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Abstract: This paper predicts the abrasion resistance of a cementitious composite containing granite
powder and fly ash replacing up to 30% of the cement weight. For this purpose, intelligent artificial
neural network (ANN) models were used and compared. A database was built based on mix
composition, curing time, and curing method. The model developed to predict the abrasion resistance
of the cementitious composites containing granite powder and fly ash was shown to be accurate. It
was proved by the very high values of the accuracy parameters that were above 0.93 in the case of
the coefficient of the determination R2 and very low values of the errors, which were about 10% in
the case of mean average percentage error. This method can be used especially for designing cement
mortars with granite powder and fly ash additives replacing cement in a range from 0 to 30% of its
weight. These mortars can be used for floors in industrial buildings.
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1. Introduction

There is no doubt that cementitious composites shape the civil engineering industry,
as they are the most widely used materials, more than steel and wood combined, for
construction purposes [1]. Due to their physical–mechanical parameters, concrete and
mortar provide architects and builders with a wide range of applications. There is a great
need and interest in research aiming at reducing the carbon footprint of cementitious
composites. Mortar, on which this research is focused, can be defined as a composite
material, consisting of small-size aggregates and a binder (a mixture of hydraulic cement
and water). Among its components, the greatest threat to the environment is the production
of Portland cement, upon which most hydraulic types of cement employed today are
based [2]. Additionally, cement plants generating power cause cement production to be
a leading source of carbon dioxide atmospheric emissions. It is estimated that cement
production is responsible for 5% of global emissions of carbon dioxide [3]. Due to the
global warming problem, the cement industry is facing the problem of improvement and
adaptation to new conditions of reducing its carbon footprint.

One of the possibilities for making mortar more eco-friendly is the partial replacement
of cement with fly ash. Fly ash can be collected in the dust collection systems that remove
particles from the exhaust gases of power plants that burn pulverized coal. It is generally
finer than Portland cement and consists mostly of small spheres of a glass of complex
composition involving silica, ferric oxide, and alumina [4]. Due to control standards, fly
ash cannot be released into the atmosphere and must be stored at coal power plants or
placed in landfills. This creates the opportunity for recycling and a reduction in waste. The
replacement of cement with fly ash can be beneficial for mortar parameters, decreasing
the shrinkage and increasing its resistance to aggressive factors, frost resistance, fracture
toughness, and the interfacial zone around the aggregate [5]. Usually, the replacement does
not exceed 30% of the binder because of the longer setting time, lower early strength, and
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altered durability. Higher fly ash contents (high volume fly ash concrete, cementless ash
concrete) require alkalization of the hardening process [6].

Another step into sustainable mortars is the addition of granite powder, which is waste
arising from the rock-crushing process, as a partial cement replacement. In accordance
with the literature survey, there is a huge potential for granite powder as a replacement for
natural fine aggregates [7]. Granite powder application in concrete can contribute not only
to reducing landfills but also improving workability, stiffness, strength, and the packing
density of the aggregate [8] compared to ordinary aggregates and Portland cement mortars.
Similarly to fly ash, the addition of granite powder beyond 30% caused a strength decrease,
according to the literature [9].

The conscious choice of ingredient type and amount, additives, and admixtures allows
us to obtain different types of mortar, prepared for a specific task to fulfill. This research
is focused on studying mortar with its surface subjected to dynamic loading with fly ash
and/or granite powder as the partial cement replacement. One of the most important
parameters when dealing with scuffing, scratching, wearing down, marring, or rubbing
away the surface is abrasion resistance [10]. The significant impact of it on mortar’s
surface durability has been proved by several pieces of research [11,12]. The abrasion
resistance of mortar depends on parameters such as paste hardness, aggregate hardness,
aggregate/paste bond, and most importantly, compressive strength [13]. Other practices
such as curing and surface finishing techniques can also have a strong influence on it [14].
Knowledge of the abrasion mechanism may be useful in the design of elements exposed to
contact with moving objects such as industrial floors, slabs, pavement, roads, airport aprons,
etc. For the purpose of this work, the Bőhme disc method that complies with European
Standard EN 13892-3 [15] was used to determine the depth of wear. The samples used were
mortars containing fly ash, granite powder, and their combinations as partial substitutes for
cement, aiming for reducing cement content, together with carbon footprint [16]. According
to the literature, abrasion resistance of concrete with fly and/or granite powder addition has
already been examined by some researchers in cases as follows the influence on abrasion
resistance such as replacing 50 and 70% of the cement with fly ash [17,18], replacing
up to 100% of the cement with granite waste in self-compacting concrete [19], using
waste granite as a coarse aggregate [20], and a combination of using granite as a coarse
aggregate and replacing 10% of the cement with fly ash [21]. Unfortunately, because of
the fact that granite powder rarely increases the compressive strength of concrete, the
granite added to the concrete is more often a coarse aggregate than the replacing cement
eco-admixture. Additionally, investigating things other than compressive strength, the
mechanical properties of the cementitious composite modified with granite powder is not
the point of interest of other researchers.

Another important fact is that the current methods of determining abrasion resistance
share similar disadvantages, including damaging sample surfaces and time-consuming
testing. The possible transformation of some tests into prediction methods is performed
and, therefore, optimization can be achieved by artificial intelligence (AI). Due to the in-
creasing value of using AI to solve various problems in civil engineering, algorithms of
artificial neural networks became very popular for predicting the mechanical properties of
cementitious composites with eco-friendly admixtures, such as compressive strength [22],
elastic modulus [23], and the wear of a modified cementitious composite [24]. Unfortu-
nately, only a few researches have been focused on predicting abrasion resistance using
neural networks [25,26]. Reducing the amount of destructive test methods in favor of
prediction is important and, therefore, a sustainable approach should be studied deeply
and more complexly.

2. Materials and Methods
2.1. Materials Used to Build the Database

Research was carried out for cementitious mortars modified with different types and
amounts of additives. A reference mortar was modified with siliceous fly ash and granite
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powder waste in a 0–30% amount of cement mass. Figure 1 presents the chemical composi-
tion of the cement, fly ash, and granite powder used in the research, which was obtained
by performing SEM analyses. The 11 different series compositions, whose composition is
shown in Table 1, were prepared for the study. The tests were performed and analyzed
after 4, 8, 12, and 16 cycles for two samples of each series to prevent outlier results. Overall,
88 sets of results were subjected to the study.
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Figure 1. Chemical composition of ingredients used in the research. (a) Cement, (b) siliceous fly ash,
and (c) granite powder.

Table 1. The series compositions of the cementitious mortar mixes.

No. Series Cement Water w/c w/b FA GP Binder Sand

1 Ref 1 0.5 0.50 0.50 0 0 1 3
2 FA10 0.9 0.5 0.56 0.50 0.1 0 1 3
3 FA20 0.8 0.5 0.63 0.50 0.2 0 1 3
4 FA30 0.7 0.5 0.71 0.50 0.3 0 1 3
5 GP10 0.9 0.5 0.56 0.50 0 0.1 1 3
6 GP20 0.8 0.5 0.63 0.50 0 0.2 1 3
7 GP30 0.7 0.5 0.71 0.50 0 0.3 1 3
8 5FA + 5GP 0.9 0.5 0.56 0.50 0.05 0.05 1 3
9 10FA + 10GP 0.8 0.5 0.63 0.50 0.1 0.1 1 3

10 20FA + 10GP 0.7 0.5 0.71 0.50 0.2 0.1 1 3
11 10FA + 20GP 0.7 0.5 0.71 0.50 0.1 0.2 1 3

Cementitious mortars were prepared using a cement CEM I 42.5R (Górażdże, Poland),
fine aggregate (Byczeń, Poland), water from a water supply, granite powder waste
(Strzegom, Poland), and siliceous fly ash (Hranice, Czech Republic). The lowest value
of the bulk density was obtained for fly ash and was approximately 1.15 g/cm2, and it
was lower than for cement, which was 1.18 g/cm2, and for granite powder, which was
1.22 g/cm2. It was quite different in the case of the specific surface area, as the cement
was about 3700 cm2/g and was lower than the specific surface area of granite powder, for
which it was 3950 cm2/g, and for fly ash, which was approximately 4150 cm2/g. Sieve size
development of granular materials used is shown in Figure 2.
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2.2. Methods of Investigating the Abrasion Resistance

Measured dry ingredients of the cementitious mix were placed in the mixer and mixed
for 3 min. After that, a measured amount of water was added to the mix and was mixed
for 5 min. A plasticizer was not used in the mixing process. After mixing, the fresh mortar
was placed in the prepared molds. Cubic specimens with dimensions 71 × 71 × 71 mm3

were prepared. After 24 h, samples were put into water and water-cured for 28 days. After
this time, the following tests were performed.

To determine the bulk density of hardened cementitious mortars, the authors used the
test described in standard PN-EN 12350-6 [27]. The mix is compacted in a rigid, waterproof
container of known volume and weight, and then weighed.

To determine the abrasion resistance of hardened cementitious mortars, the authors
used the test described in standard PN-EN 13892-3 [15] (Bőhme method). The prepared
samples were abraded on a Bőhme machine. This test consists in measuring the change in
height and weight of a cubic sample with a 71 mm long side. The sample is placed on a
disc sprinkled with abrasive powder and then pressed and put into rotation by means of
a grinding machine, as is presented in Figure 3. First, the initial abrasion was performed
(4 cycles with 22 rounds) and after that, the samples were weighed. Next, the abrasion
resistance tests were investigated. A total of 4 stages of the test were performed, consisting
of an abrasion resistance evaluation after 4, 8, 12, and 16 cycles of 22 rounds each. After
every stage, samples were weighed and measured.
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2.3. Soft Computing Techniques

Machine learning algorithms recently played a vital role in solving engineering prob-
lems. Recently, the most commonly and successfully used are neural networks and tree-
based algorithms, such as random forest. Therefore, these two were used for this study.

2.3.1. Neural Networks

Neural networks are computer imitations of neural connections in the human brain
consisting of units called neurons. These neurons are grouped into three types of layers,
which are the input consisting of parameters used during the prediction process, hidden,
and output, which provides the solution to the problem. Hidden and output layers are
activated using activation functions which commonly are:

Linear function: f(x) = ax + b (1)

Tangh function : f(x) =
ex − e−x

ex + e−x (2)

Logisitc function : f(x) =
ex

ex + 1
(3)

Exponential function : f(x) = dx (4)

Sinus function: f(x) = sin x (5)

The iterative process of obtaining the solution to the problem is performed by training
and testing the neural network using learning algorithms. For this purpose, in this work,
quasi-Newton, Levenberg–Marquardt, and conjugate gradient learning algorithms have
been used [28]. In this work, the authors used different variants of neural networks in
terms of their topology, as well as the activation functions and learning algorithms. Table 2
presents different variants of analyzed topologies of the neural networks.

Table 2. Variants of the analyzed topologies of the artificial neural network (ANN).

Number of Inputs Number of Hidden
Layers

Number of Hidden
Neurons Activation Functions Learning Algorithms

From 1 to 5 1 or 2 From 1 to 20

Linear
Sinus
Tanh

Logistic
Exponential

Quasi-Newton
Levenberg–Marquardt,

Conjugate Gradient

2.3.2. Random Forest

Random forest is a decision tree-based algorithm that is able to solve both regression
and classification problems. Such trees consist of units called nodes in which the binary
decisions are made. Based on the end of each tree, the solution to the problem is proposed.
The overall solution of the problem is very often the average value of the solutions from
each tree for regression problems or the most commonly appeared class for the trees. The
algorithm may vary in terms of the number of trees in the forest and also the trees may
vary in terms of the minimum splitting subset or the minimum number of instances in the
leaves [29]. The analyzed variants of the random forest algorithm are presented in Table 3.

Table 3. Variants of the analyzed topologies of the random forest (RF).

Variants of Inputs Number of Trees Minimum Splitting Subset Minimum Number of Instances in Leaves

From 1 to 5 Up to 500 5 2
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2.3.3. Cross-Validation

The numerical analyses for both algorithms were performed using fivefold cross-
validation (presented in Figure 4) with a division into an independent data set of 70 data
sets (about 80%) for the training process and eighteen data sets (about 20%) for the testing
process. The topologies of the neural network and random forest algorithms were chosen
after analyzing various numbers of inputs, learning algorithms, and the number of hidden
neurons or trees. Schematically, the cross-validation test is presented in Figure 4. In each
fold, different data are used for training and testing processes. It is very beneficial to avoid
overfitting the algorithm.
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3. Results of Measurements and Their Short Analyses

Figures 5 and 6 present the depth of wear as a function of time after 4, 8, 12, and
16 cycles. Because two samples were prepared for each configuration, the graph shows the
average value of the depth of wear.
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The results presented in Figures 5 and 6 were based on the depth of wear parameter.
According to these Figures, it can be seen that the number of cycles does not affect the linear
increase in the depth of wear. According to Figure 6, it can be seen that the highest increase
in the depth of wear values obtained experimentally was achieved for the specimens
containing 30% of granite powder as a substitution for cement. Conversely, the lowest
increase in the values of the depth of wear was obtained for the samples containing 10%
of siliceous fly ash, and these values were also lower than for reference samples, which
can be seen in Figure 6. According to Figure 5b, it can be observed that other samples,
containing different proportions of granite powder (10% and 20% as substitutes of cement)
were characterized with similar depth of wear values as the reference samples. However,
according to Figure 5c, it can be seen that using both materials, fly ash and granite powder,
in the mixtures combined does not affect the depth of wear in comparison to the reference
samples. These differences are statistically not significant. While comparing the results in
Figure 7, it also can be seen that most of the samples containing fly ash and fly ash with
granite powder were characterized by a lower depth of wear when the number of cycles
increases to more than the reference sample. These differences were the greatest for the
measurements performed after 16 cycles. Again, the application of fly ash with granite
powder for all configurations gives promising results.
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4. Prediction

Current methods of determining abrasion resistance share similar disadvantages,
including damaging sample surfaces and time-consuming testing. The possible trans-
formation of some tests into prediction methods and, therefore, the optimization can be
achieved by the ANN and RF. This can contribute to reducing the amount of destructive
test methods in favor of prediction and, therefore, produce a sustainable approach. Created
prediction algorithms were based on selected mortar components with the cycles of testing
and mass of a sample after drying (Table 4). The output was assumed as the depth of
wear. Water and sand were omitted, as the content for all samples stays the same. The
total database consisted of 88 cases. One has to remember that the abrasion resistance of
cementitious composites depends on several factors, including paste hardness, aggregate
hardness, aggregate/paste bond, and compressive strength. Even when having perfect
ingredients, other factors such as curing and surface finishing techniques can “spoil” the
end result of abrasion resistance. Machine learning algorithms should not be treated as
infallible tools. However, they can be helpful in terms of choosing amounts of ingredients
to obtain desired abrasion resistance properties. It is recommended that the final mortar
quality should be verified with additional methods, such as non-destructive tests (NDT).

Table 4. Selected input and output parameters.

No. Series Cement [-] Fly Ash [-] Granite
Powder [-]

Number of
Cycles

Mass of the
Sample [g]

Depth of
Wear [mm]

1 REF 1 0 0 4 356.56 0.79
2 REF 1 0 0 4 373.21 1.00
3 FA10 0.9 0.1 0 4 362.15 0.98
4 FA10 0.9 0.1 0 4 354.24 1.05
5 FA20 0.8 0.2 0 4 370.63 0.74
6 FA20 0.8 0.2 0 4 357.84 0.95
7 FA30 0.7 0.3 0 4 362.15 1.01
8 FA30 0.7 0.3 0 4 354.24 1.29
9 GP10 0.9 0 0.1 4 378.54 1.08

10 GP10 0.9 0 0.1 4 345.97 0.92
11 GP20 0.8 0 0.2 4 368.28 0.89
12 GP20 0.8 0 0.2 4 345.82 1.14
13 GP30 0.7 0 0.3 4 366.04 1.16
14 GP30 0.7 0 0.3 4 343.56 1.50
15 FA5GP5 0.9 0.05 0.05 4 380.16 1.08
16 FA5GP5 0.9 0.05 0.05 4 349.8 0.70
17 FA10GP10 0.8 0.1 0.1 4 373.29 0.60
18 FA10GP10 0.8 0.1 0.1 4 365.79 1.16
19 FA20GP10 0.7 0.2 0.1 4 375.29 0.94
20 FA20GP10 0.7 0.2 0.1 4 361.13 0.89
21 FA10GP20 0.7 0.1 0.2 4 379.72 0.66
22 FA10GP20 0.7 0.1 0.2 4 354.42 1.27
23 REF 1 0 0 8 356.56 1.87
24 REF 1 0 0 8 373.21 1.94
25 FA10 0.9 0.1 0 8 362.15 1.81
26 FA10 0.9 0.1 0 8 354.24 1.86
27 FA20 0.8 0.2 0 8 370.63 1.64
28 FA20 0.8 0.2 0 8 357.84 1.81
29 FA30 0.7 0.3 0 8 362.15 1.86
30 FA30 0.7 0.3 0 8 354.24 2.28
31 GP10 0.9 0 0.1 8 378.54 2.19
32 GP10 0.9 0 0.1 8 345.97 1.71
33 GP20 0.8 0 0.2 8 368.28 1.77
34 GP20 0.8 0 0.2 8 345.82 2.12
35 GP30 0.7 0 0.3 8 366.04 1.91
36 GP30 0.7 0 0.3 8 343.56 2.67
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Table 4. Cont.

No. Series Cement [-] Fly Ash [-] Granite
Powder [-]

Number of
Cycles

Mass of the
Sample [g]

Depth of
Wear [mm]

37 FA5GP5 0.9 0.05 0.05 8 380.16 2.01
38 FA5GP5 0.9 0.05 0.05 8 349.8 1.80
39 FA10GP10 0.8 0.1 0.1 8 373.29 1.50
40 FA10GP10 0.8 0.1 0.1 8 365.79 2.20
41 FA20GP10 0.7 0.2 0.1 8 375.29 2.00
42 FA20GP10 0.7 0.2 0.1 8 361.13 1.63
43 FA10GP20 0.7 0.1 0.2 8 379.72 1.65
44 FA10GP20 0.7 0.1 0.2 8 354.42 2.48
45 REF 1 0 0 12 356.56 2.89
46 REF 1 0 0 12 373.21 2.86
47 FA10 0.9 0.1 0 12 362.15 2.72
48 FA10 0.9 0.1 0 12 354.24 2.67
49 FA20 0.8 0.2 0 12 370.63 2.54
50 FA20 0.8 0.2 0 12 357.84 2.73
51 FA30 0.7 0.3 0 12 362.15 2.80
52 FA30 0.7 0.3 0 12 354.24 3.28
53 GP10 0.9 0 0.1 12 378.54 2.98
54 GP10 0.9 0 0.1 12 345.97 2.62
55 GP20 0.8 0 0.2 12 368.28 2.69
56 GP20 0.8 0 0.2 12 345.82 3.14
57 GP30 0.7 0 0.3 12 366.04 3.01
58 GP30 0.7 0 0.3 12 343.56 3.90
59 FA5GP5 0.9 0.05 0.05 12 380.16 2.93
60 FA5GP5 0.9 0.05 0.05 12 349.8 2.62
61 FA10GP10 0.8 0.1 0.1 12 373.29 2.30
62 FA10GP10 0.8 0.1 0.1 12 365.79 3.23
63 FA20GP10 0.7 0.2 0.1 12 375.29 3.31
64 FA20GP10 0.7 0.2 0.1 12 361.13 2.48
65 FA10GP20 0.7 0.1 0.2 12 379.72 2.58
66 FA10GP20 0.7 0.1 0.2 12 354.42 3.58
67 REF 1 0 0 16 356.56 3.96
68 REF 1 0 0 16 373.21 3.84
69 FA10 0.9 0.1 0 16 362.15 3.52
70 FA10 0.9 0.1 0 16 354.24 3.44
71 FA20 0.8 0.2 0 16 370.63 3.41
72 FA20 0.8 0.2 0 16 357.84 3.68
73 FA30 0.7 0.3 0 16 362.15 3.62
74 FA30 0.7 0.3 0 16 354.24 4.22
75 GP10 0.9 0 0.1 16 378.54 4.02
76 GP10 0.9 0 0.1 16 345.97 3.37
77 GP20 0.8 0 0.2 16 368.28 3.60
78 GP20 0.8 0 0.2 16 345.82 4.32
79 GP30 0.7 0 0.3 16 366.04 4.06
80 GP30 0.7 0 0.3 16 343.56 5.02
81 FA5GP5 0.9 0.05 0.05 16 380.16 3.84
82 FA5GP5 0.9 0.05 0.05 16 349.8 3.60
83 FA10GP10 0.8 0.1 0.1 16 373.29 3.13
84 FA10GP10 0.8 0.1 0.1 16 365.79 4.40
85 FA20GP10 0.7 0.2 0.1 16 375.29 4.41
86 FA20GP10 0.7 0.2 0.1 16 361.13 3.40
87 FA10GP20 0.7 0.1 0.2 16 379.72 3.57
88 FA10GP20 0.7 0.1 0.2 16 354.42 4.47

Statistical Analysis

Choosing the “right” inputs is a very important issue regarding the artificial neural
network. In order to verify parameter chosen in the previous paragraph, statistical analysis
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was performed to establish whether samples came from a normally distributed population.
This includes histograms (Figure 8) with a mean average (xi), standard deviation (σ), and
the Shapiro–Wilk test.
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For a chosen alpha level and significance α = 0.01, according to the null hypothesis
of the Shapiro-Wilk test, if the p-value is less than the alpha level, the null hypothesis is
rejected and the data tested are not normally distributed. If the p-value is greater than the
chosen alpha level, the null hypothesis that the data came from a normally distributed
population cannot be rejected [30]. The results of the Shapiro-Wilk test are presented in
Table 5.

Based on these analyses, the most efficient ANN was the one with six input variables,
thirteen neurons of one hidden layer, logistic activation functions of the layers (hidden and
output), and the quasi-Newton learning algorithm. Using the random forest algorithm, the
most efficient was the one with six input variables and two hundred trees. The results of
the prediction of the depth of wear using a neural network and random forest are presented
in Figure 9.
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Table 5. Results of the Shapiro–Wilk test.

Parameter W [-] α [-] Alpha Level [-]

Cement 0.8431 0.01 0.955
Fly ash 0.8363 0.01 0.955

Granite powder 0.8363 0.01 0.955
Cycle of testing 0.8558 0.01 0.955

Mas of the specimen 0.9471 0.01 0.955
The depth of wear 0.9620 0.01 0.955
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The results (Figure 9) were presented using the ANN and random forest. The coef-
ficient of determination R2 represents the quality of the algorithms and, as seen from the
graphs, it has not dropped below 0.935. Values of the root-mean-square errors equal to
0.278 for the ANN and equal to 0.281 for RF were relatively low, as were the values of the
mean average percentage error, which were equal to 10.61% and 10.58% for the ANN and
RF, respectively. The results confirm that it is possible to create a model predicting the
abrasion resistance of mortars with granite powder and fly ash with satisfactory accuracy,
as proved by others for concrete [24].

5. Discussion

In this article, the authors presented numerical models using machine learning al-
gorithms for the prediction of abrasion resistance expressed as the depth of wear for
cementitious composites containing waste materials, such as fly ash and granite powder.
Comparing these two materials with similar ones used in other articles, it can be seen that
in the case of siliceous fly ash, it has a lower amount of SiO2 (about 45%) in its composition
than, for example, the work of [31], where this percentage amount is higher than 50%.
Taking into account that in both works the CaO content in the composition is similar, it
should be noted that the fly ash used in this study is more affected by different compounds.

Comparing granite powder’s composition, it should be emphasized that Lower Sile-
sian granite is characterized by a lower percentage of SiO2 content (less than 55%) than, for
example, those obtained in Spain (about 60%) [32] or China (about 70%) [33].
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Comparing the influence of the addition of granite powder, fly ash, or both of them
to the cementitious composites mixtures, we did not observed an influence on abrasion
resistance like, for example, when adding silica fume, which increases this resistance, as
denoted in [34].

While comparing the prediction models with others in the field, it can be seen that they
are very accurate. For example, models evaluating the wear of the material of milling [35]
and drilling [36] tools were treated as accurate when obtaining values of the coefficient
of determination R2 between 0.86 and 0.96. Other parameters, that are veryimportant
in construction practice and are used in describing the accuracy of the model, such as
the mean average percentage error, which is equal to 10% or less and is treated as very
accurate [37].

6. Conclusions

According to gathered sources, only a few attempts have been made to predict abrasion
resistance for cementitious composites. As proven by a similar study [2], it is possible to
predict the abrasion resistance for self-consolidating concrete based on the component’s
content. However, no research on the prediction of the abrasion resistance for mortars with
fly ash and/or granite powder as a partial cement replacement was found. The modeling of
such material is important and is becoming more popular recently. Fly ash can contribute
to the improvement of several mortar properties while granite powder can contribute to a
reduction in the cement content, together with carbon footprint, which is in compliance
with the circular economy.

Current knowledge of examining abrasion resistance for such mortars involves several
disadvantages, including the application of devices that destroy the surface with the need to
repair it afterward and examining samples created especially for testing to avoid damaging
the pavement, which makes them differ in properties from the main structure or long-
lasting laboratory tests. The application of an artificial neural network in abrasion resistance
prediction can contribute to the optimization of the process. The assumption of input values
into the network or random forest algorithm as mainly mortar components avoid much
of the experimental part and allow the end result to be predicted even before the mix is
made. These input parameters were the content ratio of cement, granite powder, and fly
ash, combined with the number of cycles and the mass of the standardized sample before
the test. The accuracy of the model is similar to other models in the field characterized by a
good performance of prediction.

Taking into account that there are minor differences in the results of the tests between
the reference samples and the samples of the mixtures containing granite powder and
fly ash, it can be stated that in terms of abrasion resistance, these two materials do not
deteriorate the property of the material. It is very beneficial when designing eco-friendly
cementitious composites. Further research might be conducted by implementing other
mineral materials suitable as additives for cementitious composites. It might be beneficial
in terms of reducing the carbon footprint and getting closer to the zero-emission goal in
the future.
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