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Abstract: The primary purpose of the analysis presented here is to assess the feasibility of effectively
predicting the aggregate luminance coefficient. Current road lighting standards and recommendations
are based on assessing the level and distribution of luminance on the road surface. The brightness of
a road surface depends on the amount of light falling on it, as well as the reflective properties of the
road surface, which in turn depend on its physical condition, type and mineralogical composition.
The complexity of the factors on which the value of the luminance coefficient depends it makes that
data mining techniques the most appropriate tools for evaluation luminance coefficient phenomenon.
This article uses five types of techniques: C&RT, boosted trees, random forest, neural network, and
support vector machines. After a preliminary analysis, it was determined that the most effective
technique was the boosted tree method. The results of the analysis indicated that the actual value of
the luminance coefficient has multiple modal values within a single aggregate stockpile, depending
on the mineralogical composition and grain size, and cannot be determined by a single central
measure. The present model allowed us to determine the value of the luminance coefficient Qd with
a mean error of 4.3 mcd-m−2·lx−1. In addition, it was found that the best aggregate for pavement
brightening that allows high visibility during the day Qd and at night RL is a limestone aggregate.
In the group of those that have the ability to potentially brighten the pavement were quartzite and
granite aggregates.

Keywords: luminance; data mining techniques; aggregate; model validation; road lighting

1. Introduction

According to the nomenclature used in European countries, light-colored pavements
are those that use light-colored aggregates and synthetic binders that are either colorless
or light-colored using the corresponding pigment. Lightened pavements, on the other
hand, are those that use traditional asphalt as a binder, while the aggregates are of the
light-colored group. Light-colored pavements are defined as pavements whose wearing
course visually gives the impression of a light-colored pavement. Invariably in these type
of solutions, the important element is the aggregate itself [1].

In 1982, the Commission Internationale de l’Eclairage (CIE) [2] introduced the concept
of luminance to evaluate pavement brightness. Following this, a number of methods have
emerged for evaluating this parameter. Nevertheless, the evaluation of this criterion is
complex and still requires an improvement of measurement methods [3]. CIE introduced
the R classification system according to which each type of pavement is classified into
one of four classes, from R1 to R4. Each of the four classes has a defined reflectance table
(r-table) containing the reduced luminance coefficient [4]. Unfortunately, the R classification
is based on measurements from 1960 to 1970, and it should be taken into account that
there have been changes in asphalt pavement technology (mma) and requirements for
macro-texture, in addition to the introduction of new grain sizes of mineral mixtures and
types of asphalt binders [5,6].
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The purpose of road brightening, assessed through luminance coefficient q, is to cause
structures and traffic participants on them to be visible, minimizing driver discomfort.
According to the authors of [7], pavement brightening results in an approximately 30%
reduction in road accidents. It should be kept in mind that another very important part of
road brightening is the reduction in the amount of energy required for adequate visibility
at night. In this aspect, approx. 1.3% of the energy consumed in the EU is used by road
lighting [8]. However, there are still questions of what to focus on when brightening
the pavement.

Reflection from the road surface is a function of the physical condition of the road and its
nature, as well as the direction of illumination and viewing conditions [5]. Different pavements
can have different reflection characteristics, which depend on the texture of the pavement,
its age, the paving materials, the bonding materials, and the paving methods. The reflection
characteristics change with weather conditions and the physical condition (for example, when
bumps or cracks appear). As the reflective properties of road pavements change, so does
their luminance [9]. Luminance is closely related to the type of aggregate. Light aggregates
such as: granite, gabbro, and quartzite, in contrast to limestone, are extracted from acidic
rocks with high SiO2 content. Therefore, these are aggregates with a low asphalt affinity. The
macro-texture of most light rocks reflects light in a diffuse rather than a directional manner,
minimizing driver glare exposure. In addition, light-colored rocks such as quartzite, granite,
and gabbro, in contrast to sedimentary rocks, have a high roughness coefficient, enabling
an increase in the roughness of the pavement [1]. Therefore, there are some contradictions
between the luminance of the aggregate and its applicability. Nowadays, it is much more
common for pavement materials to be dark-colored and the standard r-table does not reflect
their reflective properties [10]. Consequently, more energy is required to illuminate the road
surface. Despite the fact that the type of material in the pavement affects its luminance, the
phenomenon of light reflection is not directly taken into account during the design [11]. In the
European Union, the design of road lighting is subject to regulation with some derogations
to the member states. For the region of Poland, there is a document [12] that dictates the
manner of lighting design, taking into account the luminance coefficient Qo. In addition, there
are also additional recommendations for expressways according to which the value of the
luminance coefficient for pavement Qd should be higher than 70 mcd m−2 lx−1, while in
tunnels, Qd > 90 mcd·m−2 lx−1 mcd·m−2 lx−1.

In the 1990s, an alternative to Qo was introduced in the form of the luminance coeffi-
cient under diffuse illumination, Qd. The luminance coefficient used in the data analysis,
Qd, is intended to characterize the reflectivity of road markings in daylight or under road
lighting. Portable devices, available on the market, are used in large numbers to determine
the brightness of horizontal road markings and can also be used to surface roads [13].
The alternative “brightness” parameter Qd, i.e., the luminance coefficient under diffuse
illumination, has been adopted for road surface markings, but the Qo parameter is still
used in the pavement classification system adopted for road lighting. It is important to be
able to accurately reduce Qo values from r-tables to Qd, which is included to some extent
in the CIE document [14]. Despite the presence of the Qd parameter, the parameter that is
still widely accepted for assessing brightness is the mean (equivalent) luminance coefficient
Qo, which determines the weighted mean of the solid angle of the luminance coefficients in
the r-table. The average luminance coefficient, Qo, can be calculated from the r-table using
the weighting coefficient procedure [15]. It was shown that the mean luminance coefficient
Qo is strongly correlated with the mean luminance produced on the road surface [5].

Unfortunately, there are still no mathematical models for predicting the luminance
coefficient of an aggregate/asphalt mixture under diffused illumination Qd. The existence
of such a model or method of determination would allow the photometric properties of
aggregates to be taken into account in the design of the mineral-asphalt mixture. Data
mining can be proposed as an effective method providing simple regression or classification
rules. However, it requires a large learning dataset. In addition, it also requires full
validation of the adopted model. Solutions to complex problems, for which no a priori
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mathematical model is known, in road engineering using data mining techniques are quite
rare and only recently began to be applied. Data mining techniques are so far mainly used
to correctly predict the mechanical or physical properties of road materials. The undeniable
advantage of data mining (DM) methods is that they can take into account numerous
variables, both qualitative and quantitative. In addition, they are quite resistant to the
occurrence of abnormal values, which many times can carry some peculiar and interesting
information about the phenomenon under study. In their paper, Rebelo et al. [16] used a
number of DM techniques to effectively predict the water resistance of mineral-asphalt
mixtures. Some authors have used DM to improve pavement rutting resistance [17]. In their
work, Guo and Hao [18] used a random forest algorithm to assess pavement durability
using information on emerging damage. The estimation of the stiffness modulus was
successfully determined using a falling weight deflectometer (FWD), taking into account
a number of factors related to the measurement, using artificial neural network (ANN)
or support vector machines (SVMs) [19,20]. Additionally, SVM methods were used to
predict the ITS parameter [21]. DM techniques have also excelled in predicting IRI [22] or
skid resistance [23].

Far fewer applications of DM techniques have been reported for predicting the lu-
minance coefficient of asphalt pavements and of the aggregate itself. It should be noted
that the evaluation of these parameters is complex. It depends on the aggregate system,
its origin, the macro-texture of the pavement, etc. Therefore, the degree of complexity in
predicting the luminance coefficient indicates that traditional regression methods basing
on the method of least squares will be neither effective nor efficient. There are very few
publications that attempt to apply DM techniques to luminance coefficient evaluation. In
their paper, A. Del Corte-Valiente et al., used DM techniques to manage street lighting [24].
In addition, Kazanasmaz et al., applied the ANN algorithm to predict the daylight illumina-
tion of office buildings [25]. In contrast, in the paper [26], the authors attempted to ensure
adequate luminance of an indoor sports court by determining it using DM techniques. It
should be noted that it is possible to use traditional techniques, such as multiple regression,
but these make it impossible to predict nonlinear effects. In the article by Qin [27], a
multiple regression model was used to calculate the perceived luminance in tunnel interior
lighting conditions. It was pointed out that this type of regression technique is applicable
only to the object under study and its generalization requires the consideration of more
factors. If the number of factors is increased, the effectiveness of the multiple regression
model will decrease significantly.

It should be noted that a high luminance of the aggregate does not necessarily mean
that a highly bright pavement will be obtained. This will definitely depend on the texture of
the pavement, the amount of binder, and the pavement’s surface condition. Fotios et al. [28]
indicated a significant impact of the mixture type, its structure, and the time of exposure
to climatic conditions on the value of the obtained reflectance coefficient. Therefore, in
order to determine the final value of the luminance coefficient, the composition of the
bituminous mixture should also be taken into account. Nevertheless, the aggregate is
responsible for a substantial part of the luminance coefficient value. This was indicated
in the work of [11], as well as in experimental tests performed on samples of bituminous
mixtures [29]. Observing the limited number of publications, it can be concluded that
regarding the luminance coefficient problem, very little attention was paid. However, the
minimum requirements for the aggregate luminance coefficient are frequently defined
as a precondition for designing, for example, pavements in tunnels. Thus, it should be
emphasized that aggregate luminance is crucial for pavement brightening [11] and a reliable
prediction model of the aggregate luminance coefficient is important; its results will be
presented in this article.
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2. Materials and Methods
2.1. Aggregate

This study used aggregates that meet the requirements of Polish standards WT-
1/2014 [28] and PN-EN 13043 [29] for the construction of wearing courses of asphalt
pavements. Aggregates were taken randomly from the collection commonly available
and used for pavement construction layers in the southern part of Poland. In order to
increase the effectiveness of modeling, attention was paid to selecting aggregates obtained
from sedimentary, metamorphic and igneous rocks. A set of aggregates was used for the
analysis, and individual aggregate types were grouped by petrographic description and
grain size (Table 1).

Table 1. Performance of aggregate set used to create a DM model.

No. Type of
Aggregate Grain Size

LA
EN

1097-2
[30]

PSV
EN 1097-8

[31]

ρa
EN 1097-6

[32]

Methylene
Blue Test
EN 933-9

[33]

Grading of Filler
Aggregates

EN 933-1
[34]

Flakiness
Index

EN 933-3
[35]

1. Amphibolite 0/2, 5/8, 8/11 max. 25 min. 56 2.84

5 ÷ 7 *

max. 16 */max. 2 ** max. 20 **
2. Basalt 2/5, 5/8, 8/11, 16/22 max. 10 min. 50 2.96 max. 1 ** max. 18 **
3. Gabbro 2/5, 5/8, 8/11 max. 15 min. 50 2.63 ÷ 3.0 max. 1 ** max. 15 **
4. Granite 2/8, 8/16, 16/22 max. 15 min. 50 2.65 max. 1 ** max. 15 **
5. Quartzite 0/2, 2/5, 5/8, 8/11, 8/16, max. 25 min. 56 2.64 max. 14 */max. 1 ** max. 14 **
6. Melaphyre 0/2, 2/5, 5/8, 8/11, 8/16, max. 15 min. 56 2.75 max. 14 */max. 1 ** max. 18 **

7. Limestone 0/2, 2/8, 4/11, 5/11, 5/8,
8/11, 8/16, 16/22 25 ÷ 30 44 ÷ 56 2.69 ÷ 2.72 - max. 16 */max. 2 ** max. 17 **

*—fine-crushed aggregate (D ≤ 2 mm), **—coarse-crushed aggregate (D > 2 mm).

Table 1 also provides information on selected physical parameters of the aggregate,
which is intended for wearing course. Evaluation of the coarse aggregate crushing strength
(LA) and coarse aggregate polishing resistance (PSV) features was performed only for
coarse fractions. The results given are from the declarations of the manufacturers of
the supplied aggregates and are the minimum value or range of the results. Limestone
aggregates have by far the least favorable physical characteristics from the standpoint
of making a mineral mixture composed entirely of aggregate. Therefore, the best option
would be one in which the aggregate achieves a low LA and a maximum high PSV [36]. In
contrast, such aggregates usually have a low asphalt affinity (quartzite and granite) or are
dark in color (melaphyre).

2.2. Luminance Coefficient

In Europe, road brightness and visibility under artificial light are related to the dis-
tribution of luminance and illumination on the road surface. The illuminance on a road
surface refers only to the amount of light reaching the surface, which does not indicate
how bright the surface is. Illuminance (E) is the amount of incident light (luminous flux
Φ) per unit of area (A). The SI unit of illuminance is lux (lx). According to the SI system,
illumination is expressed by Formula (1):

E =
dΦ

dA
(1)

Luminance, on the other hand, is defined as the luminous flux per unit of projected
area and is a function of the illuminance on the road and the reflectance characteristics of
the road surface [37] according to Formula (2):

L =
dΦ

dΩ·dA·cos θ
(2)
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where: Φ—luminous flux, A—surface area, Ω—solid noun, θ—angle between the direction
of the solid noun Ω and the normal of the emitter or reflecting surface A. The geometry
required to determine the luminance coefficient is shown in Figure 1.
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Figure 1. The geometry of the luminance coefficient: α (viewing angle), β (angle between the plane
of incidence of light and the viewing plane), γ (angle of incidence of light), and δ (angle between the
viewing plane and the axis of the road on which the luminance coefficient q of the road surface is
located depending on the viewing point P [38]).

In summary, the reflection of a surface area can be described by the luminance coeffi-
cient q, which is defined as the luminance of the surface area L, produced by illumination
and reflection, divided by the illuminance of the surface plane of the are E according
to Formula (3):

q =
L
E

(3)

Luminance coefficient q is measured in mcd·m−2 lx−1.

2.3. Luminance Coefficient under Diffused Illumination Qd

EN 1436 defines Qd as the ratio of the luminance of a surface area under diffuse
illumination in proportion to the illuminance at the surface plane. Qd is measured using
the spectral distribution of illumination according to a standard illuminator representing
daylight and an observation angle of 2.29◦ representing a geometry (viewing distance)
of 30 m. It is worth mentioning that the maximum luminance that can be obtained for
a given area, when the surroundings have a constant luminance L, is 318 mcd·m−2 lx−1.
In contrast, a value of approximately Qd = 52 mcd·m−2 lx−1 is attributed to “black”
pavements (for example: mastic asphalt) [13]. This type of luminance coefficient determines
daytime visibility.

Road lighting creates a contrast between the luminance of a person, vehicle or object
and the luminance of the immediate background, which is usually the road surface or its
edges. Luminance contrast is a measure of the difference between the luminance of an
object and the luminance of the background. Objects on the road are visible if they contrast
with the road surface. Threshold contrast is the minimum contrast at which an observer
can see an object against its surroundings. Luminance contrast is positive if the object is
brighter than its background and negative if the object is darker than its background [38].

Surface reflection is strong in situations corresponding to driving into the sun. The or-
dinary reflection is strong in situations corresponding to driving with the sun shining from
the back. Adequate light for a standard road configuration when confronted with dry and
wet surface conditions is evaluated by optimizing the lighting distribution function [39].

The average luminance expressed by the Qo coefficient, although still used, is a
parameter that is difficult to measure using the small space of a portable instrument.
Therefore, since the 1990s, Qd has aimed to characterize the reflectivity of road markings
in daylight or under road lighting. Portable devices are available and are used widely for
road marking, and can also be applied to road surfaces. However, no portable instrument
is available for measuring the specular coefficient. In this study, the luminance coefficient
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Qd takes into account the effect of specular reflection, but to a lesser extent than Qo.
Therefore, the Qd parameter can be considered a reasonable approximation of the Qo value
for determining the illuminance required for road lighting design. The Qd coefficient is also
relevant under weak daylight or twilight lighting conditions. In these cases, the human
sense of vision is very sensitive to the contrast that results from dark objects against the
surface of the road [39].

The normalized luminance coefficient Qd for a pavement associated with an r-table can
be determined by laboratory methods from a cut pavement sample under field conditions
using a reflectometer, or by modern digital image analysis techniques [40].

2.4. Surface Reflectance RL

The surface reflectance RL (mcd m−2 lx−1) is the quotient of the luminance L of the
marking surface in the direction of observation by the illumination value E in the plane
perpendicular to the direction of incident light and the area of the reflective surface. The
definition of RL is very similar to that of the luminance coefficient q, and uses the same
unit. The only difference is that the illuminance is not measured on the surface plane, but
perpendicular to the illumination direction. Typically, the surface reflectance coefficient
determines the reflectivity of pavement or horizontal markings illuminated by vehicle
lighting. It is also referred to as nighttime visibility. It is important in the absence of
road lighting.

Road surfaces mostly have RL values in the range of 10 to 30 mcd m−2 lx−1. In
comparison, those of road marking surfaces (excluding glass beads) can usually reach at
least twice that amount.

2.5. Test Stand

According to the requirements contained in Polish standards WT-2 [41] and PN-EN
1436 [42], the measurement of the luminance coefficient should be made at an angle of 2.29◦

(equivalent to viewing the road from a distance of 30 m from the position of a driver of a
passenger vehicle). The measurement field should be a rectangle of 185 mm × 50 mm, with
an angular span of observation of ±0.17◦. This requirement was met by the LTL-X Mark II
device used to perform the tests. The device allows the determination two parameters, Qd
and RL, with the ability to import the results into a database. The device and test stands
are presented in Figure 2.

The test is performed in fixed diffused light. The sample is illuminated with a D65
standard light source of constant luminance, as specified in ISO/CIE 10526 using the
aforementioned LTL-X Mark II device (Figure 2a). The measurements are performed
while the ambient temperature is between 0 and 30 ◦C, and the temperature of the test
sample/surface is between 5 and 40 ◦C.

The test form met the recommendations of WT-2/2014 [41], according to which the
stable test area should be 700 mm × 700 mm (Figure 2c,d). Meanwhile, the empty space
that is not subject to measurement should be filled with any rigid material (Figure 2c). The
working area in which the aggregate was placed was sized to match the retroreflectometer’s
working area, i.e., 320 mm× 235 mm (Figure 2d). Each aggregate sample was tested 5 times,
at different locations in the working area. Subsequently, another sample was taken from
another location in the aggregate stockpile (series). Each aggregate was evaluated on
the basis of a dataset of 5 series. Thus, every luminescence coefficient of aggregate was
measured on subsamples taken from 5 different locations of stockpile in 5 places for each
subsample. As a result, to determine coefficients Qd and RL, 25 measurements for each
grain size and aggregate type were performed. Such an amount of data was required in
order to obtain a robust DM model. The number of aggregate datasets, as well as test
repeatability (including reproducibility in the validation stage), should to be big enough to
cover the spectrum of potential cases in order to predict using a potential model.
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II road retroreflectometer; (b) laboratory compactor; (c) mold with test sample; (d) scheme test stand.

The research plan included conditions of sample surface preparations by taking into
account the compaction of the sample. Therefore, in some cases, a vibrating table was
used (Figure 2b). Test conditions are presented and explained in Section 3.1. Adequate
repeatability, adopted as >10% (results range) [41], was obtained at a compaction time
of 3 min and an amplitude of 3 mm. The use of vibrations in the mold of the sample
preparation reduced the results of Qd variability up to 3 mcd·m−2·lx−1 for all aggregates.
Summarizing the effect of compaction on variability of the Qd is presented in Figure 3.
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Observing results in Figure 3, it should be noted that compaction had a slight but
significant influence on decreasing the dispersion of Qd results for each aggregate type.
Thereby, compaction was included as a factor in the DM model.

3. DM Evaluation

The analysis of the data and the prediction of the luminance coefficient Qd were
divided into several stages according to the diagram in Figure 4.

Appl. Sci. 2023, 13, 4116 8 of 24 
 

 

Figure 3. The influence of compaction on variability of Qd results. 

Observing results in Figure 3, it should be noted that compaction had a slight but 

significant influence on decreasing the dispersion of Qd results for each aggregate type. 

Thereby, compaction was included as a factor in the DM model. 

3. DM Evaluation 

The analysis of the data and the prediction of the luminance coefficient Qd were di-

vided into several stages according to the diagram in Figure 4. 

 

Figure 4. Algorithm of data analysis using DM techniques to predict luminance coefficient Qd. 

The first stage of the analysis involved collecting data, including the aggregate lumi-

nance coefficients (Qd, RL), and selecting factors such as petrography, grain size, and test 

conditions. After extracting the data, the results obtained required verification. For this 

reason, a pre-processing procedure was necessary. Data processing is a method of trans-

forming raw data into a comprehensible format and assessing its representativeness. 

There are several techniques for accomplishing this, e.g., sampling, filling in missing data, 

Figure 4. Algorithm of data analysis using DM techniques to predict luminance coefficient Qd.

The first stage of the analysis involved collecting data, including the aggregate lumi-
nance coefficients (Qd, RL), and selecting factors such as petrography, grain size, and test
conditions. After extracting the data, the results obtained required verification. For this
reason, a pre-processing procedure was necessary. Data processing is a method of trans-
forming raw data into a comprehensible format and assessing its representativeness. There
are several techniques for accomplishing this, e.g., sampling, filling in missing data, and
detecting and fixing errors [43]. After extracting the preprocessed data, several different
machine learning algorithms capable of performing different prediction tasks were applied.
This stage belongs to the modeling phase. To select a model whose predictive ability is
the most optimal, evaluative metrics (error and correlation scores) were used to compare
the model’s predicted values with the observed results. To improve the efficiency of the
use of DM techniques, various preliminary methods exist, such as: extracting different
data, tuning the model’s hyperparameters, or running the test with a different algorithm.
After completing the previous steps, the model was evaluated using a test dataset. Data
from two different sources were then used, with tests performed by different operators.
This dataset was validating in nature and its result was crucial in formulating the final
conclusion on the choice of modeling method.

3.1. Analysis of the Test Set and Its Preprocessing (Data Preprocessing)

The process of identifying the best data mining technique required performing a
series of pre-estimation analyses according to the diagram in Figure 3. Their primary
goal was to recognize the structure of the data contained in Table 1. It should be noted
that the case selection of this set of aggregates was random. The analyzed samples were
subjected to an assessment of the presence of outliers and redundancy resulting from the
mutual correlation of the samples. Data mining techniques are not as conservative as when
using a multiple regression model; nonetheless, certain steps should be taken to improve
the quality of the input set [44]. For the qualitative variables (measurement conditions,
grain size, and aggregate origin), Cramér’s V method for correlation assessment was used.
However, for quantitative features (Qd and RL), the traditional correlation coefficient
was used. The value of 0.9 was assumed as a threshold value for both the correlation
coefficients r and Cramér’s V, which was intended to indicate an extremely high correlation
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between predictors. Quantitative as well as qualitative variables were used in the analysis.
Quantitative features represented parameters obtained during direct measurement using
a reflectometer, whereas the qualitative features were related to the properties of the
aggregate and the test conditions. A summary of the input data is presented in Table 2.

Table 2. Characteristics of input variables.

Quantitative Variable

Qd, mcd·m−2·lx−1 Luminance coefficient under diffused illumination
RL, mcd·m−2·lx−1 Surface reflectance coefficient

Qualitative variable

Petrography 7 types of aggregates (Table 1)
Grain size (Table 1)

Test conditions

Three classes:
Uncompacted aggregate (KBZ)
Compacted aggregate (KZ)
compacted aggregate with filling and leveling of the sample
surface (KZ + D)

The distribution of the two quantitative variables (Qd and RL) used to build the DM
model is presented in Figure 5.
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It should be noted (Figure 5) that the largest number of cases relative to the Qd feature
were in the range of two main intervals of results: the first is 60 ÷ 70 mcd-m−2·lx−1, and
the next is 90 ÷ 110 mcd-m−2·lx−1. In contrast, the value of the RL coefficient was in the
range of 40 ÷ 60 mcd-m−2·lx−1. The input factors studied were also evaluated for outliers.
For quantitative variables, a homogeneous interval of <Q1-1.5IRQ; Q3 + 1.5IRQ> was
used. As a result, only 2% outliers were detected for the RL feature. With regard to quality
characteristics, grain size—5.3% and test conditions—3.2%. No outliers were detected in
the set of other features. Such a low percentage of outliers was indicative of a balanced
set; the structure and representativeness for the use of machine learning aimed at proper
prediction of aggregate luminance Qd. A summary of basic statistical characteristics is
presented in Table 3.
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Table 3. Basic statistics of Qd and RL features.

Variable
Descriptive Statistics

Mean Median Minimum Maximum QI QIII SD CV Skewness Kurtosis

Qd, mcd·m−2·lx−1 73 78 9 122 55 90 21.8 29.7 −0.13 −0.97
RL, mcd·m−2·lx−1 41 40 9 95 33 49 13.1 31.6 1.00 2.04

SD—standard deviation. CV—coefficient of variance.

The result of the high positive kurtosis of the RL feature is noteworthy. Its value
suggests a clustering of its values around a central value much greater than that of the Qd
feature. In addition, its results clustered around the central value with a lower standard
deviation compared to the Qd feature. Road pavements typically achieve Qd values in
the range of 55 to 90 mcd·m−2·lx−1 depending on the type of pavement and the color
of the aggregate [13]. Observing the interquartile range of QIII and QI, it seems that the
range of 50% of the middle abundance of the aggregates used obtained the level of the Qd
coefficient in exactly the same range. In contrast, the quartile range of the RL feature from
33 to 49 mcd·m−2·lx−1 indicates that the contrast of the road marking with the surrounding
pavement for the aggregates used is higher than the typical nighttime visibility value of
the pavement RL from 10 to 30 mcd-m−2·lx−1 [13]. Thus, the use of aggregates from the
adopted database has a significant effect on increasing the luminance coefficient of the
pavement, and thus its brightness.

3.2. Analysis of the Selection of Regression Data Mining Technique
3.2.1. Artificial Neural Network (ANN)

An artificial neural network is a type of mathematical model that learns to create and
optimize a function (or distribution) that defines a set of input (learning) characteristics.
The network’s learning process occurs through modifying the weighting parameters of the
network of nodes, which is possible by applying certain network learning performance
measures. Weight tuning parameters are generated by the learning function. The network
consists of a set of neurons, each of which has an activation function (weight function)
that processes the input data. The behavior of a neuron (and the entire neural network)
is strongly dependent on the type of activation function used. These weights must be
updated in the learning process by minimizing the estimation error. Layer node structures
can be created in which data must flow in a certain direction. Different ways of connecting
network nodes affect the network’s capabilities. Neurons in a network can be connected
in various ways to form various topologies, which has a major impact on the network’s
learning capabilities. One of the most popular types of networks in supervised learning is
the multilayer, layered, forward-coupled perceptron network [45].

The optimal topology of the ANN was determined using an iterative algorithm [42].
As a result the optimal ANN topology was obtained as follows:

• ANN type: MLP 25-6-1 (multilayer perceptron of 25(input variables)-6(hidden layer
perceptron)-1(output variable);

• Hidden layer activation function type: exponential;
• Output activation function type: exponential.

3.2.2. Random Forests (RF)

Random forests are a set of parallel decision trees. Because the random forest classifier
is based on two main random factors, it contains different decision trees. The data used to
generate each tree are sampled with replacements from the learning set. The best distribu-
tion of all features is selected from a random subset of them [45]. Random forest works by
fitting multiple decision trees to different subsamples of a dataset and applying averaging
to increase predictive accuracy and monitor overtraining. Typical individual decision trees
are characterized by high variance and a tendency to overgeneralize [46]. The randomiza-
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tion is intended to reduce the variance of the estimator. Forest regression is believed to
handle diverse tasks well and has the potential to deal with non-linear relationships [47].

For obtaining the best model, some parameters had to be set in order to reproduce a
final model. In the experiment the following calculation principles was used:

• Number of additive terms(trees): 300;
• Random test data proportion: 0.3;
• Subsample proportion: 0.5;
• Minimum n in child node: 1;
• Maximum n of nodes: 3;
• Minimum n of cases: 5;
• Maximum n of levels: 10;
• Cycles to calculate mean error: 10;
• Percentage decrease in training error: 5.

3.2.3. Boosted Trees (BT)

The aforementioned random forests are a combination of tree predictors. Therefore,
each tree depends on the value of a random sampled vector. The generalization error
for random forests converges to the limit, as the number of trees can reach a very large
value. The generalization error of a forest of tree classifiers depends on the strength of
the individual trees in the forest and the correlation between them. Using random feature
selection to split each node gives error rates that are more favorable using the Adaboost
algorithm [48] and are more reliable with respect to noise. The boosted tree algorithm
evolved from the use of methods of boosting to regression trees. The main idea is to create
a sequence of (very) simple trees, where each successive one is built to predict the residuals
generated by the previous one. It can be shown that such a procedure of “additive weighted
expansion” of trees will result in a perfect fit between predicted and observed values, even
if the very nature of the relationship between the predictors and the dependent variable is
very complex (e.g., non-linear). Thus, the gradient enhancement method—fitting weighted
additive expansion of simple trees—is a very general and powerful machine learning algo-
rithm. The decision tree is commonly used for classification and regression tasks because it
offers many advantages, such as high efficiency, simplicity, and interpretability [49]. The
boosting strategy was originally developed for classification problems, but demonstrates
successful application to regression tasks. Random tree boosting is a technique that builds
each regression tree step by step, using a predefined loss function to measure the error at
each step and correct it with each subsequent step. Therefore, a predictive model is actually
a collection of weaker predictive models [50]. Gradient amplification takes into account
additive models, which are taught in stages of the form [51] (4):

Fm = Fm−1(x) + hm(x) (4)

where: hm(x)—weak learning functions. When applying the gradient boosting strategy to
regression trees, the small regression trees are the basis functions, and the entire regression
model using the boosted tree method is the sum of them.

In the experiment for testing, the following calculation principles were used:

• Number of additive terms(trees): 300;
• Random test data proportion: 0.3;
• Subsample proportion: 0.5;
• Minimum n in child node: 1;
• Maximum n of nodes: 3;
• Minimum n of cases: 5;
• Maximum n of levels: 10.
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3.2.4. Support Vector Machines (SVMs)

At the core of the support vector machines (SVMs) method is the concept of a decision
space, which is divided by building boundaries separating objects with different classifica-
tions. The support vector machines method performs classification tasks by constructing
hyperplanes in a multidimensional space that separate cases belonging to different classes.
However, regression can also be performed, as well as both tasks, for multiple variables,
both continuous and categorized. For each categorized variable, a set of variables is created
with codes indicating the classification of each case (0 or 1). For example, a variable taking
three values; A, B, and C; will be represented by three variables. A key element of the
SVM method is the selection of the form of the kernel function and the model parameters
coupled to it. There are several types of kernel functions to use in the SVM model: lin-
ear, polynomial, radial basis functions (RBF), and sigmoid function. The support vector
machines (SVMs) method is a comprehensive machine learning model that enables both
linear and non-linear classification, regression, and identification of outliers. SVR differs
from simple regression, which aims to minimize the error between the predicted and actual
values, because SVR aims to fit the error (usually the square of the residuals) into an interval
with a certain threshold value. In this way, the SVR method attempts to find the closest fit
between the actual data points and the function representing them [52].

In the experiment for analysis, the preliminary evaluation of some important param-
eters needed to be determined. To achieve this, a special script was elaborated in the
R programming language and then was exported in the Statistica® program. The main
parameters, the best for this dataset, were given below (in the Statistica® program):

• Regression type 1: (coefficients: C = 1, epsilon = 0.5);
• Kernel type: radial basis function (RBF, gamma = 3);
• WN number 41.

3.2.5. Classification and Regression Trees (C&RT)

Analysis using C&RT involves recursively dividing observations into disjoint subsets.
For regression analysis, the dependent variable must be interval in nature. In this type
of analysis, as in other data mining methods, the relationships between variables are not
necessarily linear. The authors of the C&RT algorithm recommend this type of analysis
when the assumptions of multiple regression are met [53]. The distribution rules are related
to the variance or average deviation. The key to obtaining a stable C&RT model is to build
several trees for the same number of subsets in multiple cross-validation technique, but
with different random number generator settings. Subsequently, the tree structures and
their ranking are compared. Their convergence demonstrates the stability of the model.
Algorithm C&RT needed some additional conditions to account for relations in a dataset.
This algorithm is not so effective as RF or BT, but is still useful and simple:

• Number of additive terms: 1000;
• Bonferroni adjustment;
• Minimum n in child node: 1;
• Maximum n of nodes: 5;
• Minimum n of cases: 5;
• Probability for splitting: 0.05;
• Probability for merging: 0.05.

4. Analysis of the Research Results
4.1. Evaluation of the Effectiveness of Selected DM Techniques

The modeling process began by performing a series of simulations using the algorithms
presented in Section 3, namely: C&RT, RF, BT, ANN, and SVM. In the case of ANN and
SVM, some additional work was required to find the optimal parameters. In the case of
ANN, a series of iterative steps were required to determine the optimal structure of the
neural network in terms of the type of activation function and the number of neurons in
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the hidden network. On the other hand, in the case of SVM, the parameters of the radial
functions C are part of the Kernel function of the SVM method [50]. Qualitative evaluation
of DM technique selection was performed using popular regression metrics and is provided
in Table 4.

Table 4. Regression metrics of the DM method.

Metrics Description Form

R-squared R2
(

σyy′
σy·σy′

)2

Root mean square error RMSE
√

∑N
i=1(yi−ymean)

2

N

Mean absolute error MAE ∑N
i=1

∣∣∣ye−yp

∣∣∣
N

yp—predicted value, ye—experimental value, yi—i-th observed value, ymean—mean value, σy—variance of
experimental data, σy′—variance of predicted data, σyσy′—covariance of predicted and experimental data.

The selection of the final DM technique required obtaining a minimum MAE or RMSE
and a maximum R2 value. It should be kept in mind that the feature for which DM-
predictive techniques were used was the luminance coefficient Qd. In the first stage, the
dataset containing 1895 valid cases was divided into two subsets:

• a teaching set containing 70% of randomly selected cases;
• a test set containing 30% of randomly selected cases.

Following the stage of constructing a series of DM models, a collection of predicted
values of the luminance coefficient Qd was obtained, which are shown collectively in Figure 6.
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Observing the results in Figure 6, it should be noted that the least impressive DM
technique, among those used, was SVM. In this case, the obtained model did not allow
proper prediction of large and small values of the luminance coefficient Qd, which do
not necessarily represent outliers. This is probably due to the fact that the qualitative
variables were on a nominal rather than an ordinal scale. Other techniques have shown
far greater effectiveness. Nevertheless, observing the influential values occurring (extreme
values on the regression line), it can be expected that the BT technique was by far the most
effective in relation to the problem in question, which was the effective prediction of the Qd
feature. In order to make a final assessment as to the choice of the appropriate technique,
the characteristics given in Table 4 were used, while their calculated values are shown
in Table 5.
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Table 5. Summary of regression metrics of fit quality.

DM Method MAE RMSE R2

RF 4.5 42.7 0.95
BT 4.3 37.9 0.96

ANN 4.7 44.6 0.95
C & RT 4.9 48.9 0.95

SVM 14.5 268.2 0.80

As previously speculated, the Boosted Trees (BT, highlighted) algorithm proved to
be the best DM technique for predicting the value of the luminance coefficient Qd of an
aggregate. During the construction of the BT model, a learning ratio of 0.1 was used [54],
while the ratio for drawing learning samples in successive boosting steps was 0.5, based on
the recommendations provided in the paper [55]. Its results were very similar relative to all
other DM techniques, with the exception of SVM. The SVM method had by far the highest
value of variability expressed by RMSE characteristics. Through this, the MAE value
(estimation error) was also very large, at 14.5 mcd m−2 lx−1. Such a value of variability
in the SVM method excluded the possibility of correct discrimination of aggregates of
similar color, for example: quartzite and limestone. To counteract this, the BT model also
took into account the occurrence of the same aggregate, i.e., limestone and quartzite from
two different mines in the Świętokrzyskie voivodeship, Poland. The rules for creating
a boosted tree are easy to interpret, but the notation of the established scoring system
assigned to the nodes is very complex. Therefore, the end result of using BT is a model
encoded in the form of an XML (Extensible Markup Language) file, which was created to
represent various data in a structured way that allows for easy implementation into other
data analysis systems. It is currently the best language for data presentation, recommended
by the W3C organization [56]. From the perspective of practical applications, the set of
rules in graphical form is the most useful (Figure 7).
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It should be noted that the average result of the luminance coefficient Qd of the entire
set (ID = 1) is 73.9 mcd m−2 lx−1, whereas the scatter of the results (variance) is significant
at 499 mcd m−2 lx−1. Thus, that a set of rules can be built to quickly distinguish Qd
values against different aggregates. A distinct group can be observed first, which are aggre-
gates of limestone and quartzite, which have the greatest ability to brighten the potential
pavement. Rules were defined for this “leaf” in the BT model, which did not further split
(Mean(Qd) = 90.1 mcd m−2 lx−1 for ID = 2). In contrast, much greater variation (larger rule-
set) was obtained for the other darker-colored aggregates (Mean(Qd) = 52.1 mcd m−2 lx−1

for ID = 2). As a result of the distribution, basalt aggregate achieved an average value of Qd
= 40 mcd m−2 lx−1, while melaphyre achieved 49 mcd m−2 lx−1 with the smallest scatter
of results. In the cases of gabbro and amphibolite, the value of the predicted luminance
was affected by additional rules related to grain size. Therefore, it can be presumed that
the texture or shape of the aggregate affected the value of the luminance coefficient. Ylien
A. et al., also came to similar conclusions in their paper [11]. Evaluating the structure of the
tree (Figure 7) as a whole is quite complex, particularly when there are more “leaves”, how-
ever, some useful properties that can help with this can be derived. The most commonly
used summary is the parameter characterizing the importance of a feature, indicating
how important each feature was for decision processes in the regression tree. This is a
number between 0 and 1 for each function, where 0 denotes “not used at all” and 1 denotes
“perfectly predicts the objective”. The significance of features always adds up to 1. The
validity of the features can be visualized, as shown in Figure 8.
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The results in Figure 8 confirm the fact that luminance and related rules were most
influenced by aggregate petrography. The second most important factor was nighttime
visibility RL, with aggregate grain size being of equal importance. In contrast, test con-
ditions that take into account the preparation of the aggregate surface during the test
had a marginal effect on the prediction of the luminance coefficient Qd. Therefore, the
mineral composition and treatment of the aggregate and its potential texture had the most
significant impact on the aggregate luminance coefficient Qd. A summary of the effect of
grain size variation and petrography on the Qd result is shown in Figure 9.
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Figure 9. Plot of Qd variation against aggregate type and grain size.

The similarity between quartzite, granite, and limestone aggregate is observed in
the range of the finest 0/2 fraction. The coarser the aggregates, the more luminance
coefficient values begin to diverge. The median luminance coefficient of all results was
about 80 mcd m−2 lx−1, which was higher than the Polish requirement to use aggregates
for pavement brightening with Qd > 60 mcd m−2 lx−1 as per WT-2/2014 [41]. In terms
of Polish recommendations, the recommended fractions for luminance coefficient testing
are 4/8, 5/8 or 8/11. Nevertheless, numerous other aggregate fractions were used for
the purpose of teaching the model. It should be noted that 5/8 and 8/11 fractions in
the models yielded very similar values of the median luminance coefficient of the tested
aggregates (Figure 9). Therefore, the luminance coefficient test should be performed for
coarse aggregate > 4 mm, which confirms the validity of the proposed fractions in the
adopted recommendations, although the tests performed for the 8/11 aggregate fraction
were characterized by a larger interquartile range (Q3–Q1). In addition, outliers were
observed representing the Qd results of aggregate with 0/2 grain size in all aggregate cases.
The Qd value for this fraction obtained a much higher value than the other cases of a given
aggregate. Therefore, this type of fraction should not be used as representative, whereas its
presence in the tests was intended to increase the effectiveness of the BT model rules. A
summary of the distribution of the luminance coefficient is shown in Figure 10.
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A preliminary comparison of both luminance coefficients (Qd,pred and RL) in Figure 10
suggests that the most suitable aggregates (median) for pavement brightening are granite
(Qd = 99 mcd m−2 lx−1), limestone (Qd = 85 mcd m−2 lx−1), and quartzite (Qd = 86 mcd
m−2 lx−1). All offer definitely greater luminance coefficient values than the recommended
baseline, i.e., 60 mcd m−2 lx−1 [41]. Aggregates that yielded approximately borderline
results are amphibolite (Qd = 61 mcd m−2 lx−1) and gabbro (Qd = 59 mcd m−2 lx−1).
Therefore, they can be used conditionally as alternative pavement-brightening solutions.
The others do not achieve the intended pavement-brightening effect. An interesting issue is
the value of the RL coefficient, which does not fully correlate with the values of the predicted
Qd,pred. Visibility at night probably depends on the presence of certain minerals in the
aggregate, which allow significant luminance of the aggregate when illuminated by vehicle
lighting. This is a similar case to a situation when horizontal markings containing glass
beads in the paint are evaluated. Typically, the introduction of beads increases nighttime
visibility (RL). However, it significantly reduces the Qd value, which reflects the perception
of pavement illuminated by sunlight, i.e., illumination incident at a different angle than that
of vehicle lighting. Quartzite and granite aggregates, despite their high Qd,pred values, did
not achieve the same range of RL as limestone aggregate. Therefore, it can be concluded
that the best solution for brightening pavement is to use common limestone aggregate. Very
relevant to a given analysis are the results of the interaction between the predicted value of
the luminance coefficient Qq,pred and the accompanying RL value, as shown in Figure 11.

Figure 11 is essentially a collection of histograms. It allows the determination of the
local peaks (frequencies) of the luminance coefficient Qd,pred. The quantitative nighttime
visibility parameter RL was used as an accompanying variable. It should be clearly empha-
sized that the use of a single central measure to describe a set such as the mean or median
does not allow an exhaustive characterization of the distribution of the luminance coeffi-
cient (as in Figure 10). This is related to a number of phenomena among which grain size
and the associated alignment of aggregate grains during testing (importance = 0.7 based
on Figure 8) can be mentioned. Nevertheless, it can be assumed that the occurrence of
numerous local modal values of the distribution of Qd,pred results can also be attributed to
the typical randomness of the mineralogical composition on the aggregate surface, result-
ing from the process of its crushing or the deposit occurrence. Aggregate was taken from
various locations of the heap, so in all likelihood this effect could have been significant. It
should be kept in mind that the large number of random effects influences the use of the
final efficiency of the boosted tree model. Amphibolite aggregate has four modal values
(Figure 11f), while quartzite and granite have two distinct modal values. By far the largest
discrepancies between modal values were observed for gabbro aggregate (Figure 11e).
Comparing two aggregates, quartzite and limestone, both modal values have almost identi-
cal Qd at the corresponding RL level. Nevertheless, by far the majority of cases are in the
value range of 80 ÷ 85 mcd-m−2·lx−1 with RL45 ÷ 50 mcd-m−2·lx−1, whereas, in the case
of quartzite, both modal values have almost identical values. Therefore, the use of this BT
model has the advantage of being able to describe and identify such peculiarities in the
value of the luminance coefficient Qd. When using traditional estimators, the variability
of Qd results for quartzite and limestone aggregate would be considered insignificantly
different. For additional validation, the luminance coefficient measurement results of
aggregates from the northern region of Poland published by Wasilewska et al., were com-
pared [57]. The results of the average values (solid line) are highlighted in Figure 11 with
the range of the results (dashed line). The obtained results of these comparisons suggest
that the presented model and results from other regions of Poland allow prediction for
aggregates from other sources. It should be mentioned that the basic structure of the BT
model was created on the basis of aggregates from one region, and further “fine-tuning” of
its predictive capabilities requires successive additions to the result base.
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In conclusion, some critical issues should not be overlooked. As already mentioned,
limestone, granite, and quartzite aggregates had high Qd and RL. In the case of limestone
aggregate, it should be noted that it is characterized by a high LA and the lowest PSV
(Table 3) by what, in some countries, may be a limitation in its wider use for wearing
courses for heavy-traffic routes. Quartzite and granite aggregates, on the other hand, are
known for their high SiO2 content and thus offer low adhesion with asphalt despite the
fact that they have a high and favorable PSV. Therefore, the ability to correctly predict Qd
is valuable information that can be further taken into account in the optimal design of the
bituminous mixture composition.
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4.2. Validation of the Adopted Boosted Trees Model

The final validation of the adopted DM model is crucial to verifying the reasoning
adopted and the correctness of the rules adopted. Model validation was performed using
an additional two validation sets containing drawn aggregate types. Each harvest was
subjected to Qd and RL determination by two independent operators and included in its
entirety the step of preparing aggregates and performing a series of tests again. Such an
action was intended to take into account the effect of randomness due to the human factor,
randomness due to the location on the aggregate collection heap, and to confirm the stability
of the obtained DM model. Based on previous experiments, it was determined that it would
be most appropriate to prepare the samples with surface compaction and supplement the
sample level with additional aggregate, caused by the compression of the compaction
process (KZ + D based on Table 2). Batches of aggregates with the characteristics listed
inTable 6 were drawn for verification analysis.

Table 6. Selection of aggregates for the validation stage.

No. Type of Aggregate Grain Size

1. Amphibolite 0/2, 5/8, 8/11
2. Basalt 2/5, 5/8, 8/11, 16/22
3. Gabbro 2/5, 5/8, 8/11
4. Granite 2/8, 8/16, 16/22
5. Quartzite 0/2, 2/5, 5/8, 8/11, 8/16,
6. Melaphyre 0/2, 2/5, 5/8, 8/11, 8/16,
7. Limestone 0/2, 2/8, 4/11, 5/11, 5/8, 8/11, 8/16, 16/22

In Table 6, the aggregates selected, along with the grain size, are highlighted in bold
font. In the next step, retroreflectometer tests were performed in the same way as when
the results were obtained to build the learning and testing set. The accumulated database
of results was transferred in order to determine the value of the predicted luminance
coefficient Qd according to the set of rules in Figure 7. As a result, using the metrics given
in Table 4, the following fits between model and experimental data were obtained (Table 7).

Table 7. Summary of regression metrics of quality of fit of validation stage of Qd [mcd-m−2·lx−1].

DM Method MAE RMSE R2

Boosted trees
(teaching and testing) 4.3 37.9 0.96

1st validation 7.8 76.1 0.76
2nd validation 5.7 53.2 0.85

The validation process confirmed the stability of the model with regard to the aggre-
gate base available in the Świętokrzyskie voivodeship, Poland. The mean absolute error
(MAE) of the residuals was larger by up to 3.5 mcd-m−2·lx−1 (1st validation) than the value
obtained by the learning and test sets. Moreover, it is less than half of the recommended
maximum Qd result range of 10% of its mean value. Therefore, it can be concluded that
results received from the validation set did not differ from the adopted requirements of
WT-2/2014 [41], and the error discrepancy was negligible in comparison to the obtained
machine learning model. Finally, the values of single readings of the luminance coefficient
Qd validation process, along with its prediction, were projected in Figure 12.
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Figure 12. Fit of experimental results against the Qd feature model.

Green and red colors indicate the set of validation results. According to the results in
Table 7, the “2nd validation” set was characterized by a slightly higher dispersion of results
than the “1st validation” set. Nevertheless, the vast majority of results did not deviate from
the base set (blue color), on the basis of which the rules of the random tree model were
built. Therefore, the efficiency of the BT model built for Qd prediction was satisfactory, and
the prediction results were stable.

However, obtaining an adequate prediction using BT rules requires the use of a popular
retroreflectometer with the ability to determine the RL coefficient. The variant of the device
that realizes only the measurement of the RL coefficient is a cheaper, and at the same time
very popular, option used to assess the quality of horizontal markings in terms of adequate
nighttime visibility. Given the high kurtosis of the RL results and their low variability, an
additional simplified simulation of the luminance coefficient Qd was performed. The case of
unavailability of a retroreflectometer and taking the central value from the study (median)
of the RL coefficient = 40 mcd-m−2·lx−1 was considered. The result was determined using
the results of Qd introducing a constant value of RL = 40 mcd-m−2·lx−1 from the “1st
validation” set projected in Figure 12 as “1.1st validation”. The value of the calculated
MAE for the Qd,pred factor was 9.2 mcd-m−2·lx−1. Applying this simplification slightly
increased the estimation error by 2 mcd-m−2·lx−1 and resulted in some weakening of
the prediction ability against aggregates with Qd > 80 mcd-m−2·lx−1. Nevertheless, the
efficiency of the model remains high enough that accepting simulation results with such an
established simplification can be satisfactory in certain cases.

In conclusion, thanks to the Boosted Trees (BT) algorithm, it is possible to quickly
create an effective model for predicting the luminance coefficient Qd and use it to evaluate
the brightness of aggregate. Further replenishment of the aggregate base, including their
mixture in varying proportions, will allow the model’s predictive capabilities to improve
dramatically and is the goal of further research. In addition, work is underway to implement
the model rules into the C++ or Python programming languages.
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5. Conclusions

Based on the research and analyses performed, the following conclusions were formulated:

• Based on the preliminary analysis, the highest efficiency was achieved by
the Boosted Tree (BT) model, which, despite the similar value of the coefficient of
determination > 0.95, against the neural network technique had the lowest average abso-
lute error < 4.3 mcd-m−2·lx−1.

• In the analysis presented here, it was observed that one aggregate can have several modal
values of Qd, which depend on their mineralogical composition. Therefore, only DM
techniques are able to correctly describe the variability resulting from the aforementioned
random factors, taking into account the numerous sources of aggregates.

• The significant overestimation of Qd for aggregate with a grain size of 0/2, regardless
of its petrographic origin.

• Obtained results are in line with WT-2/214, which suggests that coarse aggregate fractions
with a grain size of >4 mm should be used to determine the luminance coefficient.

• The presence of certain minerals of a given aggregate causes the luminance coefficient
that characterizes daytime and nighttime visibility to reach significant value variations.
In this study, it was proven that the petrographic description has the greatest impact
on Qd.

• The lack of a full correlation between Qd and RL suggests that nighttime visibility is
related to the presence of certain “inclusions” of individual minerals that enhance the
contrast of the pavement when illuminated by vehicle lighting.

• The best option for pavement brightening was obtained by limestone aggregate.
The luminance coefficient determining daytime visibility (median) has a value of
Qd = 85 mcd-m−2·lx−1, nighttime visibility RL = 49 mcd-m−2·lx−1, and a very good
asphalt affinity. Other suitable aggregates for pavement brightening, but with lower
RL values, were quartzite (Qd = 86 mcd-m−2·lx−1, RL = 48 mcd-m−2·lx−1) and granite
(Qd = 99 mcd·m−2·lx−1, RL = 43 mcd-m−2·lx−1). Aggregates that reached the thresh-
old value of 60 mcd-m−2·lx−1 were amphibolite and gabbro. The other aggregates in
the data set did not allow for an acceptable level of pavement brightness enhancement.
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