen in the blood



	16
	Packed cell volume
	PCV
	N
	(9 to 43)
	The volume of blood

cells in a blood sample



	17
	White blood cell count
	WC
	N
	(2200 to 4800)
	Count of white blood cells in cells/cumm



	18
	Red blood cell count
	RC
	N
	(2.1 to 8)
	Count of red blood cells in millions/cumm



	19
	Hypertension
	HTN
	C
	(Yes, No)
	The condition where there is

continuously high pressure

in the blood vessels



	20
	Diabetes mellitus
	DM
	C
	(Yes, No)
	Impairment in the body’s production

or response to insulin, a condition of glucose

metabolism that makes it difficult to

maintain healthy levels of sugar



	21
	Coronary artery diseases
	CAD
	C
	(Yes, No)
	A common heart condition where

the main blood channels feeding

the heart, have trouble supplying

enough nutrients, oxygen,

and blood to the heart muscle



	22
	Appetite
	APPET
	C
	(Good, Poor)
	The desire to eat food



	23
	Pedal edema
	PE
	C
	(Yes, No)
	Swelling of the patient’s body

due to an injury or inflammation



	24
	Anemia
	ANE
	C
	(Yes, No)
	Insufficient healthy red blood cells

to transport appropriate oxygen

to the body’s tissues



	25
	Class
	Class
	C
	(CKD, Not CKD)
	A positive or negative result in

terms of having chronic kidney diseases
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Table 2. The best values of the hyperparameters of DL models.
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Feature-Selection Methods

	
Models

	
Split 80:20

	
Split 70:30




	
Number of Units

	
Number of Units






	
Chi-Squared

	
RNN Layer1

	
[490]

	
[330]




	
RNN Layer2

	
[470, 90]

	
[430, 150]




	
LSTM Layer1

	
[190]

	
[110]




	
LSTM Layer2

	
[250, 230]

	
[450, 250]




	
GRU Layer1

	
[470]

	
[310]




	
GRU Layer2

	
[430, 310]

	
[330, 260]




	
REF

	
RNN Layer1

	
[170]

	
[430]




	
RNN Layer2

	
[310, 150]

	
[410, 390]




	
LSTM Layer1

	
[190]

	
[170]




	
LSTM Layer2

	
[330, 250]

	
[330, 290]




	
GRU Layer1

	
[290]

	
[150]




	
GRU Layer2

	
[250, 120]

	
[370, 250]




	
mutual_info_classi

	
RNN Layer1

	
[490]

	
[390]




	
RNN Layer2

	
[370, 270]

	
[290, 230]




	
LSTM Layer1

	
[490]

	
[450]




	
LSTM Layer2

	
[230, 220]

	
[150, 150]




	
GRU Layer1

	
[330]

	
[220]




	
GRU Layer2

	
[250, 140]

	
[190]




	
Tree Based

	
RNN Layer1

	
[490]

	
[190]




	
RNN Layer2

	
[370, 450]

	
[90, 90]




	
LSTM Layer1

	
[290]

	
[330]




	
LSTM Layer2

	
[310, 250]

	
[170, 90]




	
GRU Layer1

	
[330]

	
[270]




	
GRU Layer2

	
[210, 250]

	
[230, 220]
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Table 3. Performance of applying DL models and the proposed model with feature-selection methods by using 80–20 splitting.
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Feature-Selection Methods

	
Models

	
Matrix Performance




	
Accuracy

	
Precision

	
Recall

	
F1-Score






	
Chi2

	
RNN Layer1

	
91.25

	
92.91

	
91.25

	
91.38




	
RNN Layer2

	
92.5

	
92.77

	
92.5

	
92.38




	
LSTM Layer1

	
88.75

	
89.6

	
88.75

	
88.38




	
LSTM Layer2

	
94.0

	
94.0

	
94.0

	
94.0




	
GRU Layer1

	
86.25

	
87.62

	
86.25

	
85.6




	
GRU Layer2

	
93.75

	
93.89

	
93.75

	
93.68




	
Proposed Layer1

	
93.75

	
93.74

	
93.75

	
93.73




	
Proposed Layer2

	
95.0

	
95.59

	
95.0

	
95.05




	
mutual_info

	
RNN Layer1

	
93.75

	
94.32

	
93.75

	
93.61




	
RNN Layer2

	
96.25

	
96.46

	
96.25

	
96.21




	
LSTM Layer1

	
96.5

	
96.66

	
96.5

	
96.51




	
LSTM Layer2

	
97.5

	
97.66

	
97.5

	
97.51




	
GRU Layer1

	
95.0

	
95.18

	
95.0

	
95.03




	
GRU Layer2

	
96.25

	
96.59

	
96.25

	
96.28




	
Proposed Layer1

	
98.75

	
98.79

	
98.75

	
98.75




	
Proposed Layer2

	
99.69

	
99.71

	
99.69

	
99.69




	
RFE

	
RNN Layer1

	
94.25

	
94.59

	
94.25

	
94.28




	
RNN Layer2

	
96.53

	
96.4

	
96.53

	
96.46




	
LSTM Layer1

	
91.25

	
91.68

	
91.25

	
91.06




	
LSTM Layer2

	
95.0

	
95.05

	
95.0

	
94.96




	
GRU Layer1

	
92.25

	
92.68

	
92.25

	
92.06




	
GRU Layer2

	
95.0

	
95.37

	
95.0

	
94.92




	
Proposed Layer1

	
97.5

	
97.66

	
97.5

	
97.51




	
Proposed Layer2

	
98.75

	
98.79

	
98.75

	
98.75




	
Tree-based

	
RNN Layer1

	
96.25

	
96.59

	
96.25

	
96.28




	
RNN Layer2

	
98.46

	
98.46

	
98.45

	
98.46




	
LSTM Layer1

	
96.25

	
96.59

	
96.25

	
96.28




	
LSTM Layer2

	
97.79

	
97.79

	
97.77

	
97.78




	
GRU Layer1

	
97.5

	
97.66

	
97.5

	
97.51




	
GRU Layer2

	
97.62

	
97.61

	
97.63

	
97.62




	
Proposed Layer1

	
98.75

	
98.85

	
98.75

	
98.76




	
Proposed Layer2

	
99.38

	
99.42

	
99.38

	
99.38
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Table 4. Performance of applying DL models and the proposed model with features selection methods using 80–20 splitting.
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Feature Selection Methods

	
Models

	
Matrix Performance




	
Accuracy

	
Precision

	
Recall

	
F1-Score






	
Chi2

	
RNN Layer1

	
90.67

	
90.58

	
90.93

	
90.74




	
RNN Layer2

	
91.25

	
91.68

	
91.25

	
91.06




	
LSTM Layer1

	
92.75

	
92.89

	
92.75

	
92.68




	
LSTM Layer2

	
93.75

	
93.89

	
93.75

	
93.68




	
GRU Layer1

	
89.67

	
89.58

	
89.93

	
89.74




	
GRU Layer2

	
92.7

	
92.72

	
92.74

	
92.73




	
Proposed Layer1

	
94.13

	
94.15

	
94.12

	
94.13




	
Proposed Layer2

	
94.9

	
94.43

	
94.01

	
94.62




	
mutual_info

	
RNN Layer1

	
96.25

	
96.26

	
96.25

	
96.24




	
RNN Layer2

	
97.88

	
97.86

	
97.95

	
97.91




	
LSTM Layer1

	
96.08

	
96.08

	
96.06

	
96.07




	
LSTM Layer2

	
94.83

	
94.77

	
95.03

	
94.9




	
GRU Layer1

	
93.49

	
93.87

	
93.12

	
93.46




	
GRU Layer2

	
96.31

	
96.34

	
96.23

	
96.28




	
Proposed Layer1

	
98.33

	
98.48

	
98.33

	
98.34




	
Proposed Layer2

	
98.75

	
98.88

	
98.75

	
98.76




	
RFE

	
RNN Layer1

	
94.11

	
94.66

	
92.68

	
93.44




	
RNN Layer2

	
94.97

	
95.15

	
94.85

	
94.99




	
LSTM Layer1

	
95.62

	
95.75

	
95.62

	
95.58




	
LSTM Layer2

	
95.25

	
95.59

	
95.25

	
95.28




	
GRU Layer1

	
93.75

	
94.07

	
93.75

	
93.65




	
GRU Layer2

	
92.5

	
93.0

	
92.5

	
92.34




	
Proposed Layer1

	
96.20

	
96.28

	
96.20

	
96.28




	
Proposed Layer2

	
96.31

	
96.34

	
96.23

	
96.28




	
Tree-based

	
RNN Layer1

	
94.49

	
94.87

	
94.12

	
94.46




	
RNN Layer2

	
95.03

	
95.02

	
95.12

	
95.07




	
LSTM Layer1

	
94.83

	
94.77

	
95.03

	
94.9




	
LSTM Layer2

	
94.38

	
94.62

	
94.38

	
94.3




	
GRU Layer1

	
93.75

	
94.07

	
93.75

	
93.65




	
GRU Layer2

	
93.49

	
93.87

	
93.12

	
93.46




	
Proposed Layer1

	
97.5

	
97.66

	
97.5

	
97.51




	
Proposed Layer2

	
97.92

	
98.19

	
97.92

	
97.94
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Table 5. Comparison with literature studies.
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	Ref
	FS
	Models
	Used Dataset
	ACC





	 [17]
	IG
	GNB
	Private Dataset
	94



	 [18]
	NO FS
	NB, DT, RF
	UCI ML repository
	91



	 [19]
	RFE
	ensemble model

(NB, SVM, MLP, DT )
	UCI ML repository
	94



	 [20]
	NO FS
	NN SVM
	Data aggregated from

50 CKD

and 50 control subjects
	89



	 [9]
	No FS
	Auto encoder & NN
	Two Private
	93



	 [21]
	No FS
	NN
	Dataset of 200

subjects aged

more than 70 years
	92



	 [22]
	Wrapper approach
	LR, NN
	Private (100 subjects )
	96



	 [37]
	No FS
	DNN
	11,140 subjects’ diabetes

subjects with CKD
	74.7



	 [26]
	RFE
	J48
	UCI ML repository
	85.5



	 [28]
	No
	OCNN
	UCI ML repository
	98.75



	 [31]
	No
	RF
	UCI ML repository
	99.75



	The proposed model
	mutual_info
	Stacking ensemble
	UCI ML repository
	99.69
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