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Abstract: In the paper, we statistically analysed data on the average hourly wind speed obtained from
the meteorological station Poprad (located at the Poprad-Tatry airport, the Prešov region, Northern
Slovakia) for the period 2005–2021. High altitude and rough mountainous terrain influence the
weather conditions considerably and are a source of occasional weather risks. Finding an appropriate
wind speed distribution for modelling the wind speed data is therefore important to determine the
wind profile at this particular location. In addition to the commonly used two- and three-parameter
Weibull distribution, a more flexible exponentiated Weibull (EW) distribution was applied to model
the wind speed. Based on the results of the goodness-of-fit criteria (the Kolmogorov–Smirnov test, the
Anderson–Darling test, Akaike’s and Bayesian information criteria, the root mean square error, and
the coefficient of determination), the EW distribution obtained a significantly better fit to seasonal
and monthly wind speed data, especially around the peaks of the data. The EW distribution also
proved to be a good model for data with high positive skewness. Therefore, we can recommend
the EW distribution as a flexible distribution for modelling a dataset with extremely strong winds
or outliers in the direction of the right tail. Alongside the wind speed analysis, we also provided
the wind direction analysis, finding out that the most prevailing direction was west (W)—with an
occurrence rate of 34.99%, and a mean wind speed of 3.91 m/s, whereas the northern (N) direction
featured the lowest occurrence rate of only 4.45% and the mean wind speed of 1.99 m/s.

Keywords: wind speed; two-parameter Weibull distribution; three-parameter Weibull distribution;
exponentiated Weibull distribution; goodness-of-fit criteria

1. Introduction

The wind speed is extremely variable; at a given location it varies with time and
height while also depending on the shape and roughness of the terrain (surrounding
landscape, vegetation, and structures). The wind speed decreases with a rougher surface,
but it can accelerate on steep hills, reaching its maximum at the crest and then splitting
into zones of turbulent air flow. Its fluctuating nature requires appropriate means for
its description, and right here the probability distributions can provide a useful tool in
modelling the wind speed. Wind speed modelling via probability distributions, which
is based on long-term observations, is relatively stable and based on long-term statistical
characteristics of wind [1,2]. Because strong winds are known to be rare, whilst mild
and fresh winds are more common, the probability distributions more suitable for wind
speed modelling are those skewed to the right. The two-parameter Weibull distribution
is often presented as the first choice for modelling many wind sites since it can provide a
good agreement with the experimental data [3]. This probability distribution has many
advantages, such as a simple form, high flexibility, the probability density function and the
cumulative distribution function are described in a closed form, and a relatively simple
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estimation of the parameters. It was first introduced by the Swedish scientist Walodi Weibull
(1887–1979), who used it in the theory of reliability. The Weibull distribution appears to be
a powerful tool for statistical analysis of data in many areas, such as engineering, materials
science, quality, physics, medicine, meteorology, and hydrology. The use of the Weibull
distribution to describe the wind speed has a long history. This distribution was first
applied to wind speed data by Davenport in [4]. Since then, it has been successfully
used for modelling the wind speed in many sites, for example, in India [5], Pakistan [6,7],
South Korea [8], West Africa [9], U.S.A. [10], Cook Islands [11], Palestine [12], Iraq [13],
Nigeria [14], United Kingdom [15], Austria [16], Slovakia [17], and many more. Therefore,
the Weibull distribution is commonly used as a wind speed distribution and is implemented
in many commercial programs [18]. However, the two-parameter Weibull distribution
is not universal and it does not suit all the existing wind regimes [19]. As previous
studies have shown, the two-parameter Weibull distribution is less effective in fitting
low wind speeds, especially when the probability of null wind is significant—null wind
speed data needs to be removed before fitting, making it impossible to characterise some
of the existing wind regimes [18,20]. As an alternative to the two-parameter Weibull
distribution, the three-parameter Weibull distribution has also been used in some studies,
and it has been found to provide a greater flexibility than the classical two-parameter
Weibull function [21,22]. It proved to better fit the wind speed (compared to the two-
parameter Weibull function) when there is a higher frequency of lower values of wind speed,
including null wind [18]. This has motivated authors to successfully apply other known
probability distributions, for example, Extreme Value [23], Gamma [24], Gumbel [25],
Nakagami [26], Birnbaum–Saunders [27], Wakeby and Kappa [28], Lindley [29], and many
more. Furthermore, it propelled many authors to search for more flexible and better
fitting probability distributions using generalizations of classical probability distributions.
Several methods to improve the flexibility by adding one or more parameters to the
distributions have been proposed and such generalizations have been made through
different approaches [30]: the transformation method [31,32], the composition of two
or more distributions, the compounding of distributions, and the mixture of classical
distributions [33–37].

In this study, we dealt with the exponentiated Weibull distribution as an alternative to
the widely used wind speed distributions, namely the two-parameter and three-parameter
Weibull distributions. An exponentiated probability distribution was created by exponen-
tiation of the classical distribution. Specifically, the cumulative distribution function of a
probability distribution was raised to an additional parameter. It was studied in [38] where
authors investigated several exponentiated probability distributions in detail. Exponenti-
ated Weibull distribution as a generalization of the Weibull distribution was introduced by
Mudholkar a Srivastava in [39]. Its properties were studied in [40–46]. This distribution
has been commonly used for modelling data in various fields, such as reliability, finance,
medicine, and environmental studies [47,48].

Considering the limitation of the two-parameter and three-parameter Weibull distri-
butions in modelling the wind speed, here, it was investigated whether the exponentiated
Weibull distribution is sufficiently flexible and adaptable to accommodate different shapes
of the wind speed data. The number of papers dedicated to application of the exponentiated
Weibull distribution on fitting the wind speed data is rather limited. Shittu and Adepoju
in [49] used the two-parameter Weibull and the exponentiated Weibull distribution, re-
spectively, to model wind speeds in Southwestern Nigeria using long-term observations
covering the period of years 1992–2012. Based on the values of the Akaike’s information
criterion, they demonstrated a much better fit of the exponentiated Weibull distribution as
compared to the performance of the Weibull distribution. Gül Akgül and Şenoğlu in [50]
modelled the wind speed in six stations located on the Aegean coast, Turkey. They com-
pared nine different probability distributions, namely the Rayleigh, the inverse Weibull,
the Burr Type III, the Extreme value, the Gamma, the inverse Gamma, the Marshall–Olkin
extended Lindley, the generalized Extreme value, and the exponentiated Weibull distribu-
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tion, since these distributions represent suitable alternatives to the Weibull distribution in
modelling the wind speed. According to the values of the model evaluation criteria (the
root mean square error, the coefficient of determination, the Akaike’s information criterion,
the Bayesian information criterion, and the Kolmogorov–Smirnov test statistic), the expo-
nentiated Weibull distribution outperformed the rest of the considered distributions. Both
of the mentioned papers focused on modelling the wind speed in stations located in the
coastal area with low altitudes. To the best of our knowledge, there has not been published
a paper focusing on the application of the exponentiated Weibull distribution to model the
wind speed in a location with a higher altitude, laying inland. For this purpose, the hourly
wind speed data from meteorological station Poprad, located at the Poprad-Tatry airport,
Northern Slovakia, was modelled by two-parameter, three-parameter, and exponentiated
Weibull distributions, respectively.

The city of Poprad is the administrative, economic, and cultural centre of the region
under the Tatras. With a population of 49,430 (31.12.2021), it is the second largest city in the
Prešov region and the tenth largest city in Slovakia. Thanks to its location, it was given the
epithet “The gateway to the High and Low Tatras”, where there are well-known centres
for winter sports and summer tourism. The High Tatras are the only high mountains
that are located on the territory of Slovakia and Poland and are also included in the
UNESCO Biosphere Reserve. The highest peak of the High Tatras as well as of the entire
Carpathians is the Gerlach peak (2654.4 m above sea level). The territory of the biosphere
reserve includes two national parks, one of which is in Slovakia. The tourism sector in the
Tatra Biosphere Reserve provides the main form of employment [51]. The Poprad-Tatry
airport plays an important role in the local economic dependence on tourism. Weather
risks and wind directly affect the safety of air transportation and the operations at the
airport. Therefore, it is important to investigate and analyse the influence of the mountain
environment on the course of meteorological phenomena. In this article, we examine the
wind speed and direction in this location because they are important for the safety of the
airport operations. Based on the long-term observations, it is possible to predict how the
wind speed and direction will develop in a given location. Accurate wind speed forecasts
are necessary for both short- and long-term warning planning and decision-making in
these applications.

The parameters of the considered probability distributions were estimated using the
maximum likelihood method (MLM) and the calculations were performed in the statistical
software STATISTICA and software MATLAB R2020b. The computations carried out
in the Matlab software were based on functions available in the Statistics and Machine
Learning Toolbox, customized by the authors. In order to assess the goodness-of-fit (GOF)
of the selected probability distributions, the commonly used GOF tests—the Kolmogorov–
Smirnov (KS) test and the Anderson–Darling (AD) test—were applied. Moreover, the
root mean square error (RMSE), the coefficient of determination (R2), and the information
criteria—Akaike’s information criterion (AIC) and Bayesian information criterion (BIC)—
were used to assess the suitability of the considered probability distributions and to compare
their performances.

The rest of this article is organized as follows: in “Description of studied area”, we
briefly describe the geographical conditions of the studied area of the Poprad-Tatry airport
and characterise the meteorological station situated there. The section “Wind speed de-
scription and analysis” provides characteristics of the datasets along with their descriptive
statistics. The section “Wind Direction Analysis” summarises the results of the analysis
in the form of wind roses. In “Methods”, we give a summary of the modelled probability
distributions, of the parameter estimation method, and of the GOF and model selection cri-
teria. The section “Results and discussion” summarises and discusses the obtained results.
The section “Conclusion” recapitulates our findings and provides recommendations for the
application of the exponentiated Weibull distribution.
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2. Description of Studied Area

The international airport Poprad-Tatry is situated on the outskirts of the town Poprad,
in the region of Prešov, Northern Slovakia (Figure 1). Poprad lies in the Poprad basin that
is surrounded from the north by the High Tatras and the mountain range Spišská Magura,
from the east by the mountain range Levočské vrchy and from the south by the mountain
range Kozie chrbty and the Hornád basin. From the west, the Poprad basin continues
to the Liptov basin (Figure 2). With an altitude of 570 m above sea level (the bottom of
the basin), the Poprad basin is the highest intermountain basin in Slovakia. The airport
itself is situated at an altitude of 718 m above sea level, which is what makes it one of the
highest-placed airports in Europe. The massive and rugged mountain terrain that encircles
the basin influences the climatic conditions in the area significantly. The orientation of the
basin, its openness to the west, as well as the mountain barrier of the High Tatras determine
the major direction of wind blowing in this region [52].
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The meteorological station Poprad (indication 11,934) lies in close proximity to the
airport. The mast for wind measurements is within the measuring plot of standard
dimensions—20 × 20 m. The GPS coordinates are 49.06806, 20.24972 (refers to the mea-
suring plot); the altitude of the station is 694 m above sea level. According to the internal
instruction of the Slovak Hydrometeorological Institute (SHMI), the measuring plot must
be flat, without depressions, covered with grass. The weather station is surrounded by a
big garden; the general surroundings are absolutely free. The height for measuring the
wind direction and speed, respectively, at the monitoring station was standardised to 10 m
above the ground. For measuring the wind characteristics, there are currently used Vaisala
automatic instruments and GILL ultrasonic instruments. The anemometers have a 2-year
calibration interval. In meteorological practice, the direction and the power of a wind
vector are recorded separately as the wind direction and the wind speed. The direction of
wind is determined by the direction from which the wind blows. It is measured by wind
vanes at meteorological stations and recorded as the average direction of wind in the past
10 min [53].

3. Wind Speed Data Characteristics and Analysis

Usually, a 30-year period is considered necessary to estimate the long-term wind
conditions at a certain location, but a period of at least 10 years may be sufficient to obtain
an acceptable estimate [55]. The data used in this study were collected over a 17-year
period (2005–2021) and counted a total of 148,001 wind speed measured data. Throughout
the quality check, errors and missing data were removed from the analysis. After the check,
the percentage of data removed was very low—0.68%; this indicates a high reliability of
the monitoring system.

The data were analysed and modelled as a whole. Further, they were split into groups
by months and seasons—these datasets were analysed and modelled, too. Tables 1–3
present the descriptive statistics of the monthly, seasonal, and total wind speed, including
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the mean, minimum, maximum, standard deviation, upper and lower quartile, median,
coefficient of variation, skewness, and kurtosis.

Table 1. Descriptive statistics of respective months.

Period Mean Standard
Deviation Min Max Lower

Quartile Median Upper
Quartile

Coefficient of
Variation (%) Skewness Kurtosis

January 3.31 2.87 0.1 16.7 1.1 2.2 5.0 86.49 1.21 3.78
February 3.23 2.70 0.1 16.6 1.2 2.3 4.7 83.69 1.23 4.13

March 3.85 2.73 0.1 18.5 1.7 3.1 5.5 71.04 0.95 3.31
April 3.49 2.33 0.1 16.7 1.7 2.9 4.8 66.75 1.12 4.15
May 3.33 2.26 0.1 15.3 1.6 2.7 4.5 67.77 1.17 4.21
June 3.12 2.06 0.1 12.4 1.6 2.5 4.3 66.10 1.14 4.05
July 3.16 2.17 0.1 13.6 1.6 2.5 4.3 68.46 1.18 3.99

August 2.75 1.86 0.1 12.2 1.4 2.2 3.7 67.62 1.28 4.57
September 2.92 2.11 0.1 14.1 1.4 2.3 3.9 72.41 1.29 4.47
October 2.96 2.25 0.1 14.7 1.3 2.2 4.1 75.97 1.28 4.38

November 3.03 2.52 0.1 14.3 1.1 2.1 4.2 83.15 1.31 4.23
December 3.15 2.69 0.1 14.9 1.1 2.2 4.6 82.27 1.28 4.17

Table 2. Descriptive statistics of seasons.

Period Mean Standard
Deviation Min Max Lower

Quartile Median Upper
Quartile

Coefficient of
Variation (%) Skewness Kurtosis

Spring 3.56 2.46 0.1 18.5 1.7 2.9 4.9 69.14 1.10 3.91
Summer 3.01 2.04 0.1 13.6 1.5 2.4 4.1 67.81 1.21 4.24
Autumn 2.97 2.30 0.1 14.7 1.3 2.2 4.1 77.44 1.32 4.44
Winter 3.23 2.76 0.1 16.7 1.1 2.2 4.8 85.27 1.24 4.02

Table 3. Descriptive statistics of the whole dataset.

Period Mean Standard
Deviation Min Max Lower

Quartile Median Upper
Quartile

Coefficient of
Variation (%) Skewness Kurtosis

Total 3.19 2.41 0.1 18.5 1.4 2.4 4.5 75.56 1.25 4.32

Monthly wind speed analysis (Table 1): It was observed that during the studied
period, the lowest monthly mean wind speed with value of 2.75 m/s was in August, while
in March there was the highest mean wind speed with value of 3.85 m/s. The standard
deviation was used to assess the variability in the wind speed. Here, the standard deviation
varied from 1.86 m/s in August to 2.87 m/s in January. In general, the winter and spring
months have a higher mean wind speed and variability in the wind speed than the summer
and autumn months. The coefficient of variation (CV) is useful for identifying months with
a higher variability in the wind speed. According to [56], the value of the CV > 40% is
classified as a very high variability and CV > 70% indicates an extremely high variability
in the wind speed. The coefficient of variation ranged from 66.10% in June to 86.49%
in January. Based on this, the results imply that the wind speed in all months could be
classified as having very high variability. During the months of September–March, there
was an observed extremely high variability in the wind speed in this location. Skewness
and kurtosis measure the asymmetry and the peakness of the wind speed distribution,
respectively. The coefficients of skewness ranged from 0.95 in March to 1.31 in November,
indicating that all distributions were right skewed. Because skewness for all months was
greater than 1, the wind speed data could be regarded as highly right skewed, except for
March, when the skewness of 0.95 corresponded to a moderately right skewed distribution.
The coefficient of kurtosis ranged from 3.31 in March to 4.57 in August. This indicated a
highly leptokurtic distribution when compared to the normal distribution.

Seasonal wind speed analysis (Table 2): The results show that the highest seasonal
mean wind speed was observed in spring with value of 3.56 m/s, whereas in autumn,
there was observed the lowest mean wind speed with value of 2.97 m/s. CV ranged from
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67.81% to 85.27% what indicates a very high variability of wind speed in this location.
The coefficient of skewness for all seasons ranged from 1.10 to 1.32. That implies that
distributions are highly right skewed. The coefficient of kurtosis ranged from 3.91 to 4.44,
therefore the distributions can be regarded as highly leptokurtic distributions.

Analysis of wind speed data as a whole (Table 3): The mean wind speed of 3.19 m/s
was observed with a standard deviation of 2.41 m/s. The CV of 75.56%, skewness of 1.25,
and kurtosis of 4.32 revealed that the wind speed data had extremely high variability in
terms of the wind speed, were highly right skewed, and highly leptokurtic.

4. Wind Direction Analysis

Based on the available wind data, the wind directions were analysed. The wind rose
diagrams show the temporal distribution of the wind direction at a given location. Here,
the common form of the wind rose diagram was used, consisting of 36 evenly spaced
sectors that were prepared using [57]. The wind rose was drawn for each season and for
the whole studied period 2005–2021, as shown in Figures 3 and 4.
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As we may see in Figure 3, the most prevailing direction was west (W), with an
occurrence rate of 34.99% and mean wind speed of 3.91 m/s during the whole study period
2005–2021. On the other hand, wind blowing from the north (N) featured the lowest
occurrence rate among all directions, with only 4.45%, and a mean wind speed of 1.99 m/s.
A large difference of up to 1.92 m/s can be observed between the mean wind speed blowing
from the west and from the north. As it is obvious from Figure 4, the western wind direction
was dominant in all seasons, with an occurrence rate ranging from 33.02% in the winter to
38.73% in the summer.

5. Methods

In this section, we provide brief information about selected probability distributions;
further, the estimation method (maximum likelihood method) is characterised and the
equations for the estimation of parameters of each respective distribution are given. Finally,
we summarise the criteria that are applied to assess the goodness-of-fit.

5.1. Probability Distributions

A random variable X, here the wind speed, is said to have the 2-parameter Weibull
distribution W(a, b) with parameters a > 0, b > 0 if its probability density function (PDF) for
x ≥ 0 is given by,

f (x) =
a
ba xa−1 exp

(
−
( x

b

)a )
(1)

and cumulative distribution function (CDF) is given by,

F(x) = 1− exp
(
−
( x

b

)a )
(2)

where a is the dimensionless shape parameter and b is the scale parameter in units of the
wind speed, here in m/s. The parameter a specifies the shape of the Weibull distribution,
which sets the width of the wind speed data distribution. The shape factor determines
the consistency of the wind speed at a particular location. It is known that, generally, a
varies from 1.5 to 3 for most wind speed conditions in the world [58,59]. Small values of a
signify very variable winds, while less variable winds are characterised by higher values of
a. The scale parameter b determines the abscissa scale of the wind speed data distribution.
It is proportional to the mean wind speed, with higher values for the locations with strong
wind and lower values for still locations.

A random variable X is said to have the 3-parameter Weibull distribution W(a, b, c)
with parameters a > 0, b > 0, c ≥ 0 if its PDF for x ≥ c is given by,

f (x) =
a
ba (x− c)a−1 exp

(
−
(

x− c
b

)a )
(3)

and its CDF is given by,

F(x) = 1− exp
(
−
(

x− c
b

)a )
(4)

where a is the dimensionless shape parameter, b is the scale parameter, and c is the loca-
tion parameter.

The exponentiated distribution is obtained by raising the base CDF to the positive
parameter γ. A random variable X is said to have the exponentiated distribution if its CDF
F(x) and PDF f (x) are given by,

F(x) = [G(x)] γ, (5)

f (x) = γ[G(x)]γ−1g(x) (6)

where γ > 0, and G(x) and g(x) are CDF and PDF of the base distribution, respectively.
Mudholkar and Srivastava in [39] applied exponentiation to the 2-parameter Weibull
distribution to obtain the exponentiated Weibull distribution. A random variable X is
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said to have the exponentiated Weibull distribution EW(a, b, γ) with parameters a > 0,
b > 0, γ > 0 if its PDF for x > 0 is given by,

f (x) =
γa
b

( x
b

)a−1[
1− exp

(
−
( x

b

)a )]γ−1
exp

(
−
( x

b

)a)
(7)

and its CDF is given by,

F(x) =
[
1− exp

(
−
( x

b

)a )]γ
. (8)

Here both a, γ are shape parameters and b is a scale parameter. For γ = 1, we obtain the
2-parameter Weibull distribution. The more detailed explanation and further information
for the EW distribution can be found in [39,42,45].

In further text, we will use the following abbreviations for the probability distributions:
2-parameter Weibull—W2, 3-parameter Weibull—W3, and exponentiated Weibull—EW.

5.2. Parameter Estimation

Among various methods for estimating the parameters of the probability distribu-
tion, the maximum likelihood method (MLM) is the most preferred one due to its good
asymptotic properties, including efficiency and consistency. Chang in [60] compared six
methods for estimating the parameters of the Weibull distribution and showed that the
MLM provided more accurate estimates than other methods in both the simulated and
observed datasets. Azad et al. in [61] proposed the method of moments (MOM) and
the MLM as the most efficient methods for estimating the parameters of W2 based on a
comparative study of seven estimation methods. Shoaib et al. in [62] compared the MLM
with the modified MLM and the Energy pattern factor method (EPF) in estimating the
parameters of W2 using ten-minute averaged wind speed data from Jhampir, Pakistan.
Based on the results of the root mean square error, the coefficient of determination and
the χ2 test, they demonstrated better performance of the MLM as compared to the others.
Many authors have used the MLM as the method for parameter estimation when modelling
the wind speed using various probability distributions, for example, in [63,64]. Therefore,
the MLM was utilised for estimating the parameters in this study.

The log-likelihood function ln L = ln L(x1, x2, . . . , xn; θ) of the probability distribution
with PDF f (x, θ) is defined as,

ln L(x1, x2, . . . , xn; θ) =
n

∑
i=1

ln f (xi; θ) (9)

where θ ∈ Θ is the unknown parameter (in general, it is a vector parameter), and
x1, x2, . . . , xn is a realization of the random sample X1, X2, . . . , Xn of size n from the
distribution with PDF f (x, θ). After taking the partial derivatives of the log-likelihood
function ln L with respect to each parameter and equating each derivative to zero, the
likelihood equations are obtained. The solution to these equations is called the maximum
likelihood estimate of the parameters. The log-likelihood functions of the W2, W3, and EW
distributions, respectively, and their likelihood equations are given in Table 4. As we may
see, in the majority of cases the likelihood equations need to be solved iteratively.

5.3. Goodness-of-Fit and Model Selection Criteria

After estimating the parameters of the probability distribution model, it is necessary to
assess the goodness-of-fit (GOF) of this model. The GOF criteria show how well the selected
model fits the wind speed data, and they also indicate the applicability of the model to
describe the behaviour of the data at given locations. Assessing the performance of different
probability distribution models is necessary to provide more accurate information about
their performance and to compare these models among themselves. Finding a more precise
model helps to better understand the wind speed at a given location. In this study, we
applied commonly used GOF tests—the Kolmogorov–Smirnov (KS) test and the Anderson–
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Darling (AD) test. Further, the information criteria, namely Akaike’s information criterion
(AIC) and Bayesian information criterion (BIC), the root mean square error (RMSE), and
the coefficient of determination (R2) were used. Employed GOF tests and model selection
criteria are briefly described below.

Table 4. Log-likelihood functions and likelihood equations of selected probability distributions.

Distribution MLM Estimate

W2

Log-likelihood function ln L = n ln a
ba − 1

ba

n
∑

i=1
xa

i + (a− 1)
n
∑

i=1
ln xi

Likelihood equations 1
a −

∑n
i=1 xi

a ln xi
∑n

i=1 xi
a + 1

n

n
∑

i=1
ln xi = 0

b =

[
1
n

n
∑

i=1
xi

a
]1/a

W3

Log-likelihood function ln L = n ln a
ba − 1

ba

n
∑

i=1
(xi − c)a + (a− 1)

n
∑

i=1
ln(xi − c)

Likelihood equations 1
a −

∑n
i=1(xi−c)a ln(xi−c)

∑n
i=1(xi−c)a + 1

n

n
∑

i=1
ln(xi − c) = 0

b =

[
1
n

n
∑

i=1
(xi − c)a

]1/a

a
1−a −

1
n

∑n
i=1(xi−c)a

∑n
i=1(xi−c)a−1

n
∑

i=1

1
xi−c = 0

EW

Log-likelihood function ln L = n ln
( γa

ba
)
− 1

ba

n
∑

i=1
xa

i + (a− 1)
n
∑

i=1
ln xi + (γ− 1)

n
∑

i=1
ln
[
1− exp

(
−
( xi

b
)a
)]

Likelihood equations n
a −

n
∑

i=1

( xi
b
)a ln

( xi
b
)
+

n
∑

i=1
ln
( xi

b
)
+ (γ− 1)

n
∑

i=1

exp
(
−
( xi

b

)a)( xi
b

)a
ln
( xi

b

)
[
1−exp

(
−
( xi

b

)a)] = 0

− na
b + a

b

n
∑

i=1

( xi
b
)a − a

b (γ− 1)
n
∑

i=1

exp
(
−
( xi

b

)a)( xi
b

)a[
1−exp

(
−
( xi

b

)a)] = 0

γ = − n

∑n
i=1

[
1−exp

(
−
( xi

b

)a)]

The GOF tests were used to decide whether the data followed the specified theoretical
distribution. The Kolmogorov–Smirnov (KS) test exploits the CDF of the probability
distribution. The KS test statistic represents the largest vertical difference between the
theoretical and the empirical CDF:

D = max
1≤i≤n

[∣∣∣∣F̂(x(i)
)
− i− 1

n

∣∣∣∣, ∣∣∣∣ i
n
− F̂

(
x(i)
)∣∣∣∣] (10)

where F̂(x) is the estimated cumulative distribution function, x(1), x(2), . . . , x(n) are obser-

vations in ascending order, i.e., x(1) ≤ x(2) ≤ . . . ≤ x(n), and Fn(x) = 1
n ∑n

i=1 I
(

x(i) ≤ x
)

is

the empirical distribution function, where I
(

x(i) ≤ x
)

is an indicator function assuming the
value 1 if x(i) ≤ x and 0 otherwise. The null hypothesis that the data follow the distribution
under test, is rejected at the chosen significance level α if the test statistic D > D(α), where
D(α) is a critical value of the KS test. The smaller the value of the test statistic D, the better
the fit.

The Anderson–Darling (AD) test is a modification of the KS test. This test is considered
to be a better GOF test because it gives more weight to the tails of the distribution than
the KS test does. According to studies [65,66], the AD test was ranked as one of the most
powerful tests for detecting deviations from the Weibull and the extreme value distributions.
The AD test statistic is defined as follows:

A2 = −n−
n

∑
i=1

2i− 1
n

[
ln
(

F̂
(

x(i)
))

+ ln
(

1− F̂
(

x(n+1−i)

))]
. (11)

The null hypothesis that data follow the specified distribution, is rejected at the
significance level α if the test statistic A2 is greater than the critical value of the AD test.
Again, the smaller value of the test statistic A2 indicates a better fit.
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The application of the maximum likelihood method (MLM) for the parameter estima-
tion allows us to use the information criteria—Akaike’s information criterion (AIC) and
Bayesian information criterion (BIC)—to decide the GOF for the distributions. The AIC and
the BIC are defined as follows [67,68]

AIC = −2 ln L + 2k, (12)

BIC = −2 ln L + k ln n (13)

where ln L is the maximum value of the log-likelihood function for the estimated model, k
is number of estimated parameters, and n is the sample size. Furthermore, the coefficient
of determination (R2) and the root mean square error (RMSE) are considered to decide on
the best fitting model. The RMSE determines the accuracy of the model by calculating the
average of the square difference between the observed and the predicted probabilities of
the theoretical distribution. The R2 is used to measure the linear relationship between the
observed and the predicted probabilities of the theoretical distribution. The RMSE and R2

are calculated by:

RMSE =

(
1
n

n

∑
i=1

[
Fn(xi)− F̂(xi)

]2) 1
2

, (14)

R2 =
∑n

i=1
[
F̂(xi)− F

]2
∑n

i=1
[
F̂(xi)− F

]2
+ ∑n

i=1
[
Fn(xi)− F̂(xi)

]2 (15)

where F = 1
n ∑n

i=1 F̂(xi).
In general, lower values of KS, AD, AIC, BIC, RMSE, and a higher value of R2 indicate

better fit of the theoretical distribution to the wind speed data as compared to the others.

6. Results and Discussion

Three probability distributions, namely 2-parameter Weibull, 3-parameter Weibull,
and exponentiated Weibull, were applied to fit the wind speed data from the meteorological
station Poprad, located at the Poprad-Tatry airport. Their performance was compared in
terms of how well these distributions matched the observed wind speed data. Applying
the maximum likelihood method, we obtained the parameter estimates for all discussed
probability distributions. The evaluation of each model was done by the GOF tests and
the model selection criteria described in Section 5.3. The estimated parameters as well as
test statistics of the KS and the AD tests, respectively, and of the other assessing criteria
are summarised below in Tables 5–8—for the estimated parameters of the probability
distributions see Table 5 (the entire period and the seasons) and Table 7 (respective months);
for the GOF tests and model selection criteria see Table 6 (the entire period and the seasons),
and Table 8 (respective months).

Table 5. Maximum likelihood estimates of parameters of the modelled distributions—the entire
considered period and the seasons.

Distribution Estimated
Parameters

Entire
Period Spring Summer Autumn Winter

W2
a 1.3893 1.5146 1.5680 1.3650 1.2059
b 3.5133 3.9596 3.3696 3.2592 3.4510

W3
a 1.3263 1.4591 1.5046 1.2978 1.1305
b 3.3802 3.8383 3.2479 3.1216 3.2817
c 0.0894 0.0875 0.0914 0.0919 0.0945

EW
a 0.8726 1.0340 0.8823 0.7791 0.7642
b 1.6847 2.3591 1.3894 1.2294 1.5294
γ 2.5451 2.1045 3.3732 3.2179 2.4516
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Table 6. The GOF tests and model selection criteria for the entire considered period and for the seasons.

Period Distribution KS AD ln L AIC BIC R2 RMSE a

Entire
period

W2 0.059 662.6 −308,150.5 616,305.0 616,324.8 0.9909 0.028
W3 0.050 470.5 −306,925.1 613,856.2 613,885.9 0.9936 0.023
EW 0.034 243.3 −306,288.0 612,582.0 612,611.8 0.9970 0.016

Spring
W2 0.053 124.4 −80,074.0 160,152.1 160,169.1 0.9933 0.024
W3 0.047 92.7 −79,880.8 159,767.6 159,793.1 0.9950 0.021
EW 0.035 54.6 −79,757.7 159,521.4 159,547.0 0.9972 0.016

Summer
W2 0.067 227.4 −73,395.1 146,794.3 146,811.4 0.9873 0.032
W3 0.061 179.7 −73,121.5 146,248.9 146,274.5 0.9899 0.029
EW 0.037 54.3 −72,601.7 145,209.5 145,235.0 0.9972 0.015

Autumn
W2 0.066 218.7 −74,507.1 149,018.2 149,035.2 0.9880 0.032
W3 0.057 156.8 −74,116.8 148,239.7 148,265.3 0.9915 0.027
EW 0.033 64.5 −73,827.2 147,660.4 147,685.9 0.9970 0.016

Winter
W2 0.063 215.2 −78,083.0 156,170.0 156,187.0 0.9884 0.032
W3 0.049 143.7 −77,557.3 155,120.5 155,146.0 0.9927 0.025
EW 0.046 130.6 −77,737.6 155,481.1 155,506.6 0.9936 0.024

a The best results of the GOF tests and of the model selection criteria are highlighted in bold.

Table 7. Maximum likelihood estimates of parameters of the modelled distributions—the respec-
tive months.

Distribution Estimated
Parameters Jan. Feb. Mar. Apr. May June

W2
a 1.1862 1.2171 1.4476 1.5725 1.5599 1.6024
b 3.5240 3.4546 4.2539 3.9058 3.7221 3.4978

W3
a 1.1133 1.1360 1.3928 1.5199 1.5009 1.5403
b 3.3507 3.2860 4.1266 3.7968 3.5984 3.3781
c 0.0961 0.0903 0.0875 0.0803 0.0925 0.0910

EW
a 0.7044 0.9292 1.1745 1.0970 0.9501 0.9537
b 1.3078 2.2820 3.2900 2.4519 1.8160 1.6601
γ 2.8359 1.6514 1.4615 2.0194 2.7514 2.9133

Distribution Estimated
Parameters July Aug. Sept. Oct. Nov. Dec.

W2
a 1.5523 1.5765 1.4656 1.3873 1.2650 1.2178
b 3.5363 3.0818 3.2430 3.2543 3.2742 3.3750

W3
a 1.4918 1.5082 1.4001 1.3198 1.1964 1.1473
b 3.4131 2.9617 3.1175 3.1203 3.1214 3.2118
c 0.0922 0.0905 0.0888 0.0902 0.0953 0.0963

EW
a 0.8530 0.8841 0.8586 0.8306 0.6598 0.6786
b 1.3725 1.2609 1.3794 1.3990 0.8914 1.0755
γ 3.5642 3.4373 3.0535 2.8575 3.9939 3.3284

Figures 5–7 illustrate how appropriately the considered probability distributions
describe the wind speed data.

From the obtained results and their visualizations, we can conclude the following:

• Respective months:

For eight out of the twelve months (April–November), the EW distribution achieved
the best results in terms of all GOF tests and the model selection criteria. In February and
March, W3 performed better, but the EW was the second best. In January and December,
the EW and the W3 distribution ranked the same, but the EW performed better in terms
of the KS and the AD test, as well as in terms of R2, and RMSE. In this case, when some
GOF tests and model selection criteria favoured the EW distribution, whereas the others
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the W3 distribution, we made a conclusion according to the value of the AD test since the
AD test is considered as a more powerful GOF test. Furthermore, according to conclusions
drawn in [69], R2 appears to be more informative than the other indicators in such cases.
Therefore, when choosing the most suitable distribution for a given month, the probability
distribution with the smallest value of the AD test and the highest R2 value was selected as
the best fitting distribution for the wind speed data in that month. According to this, the
EW distribution was more suitable for January and December. Such assumptions agree
with the visualization in Figure 7, where the theoretical distributions fitted to the observed
data in the months January and December show that the EW distribution was closer to the
empirical distribution than the W3 distribution.

Table 8. The GOF tests and model selection criteria for the respective months.

Period Distribution KS AD ln L AIC BIC R2 RMSE a

Jan.
W2 0.069 93.9 −27,316.8 54,637.6 54,652.4 0.9855 0.036
W3 0.056 65.3 −27,117.3 54,240.5 54,262.8 0.9903 0.029
EW 0.051 57.6 −27,174.5 54,355.0 54,377.3 0.9920 0.027

Feb.
W2 0.053 42.2 −24,131.0 48,266.0 48,280.6 0.9924 0.026
W3 0.038 28.8 −24,000.8 48,007.5 48,029.5 0.9958 0.019
EW 0.041 30.0 −24,089.7 48,185.5 48,207.5 0.9950 0.021

Mar.
W2 0.052 39.2 −27,971.6 55,947.1 55,962.0 0.9938 0.023
W3 0.045 30.0 −27,911.0 55,828.0 55,850.3 0.9953 0.020
EW 0.042 31.8 −27,946.2 55,898.5 55,920.8 0.9951 0.021

Apr.
W2 0.053 35.7 −25,790.8 51,585.7 51,600.5 0.9939 0.023
W3 0.048 27.3 −25,743.8 51,493.6 51,515.8 0.9954 0.020
EW 0.035 13.5 −25,687.6 51,381.3 51,403.5 0.9977 0.014

May
W2 0.056 53.3 −26,080.9 52,165.7 52,180.6 0.9916 0.026
W3 0.050 40.5 −25,999.1 52,004.2 52,026.5 0.9936 0.023
EW 0.034 15.4 −25,890.7 51,787.4 51,809.7 0.9977 0.014

June
W2 0.065 59.4 −24,247.7 48,499.4 48,514.2 0.9900 0.029
W3 0.059 46.4 −24,170.1 48,346.3 48,368.5 0.9922 0.025
EW 0.037 17.7 −24,045.0 48,095.9 48,118.1 0.9971 0.016

July
W2 0.071 89.1 −25,472.5 50,949.1 50,964.0 0.9853 0.035
W3 0.065 72.4 −25,380.1 50,766.1 50,788.5 0.9880 0.032
EW 0.041 25.4 −25,198.1 50,402.1 50,424.5 0.9962 0.018

Aug.
W2 0.068 77.2 −23,489.9 46,983.8 46,998.7 0.9871 0.032
W3 0.062 60.0 −23,391.6 46,789.2 46,811.5 0.9899 0.028
EW 0.035 14.3 −23,197.7 46,401.4 46,423.7 0.9978 0.014

Sept.
W2 0.070 77.2 −23,997.5 47,999.1 48,013.9 0.9864 0.033
W3 0.063 59.7 −23,899.7 47,805.4 47,827.6 0.9895 0.029
EW 0.040 20.8 −23,766.2 47,538.4 47,560.6 0.9967 0.017

Oct.
W2 0.061 66.0 −25,246.6 50,497.2 50,512.1 0.9894 0.030
W3 0.052 47.0 −25,127.5 50,261.0 50,283.3 0.9926 0.025
EW 0.033 21.8 −25,051.8 50,109.5 50,131.9 0.9970 0.016

Nov.
W2 0.068 89.8 −25,124.7 50,253.4 50,268.3 0.9858 0.035
W3 0.057 63.5 −24,947.6 49,901.2 49,923.4 0.9902 0.029
EW 0.040 33.8 −24,869.7 49,745.4 49,767.6 0.9955 0.020

Dec.
W2 0.066 85.5 −26,617.7 53,239.3 53,254.2 0.9871 0.034
W3 0.055 58.5 −26,418.7 52,843.4 52,865.8 0.9913 0.027
EW 0.048 46.7 −26,426.6 52,859.3 52,881.6 0.9935 0.024

a The best results of the GOF tests and of the model selection criteria are highlighted in bold.
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Figure 5. Modelled probability distributions fitted to the histogram of the wind speed data–the entire
considered period.
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• The entire period and the seasons:

After the visual inspection of Figures 5 and 6, we see that the EW distribution was
closer to the empirical distribution than the other two distributions. This observation was
supported by the results of the GOF tests and of the model selection criteria (Table 6),
where the EW distribution obtained the highest value of R2 and the lowest values of all
the other criteria, except for the winter. In the winter, the W3 distribution obtained better
results for the information criteria. However, the EW distribution had the highest value
of the coefficient of determination and the lowest values of the AD test and the RMSE
among the discussed distributions. This indicated that the EW distribution demonstrated
a better fit than the other two distributions. Thus, the EW distribution was more suitable
for modelling the wind speed in this location for the entire studied period and for all the
seasons. According to the criteria, W3 performed as the second best.

We may conclude that for the considered datasets the EW distribution exhibited a
significantly better fit to the wind speed data than the W2 and W3 distributions. It is
obvious, that the EW distribution had superiority over the W2 and W3 distribution in
modelling the peakness of the data. Further, because the EW distribution had larger right
tail probability than the W2 and W3 distributions, this provided more flexibility for the EW
distribution to model datasets where extreme strong winds or outliers in the direction of
the right tail occurred.

When we compare our findings with those in [49,50], we can notice several similarities:

• The datasets in both other papers had high values of kurtosis—in the dataset from [49],
the kurtosis was 2.502; in the datasets from [50], the values of kurtosis ranged from
3.877 to 8.806. The datasets here, with the EW distribution as the most suitable one,
also possessed high values of the coefficient of kurtosis, ranging from 3.31 to 4.57.
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• The datasets in both other papers had positive values of skewness—in the dataset
from [49], the skewness was 0.633; in the datasets from [50], the values of skewness
ranged from 0.888 to 2.014. The datasets, modelled here, also had values of the
coefficient of skewness ranging from 0.95 to 1.31. All of these datasets can be regarded
as moderate to highly right skewed.

Thus, the EW distribution can be used as a theoretical probability distribution for
modelling the datasets of the wind speed with high positive skewness and kurtosis.

7. Conclusions

The determination of an appropriate wind speed distribution for modelling wind
speed data is important for determining the wind profile in a specific location. In this
work, we proposed the use of the exponentiated Weibull distribution to describe the wind
speed data obtained from the location Poprad airport. The position of the airport at the
altitude of 718 m above sea level at the foothills creates specific conditions that influence
the operation and safety of the flights. In the article, we examined the wind speed in this
location. Based on long-term observations, it is possible to predict how the wind speed will
develop in a given location. Here, we showed that the EW distribution is more appropriate
for modelling the wind speed data than the W2 and W3 distributions, which are commonly
used in the literature. This result is based on the values of six GOF indicators—the KS
test, the AD test, AIC, BIC, RMSE, and R2. The EW distribution performed the best (in
comparison to values of the indicators for the W2 and W3 distributions, respectively) and
provided a better fit to the seasonal and monthly wind speed data, except for February
and March, when the W3 performed better, but the EW was the second best. Therefore,
the EW distribution can be considered as a suitable wind speed distribution and can be
applied to forecast and estimate the wind speed at the meteorological station Poprad. Based
on the character of the studied data in terms of their skewness, we can also recommend
the EW distribution as a good model for highly right skewed data. In addition, the EW
distribution is flexible enough in terms of modelling the peakness of the data. To sum it
up, the EW distribution proved to be a good alternative to the W2 and W3 distributions
due to its flexibility in modelling the data of the wind speed with high positive skewness
and kurtosis.
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52. Ilčin, J. Problematics of Flight in Mountainous Terrain. Bachelor’s Thesis, Brno University of Technology, Brno, Czech

Republic, 2017.
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