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Abstract: CO2 emission is one of the biggest environmental problems and contributes to global
warming. The climatic changes due to the damage to nature is triggering a climate crisis globally. To
prevent a possible climate crisis, this research proposes an engineering design solution to reduce CO2

emissions. This research proposes an optimization-machine learning pipeline and a set of models
trained for the prediction of the design variables of an ecofriendly concrete column. In this research,
the harmony search algorithm was used as the optimization algorithm, and different regression
models were used as predictive models. Multioutput regression is applied to predict the design
variables such as section width, height, and reinforcement area. The results indicated that the random
forest algorithm performed better than all other machine learning algorithms that have also achieved
high accuracy.

Keywords: reinforced concrete; optimization; predictive modeling; carbon emission; harmony search

1. Introduction

Air pollution, population growth, and urban development become increasingly im-
portant with industrialization. Global warming and climate change are the most important
factors affecting all human beings. The warming of the earth’s atmosphere due to the
release of greenhouse gases (GHGs) (CO2, CH4, NOX) is one of the main causes of climate
change. Carbon dioxide (CO2) increases the greenhouse effect much faster than other
GHGs due to its longevity. Due to inefficient CO2 absorption, an imbalance in the carbon
cycle is further increased [1]. Therefore, carbon dioxide emissions need to be controlled.

The past eight years (2015–2022) were the warmest on record globally, fueled by
ever-rising greenhouse gas concentrations and accumulated heat [2]. Extreme heatwaves,
drought, and devastating flooding have affected millions of people [3]. The past nine years
have been the warmest since modern recordkeeping began in 1880 [4].

People have built structures for various purposes throughout history. Concrete has
been preferred as an important structural material for many years because it can be shaped
easily, is resistant to physical and chemical external effects, is economical, and is practical
to use and produce [5]. In addition to providing safety with engineering design, it is an
advantage to have minimum cost or the least damage to the environment [6].

Reinforced concrete (RC) is a material obtained as a result of placing reinforcements
in concrete. Concrete and reinforcement are used together to eliminate each other’s weak-
nesses, provided that adherence is ensured. In this building material, reinforcement is
effective in counteracting tensile effects and makes a very important contribution to the
ductile behavior of the material. Concrete that is effective in supporting compressive
stresses, prevents the reinforcement from buckling by wrapping it around and increases
the resistance of the material against the external environment and fire resistance [7].
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Table 1 shows the strengths of concrete grades between C16 and C50. However,
according to TBDY 2018 [8], concrete with lower strength than C25 grade cannot be used in
new buildings that will be built in Turkey.

Table 1. Concrete grades and strength [9].

Concrete Grades
Characteristic

Compressive Strength, fck
MPa

Equivalent Cube
(200 mm) Compressive Strength

MPa

Characteristic Axial
Tension Strength, fctk

MPa

28-Day Elastic
Modulus, Ec

MPa

C16 16 20 1.4 27,000
C18 18 22 1.5 27,500
C20 20 25 1.6 28,000
C25 25 30 1.8 30,000
C30 30 37 1.9 32,000
C35 35 45 2.1 33,000
C40 40 50 2.2 34,000
C45 45 55 2.3 36,000
C50 50 60 2.5 37,000

Concrete consumes more water than any other material. The concrete industry is
a major consumer of freshwater [10,11]. Concrete is formed by homogeneously mixing
cement, aggregate (sand + gravel), water, and, when necessary, chemical and mineral
additives in appropriate proportions [7]. The major carbon emission from the concrete
industry is from the production of its main binder, which is Portland cement [10].

As shown in Table 2, China is the leading cement producer in the world. Cement
production in China was approximately 2.35 billion tons in 2016. After China, India follows.
Approximately 8% of the carbon dioxide emitted to the world originates from cement [12].
The cement industry, if considered a country, would be the third-largest emitter in the
world after China and the US [13].

Table 2. Cement production by countries (million tons) [14].

Country 2015 2016 2017 2018 2019 2020

China 2350 2403 2320 2370 2300 2200
India 270 290 290 330 320 290
USA 83.4 84.7 86.1 87.8 88.6 89

Brazil 72 57.8 54 53.5 53.4 60
Turkey 71.4 75.4 80.6 72.5 57 72.3
Russia 69 56 54.7 53.7 54.1 56

Indonesia 65 61.3 68 70.8 64.2 64.8
South Korea 63 56.7 57.9 55 56.4 50

Japan 55 3.4 55.5 55.3 55.2 52.1
Saudi Arabia 55 55.9 47.1 42.2 52.2 53.4

Germany 31.1 32.7 34 33.7 34.2 35.5
Italy 20.8 19.3 19.3 19.3 19.2 18.1

In a structure, a column carries axial loading as compression. The most ideal columns
to be used in the design are circular and rectangular columns because when earthquake
force acts on them, their behavior can be predicted by engineers. Rectangular columns
are commonly used in the construction of buildings and heavy structures. It is easier
to construct and cast this type of column. Square and rectangular columns gain less
strength and ductility than circular columns because the lateral confinement for pressure
distribution in the circular section is uniform, but the stress distribution of square and
rectangular columns varies from maximum to minimum at the corner [15].

Figure 1 shows a general description of an RC rectangular column where the section
width and height, and the lateral and longitudinal reinforcements can be seen. The section
width (b), the section height (h), and the total length of the column (L) describe the geometry
of the column. In the study, columns under uniaxial bending and axial load were examined,
and the bending axis has been taken as similar in all cases for comparison purposes.
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Recently, machine learning (ML) has been used in the field of civil engineering. Ra-
jakarunakaran et al. [16] intended to create machine learning-based regression models to
predict self-compacting concrete compressive strength. The results showed that the random
forest model forecasts concrete’s compressive strength accurately. Deifalla and Salem [17]
introduced an ML model for calculating the ultimate torsion strength of concrete beams
strengthened by using externally bonded fiber-reinforced polymer. The model showed im-
proved agreement and consistency with experimental results compared to existing models
in the literature. Dissanayake et al. [18] presented the application of popular ML algorithms
in the prediction of the shear resistance of the steel channel sections. The results indicated
that the implemented ML models exceed the prediction accuracy of the available design
equations in estimating the shear capacity of the steel channel section. Amjad et al. [19]
developed a new model for predicting bearing capacity by using an extreme gradient boost-
ing (XGBoost) algorithm. The results showed that the XGBoost algorithm has the most
accurate predictions for all models developed. Aydın et al. [20] aimed to explore new ML
methods to automatically classify soil for minimizing the time and cost of the classification
process. The results indicated that tree-based foundational methods/classifiers, such as
the decision tree classifier, and gradient boosting-based ensemble methods provide very
good performance.

The damage to nature due to global warming has forced researchers to think of an
environmentally friendly design. As indicated in the literature, various studies have
been carried out for reducing CO2 emissions of reinforced concrete system design by
using different datasets and various optimization and ML methods. Kayabekir et al. [21]
investigated the sustainable design (minimum cost and CO2 emissions) of the RC retaining
walls by using the harmony search (HS) algorithm. Their proposed approach performs
well with regard to economic and ecological results. Zhu et al. [22] showed that variations
in the span and load of RC slabs can change their environmental sustainability. The
research results indicated that composite slabs were widely recommended in engineering
applications from the view of environmental sustainability. Wang et al. [23] investigated
the concrete manufacturing process’s potential effect on global warming. According to the
results, while under different functional units, the environmental performance of composite
and cast-in-situ floors varies. Paik and Seunguk [24] investigated the effect of using a void
deck slab (VDS) system instead of an ordinary reinforced concrete slab on CO2 emissions.
The results revealed the total CO2 emissions of an ordinary RC slab are more than those
of the voided slab system. In large-scale construction, Purnell [25] found that RC beams
designed with optimized strength concrete show significantly lower embodied carbon
of a structural component expressed in terms of its structural performance values than
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comparable steel or timber composite beams over the entire range of permissible concrete
section sizes. Destrée and Pease [26] compared PrimeComposite, a steel fiber reinforced
concrete (SFRC) with proprietary additives, to conventional graded slab systems. Results
showed that CO2 emissions are reduced by no less than 40% by replacing traditional
concrete slab systems with PrimeComposite. Yepes et al. [27] applied optimization designs
based on the CO2 efficiency and cost design for RC retaining walls. The analysis showed
that reducing costs by 1 euro could save up to 2.28% kg in CO2 emissions. Bekdaş et al. [6]
proposed a modified HS methodology for the optimization of RC beams with minimum
CO2 emissions, and the results showed that the optimum design based on CO2 emission
minimization and optimum cost design results are different. Arama et al. [28] presented
the parametric modeling process of soldier pile walls based on CO2 and cost optimization
with the HS algorithm. Optimization analyses showed the attainment of both cost and CO2
emission minimization.

In the present study, a hybrid model was proposed for optimization and prediction.
RC rectangular column section dimensions are optimized for CO2 emission minimization
with the HS algorithm. Then, the generated data were used in the development of different
ML models that predict optimum results without a rerun of the optimization process.

2. Materials and Methods

The overall process of ecofriendly structural design is handled in two stages. The first
stage is the dataset generation through the optimization process, and the second stage is the
machine learning process implemented to predict b, h, and As values from M and N, where
the bending moment is denoted as (M) and axial force is denoted as (N), the column section
width is denoted as (b), the column section height is denoted as (h), and the reinforcement
area of the section is denoted as (As).

2.1. Optimization Process and Dataset Generation

The main objective of this study is to minimize CO2 emissions through the efficient
structural design of RC columns. For this purpose, the HS algorithm [29] was implemented
to determine the optimal RC rectangular column dimensions (b and h) and total area of
the longitudinal reinforcement (As) for a given M and N. A large dataset was generated,
including the optimum results of several loading cases.

The HS algorithm is employed for the optimization process via MATLAB [30] code
and is a population-based metaheuristic algorithm developed by Geem et al. [29], derived
from an artificial phenomenon found in musical performance. The HS algorithm, which
imitates the musical best-fit search, has been applied to many civil engineering optimiza-
tion problems including posttensioned RC walls [31], earthquake analysis [32], structural
vibration control [33–37], retaining walls [38–41], truss structures [42,43], RC columns and
beams [44,45].

Figure 2 shows a flowchart of the proposed method for optimization and predic-
tion. In the optimization, the design variables were optimized for the minimization of
the objective function. Since the problem is nonlinear because of design constraints, con-
straints are checked in the optimization process. As considered in previous studies [45,46],
these constraints are related to stress limitations and min–max requirements defined in
design codes.

The concrete compressive strength, steel yield strength, steel unit weight, elastic mod-
ulus of steel, unit shortening of concrete at fracture, and unit CO2 emissions of the materials
and HS parameters are defined. Moreover, the solution ranges for RC rectangular dimen-
sions and reinforcement area were determined. The objective function of this optimization
problem is given in Equation (1):

min f (CO 2) = CC,CO2 ×VS + CS,CO2 ×WS. (1)
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In Equation (1), CC,CO2 , CS,CO2 , VC, and Ws are the concrete carbon dioxide emission
per unit volume, steel carbon dioxide emission per unit weight, total volume of concrete,
and the total weight of steel, respectively. The search space for this function will be between
the minimum and maximum values of the variables that can take. In the solution of an
optimization problem with HS, the initial harmony memory (HM) matrix is randomly
generated within a predetermined search space, and the size of the solution candidate
population is harmony memory size (HMS). This matrix contains harmony vectors (HV),
and each design variable is randomized within the defined solution ranges. Accordingly, if
the HMS is m, m random solution candidates are created between the specified values as
follows and stored in the HM matrix as shown in Equation (2). Here, each row represents a
design and each column represents a design variable:

HM =


b1

b2
h1

h2

...
bm

...
hm

As
1

As
2

L1

L2

...
As

m

...
Lm

M1

M2
N1

N2

...
Mm

...
Nm

CC,CO2
1

CC,CO2
2

CS,CO2
1

CS,CO2
2

...
CC,CO2

m

...
CS,CO2

m

f
(
x1)

f
(
x2)
...

f (xm)

. (2)

The function value is calculated by replacing each row of the HM matrix in the function
to be minimized. In Equation (2), L, M, N, and As are the length of the column, bending
moment, axial force, and the total area of the longitudinal reinforcement in the i-th solution
candidate, respectively.

Then, a new solution candidate is created by using HM. The harmony vectors of the
new solution candidate are determined according to harmony memory considering rate
(HMCR) shown in Equation (3). Pitch adjustment rate (PAR) is used to modify the solution
range to search for a new solution around existing ones. PAR is used similarly to fret width
in the classical form of HS. With the following probabilities, each new harmony vector
of the solution candidate is either randomly generated from the search space or created
with random assignments between 0 and 1 values (rand()), as shown in Equation (3). k is a
randomly chosen existing solution defined by Equation (4). The equation for HMCR and
PAR used in this paper can be found in Appendix A. We have

Xi,new =

{
Xi,min + rand()(Xi,max − Xi,min) i f HMCR > r1

Xi,k + rand()PAR(Xi,max − Xi,min) i f HMCR ≤ r1
(3)

k = ceil(rand× HMS). (4)
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Newly generated HV is replaced with the vector, which has the worst solution (maxi-
mum CO2 emission). The iterations are repeated for the maximum number of iterations.
Thus, the solution matrix takes its final form.

2.2. Exploratory Data Analysis

The input data for the ML model were created by using the HS algorithm. By using
the HS algorithm, b, h, and As values that minimize the total CO2 emission were obtained
for each combination of M and N. Thus, a dataset of 4429 configurations has been generated
through HS. Descriptive statistics of features and outputs of the dataset are illustrated
in Table 3.

Table 3. Descriptive and statistical features of the inputs and outputs.

Variable Description Data Type Min Max Mean Standard
Deviation

Inputs:
M [kN·m] Bending moment float64 * 100.003 399.806 237.550 81.593
N [kN] Axial force float64 1000.298 399.929 2387.248 831.938
Outputs:
b [mm] Cross-section width float64 250 266.841 250.551 2.372
h [mm] Cross-section height float64 310.392 1000 646.801 202.609
As [mm2] Total reinforcement area float64 2127.295 7016.328 3615.663 1010.983

* float64: 64-bit double precision values [46].

The histogram and scatter plots of the dataset are shown in Figure 3. In the figure, M
stands for bending moment, N stands for axial force, b stands for section width, h stands
for section height, and As stands for reinforcement area. When the dataset generated by HS
algorithm in Figure 3 is examined, it is seen that the M, N, h, and As variables (normal-like)
are distributed. Moreover, b takes a value of about 250 mm. The optimization aims to
minimize the width and find an optimum value for the height. In that situation, the width
is always smaller than the optimum height. For that reason, all sections are under bending
on weak direction.
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By using the Seaborn [47] library of Python [48], the correlation matrix in Figure 4
was created. As the color becomes lighter, the positive correlation between the variables
increases. When the correlation matrix in Figure 4 is examined, it is shown that the
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correlation coefficients between bending moment (M) and axial force (N), column section
width (b), column section height (h), and reinforcement area (As) are positive and significant.
The variables with the highest correlation between them were N and h. However, when
a comparison is made between N and b and N and h, respectively, it is observed that the
axial force has a higher significance level than the bending moment. This means that the
axial force has a higher significance level than the bending moment in explaining b and h,
as mentioned in the scatter plot. The negative value indicated that there was a negative
correlation between the variables. As the value increased in the negative direction, the
correlation matrix increased in the negative direction. The negative correlation between N
and As and h and As indicates that while the value of one of the two variables increases, the
value of the other decreases. The variables with the lowest correlation between them were
b and As.
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2.3. Machine Learning Models

After preparing the dataset with the optimum dimensions, several ML models were
tested to predict b, h, As from M and N. The ability to learn in humans is one of their most
important features, and it make humans different from other living things and machines.
ML is a result of the desire of machines to learn like humans and make the best decisions.
The result of learning can be used for recognition, prediction, and classification [49]. With
the help of ML, more accurate and valid results can be obtained by making forward-looking
predictions and planning based on known data. In ML, the written algorithm makes an
inference by looking at the existing inputs. A key advantage of ML is that ML methods can
examine large amounts of data to find patterns that might otherwise be missed [50].

ML has four subfields, including supervised learning, unsupervised learning, semisu-
pervised learning, and reinforcement learning. Unsupervised learning is based on only
input data without labels [51]. Supervised learning requires learning a mapping between a
set of input variables and an output variable and applying this mapping to predict outputs
for data whose outputs are unknown [52]. In semisupervised learning, in addition to the
unlabeled data, some supervised information is provided to the algorithm, but this is not
necessary for all examples [53]. In reinforcement learning, an agent is placed in an initially
unknown environment and only receives evaluative feedback called reward [54].

In this study, the regression type of supervised method was used as the dependent
variables were continuous. Regression is a problem of predicting a real value. Examples of
regressions include predicting stock values or variations. In regression, the penalty for an
incorrect estimate typically depends on the size of the difference between the actual and
predicted values, unlike the classification problem, in which there is a closeness between
the various categories [55]. The dataset used in this study was a multioutput dataset (i.e.,
containing multiple dependent variables). For the prediction process, we have utilized
Python [48] as the language, Anaconda3 [56] as the environment, and Spyder 5.2.2 as the
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editor. In addition to basic Python libraries such as Numpy and Pandas, the scikit-learn
library [57] developed for ML applications was used for defining ML models.

ML algorithms used in the study will be explained under the title of foundational
methods are linear regression, decision tree regression, elastic net regression, K nearest
neighbors regression (KNN), and support vector regression (SVR). Other ML algorithms
used in the study will be explained under the title of ensemble methods including ran-
dom forest regression, gradient boosting regression, histogram-based gradient boosting
regression, and voting and stacking.

2.3.1. Foundational Methods

The linear regression algorithm is a method used to establish the relationship between
one or more independent variables and another dependent variable [58]. A decision tree
is an efficient tool for the solution of classification and regression problems [59]. Decision
tree regression recursively splits data into smaller parts by using a fast divide-and-conquer
greedy algorithm [60]. Decision tree regression uses the decision tree learning tree as the
base learner for the regression process. Elastic net is a regression method that does both
variable selection and regularization. Regularization serves to solve the problem of model
overfitting [61]. KNN regression, a nonparametric method, uses the information derived
from the observed data for prediction [62]. SVR is used to minimize the inherent risk by
minimizing an upper bound of the generalization error. This ensures that SVR has more
potential to generalize the input–output relationship for new input data [63].

2.3.2. Ensemble Methods

Random forests (RFs) are effective in prediction and random forest (RF) regression
is formed by growing trees depending on a random vector, such that the tree predictor
takes on numerical values [64]. In ML, “boosting” is a way to combine multiple simple
models into a single composite model. The term “gradient” in “gradient boosting” indicates
that the algorithm uses gradient descent to minimize loss. Gradient boosting is used for
regression, while gradient boosting is used to estimate a continuous value [65]. Histogram-
based gradient boosting regression is much faster than the gradient boosting regressor for
big datasets and has native support for missing values [66].

There are several ways to combine multiple learners to produce the final output in a
model-building scheme. An example of using output produced by all core learners given
input is voting and stacking [67]. These are ensemble methods.

With regard to the voting regressor, voting provides a basic way to classify ensem-
bles. The default scheme averages the probability or numerical estimates for classification
and regression, respectively [68]. Voting is used to get a linear combination of learners
(Figure 5) [67]. A voting ensemble increases the system’s performance. It can be utilized for
both classification and regression issues by integrating the results of numerous methods.
For regression problems, voting regressors (VRs) are the estimators of all models that are
averaged to obtain the final estimate [69]. The final estimate is less prone to error [70].

The idea in voting is to vote on models with high variance and low variance, ensuring
that the variance remains small after combination and the variance is reduced by averaging.
Even if the individual models are biased, decreasing the variance can balance this deviation
and reduce the error [67]. We have

yi = ∑j wjdji where wj ≥ 0, ∑j wj, (5)

where L is the number of independent voters.
In weighted sum, dji is the vote of model j for class Ci, and wj is the weight of its

vote. Simple voting is a special case that all voters have equal weight, namely, wj = 1/L.
For regression, the outputs of the baseline regressors can be combined by using simple
or weighted averages or medians. The median is more tolerant of noise than the average.
Another possible way might be to assess the accuracies of the learners on a separate
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validation set and utilize that information to compute the weights so that more weights
can be given to more accurate learners. These weights can also be learned from data [67].
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Each estimator follows the true regression function. If the discrepancy function is
treated as a random noise function added to the true regression function and these noise
functions are not related to the mean zero, averaging the individual estimates reduces the
mean noise to be mean-like. In this sense, voting is smoothing in the function space and
can be seen as a modifier of the real regression function, assuming smoothing [71].

With regard to the stacking regressor, in data mining the outputs of several different
models are combined to make decisions more reliable. Some ML techniques do this by
learning a collection of models and using them together. Stacking is one of these schemes.
It can often improve predictive performance over a single model. It is a general technique
applicable to classification and numerical estimation problems [64].

Stacking is a way of combining multiple models. Stacking tries to find which classifiers
are reliable by using another learning algorithm like metalearner to find the best way to
combine baseline learner results [68].

Stacking employs a metalearning method to learn how to best consolidate the multiple
classifiers from different ML techniques [72]. Stacking has the advantage of combining
the capabilities of several well-implemented methods for a regression or classification and
make more successful predictions than a single method in the ensemble [73].

Vote combines predictions while stacking learns how to combine predictions [68].
Voting’s problem is that it is not clear which classifier is reliable. Stacking combines classi-
fiers by using stacking for both classification and regression problems. The base classifier,
metalearner, and cross-validation fold number are determined by the user [68]. Unlike
stacking, metalevel learning does not occur when classifiers are combined with voting
schemes (such as plurality, probabilistic, or weighted voting). The voting scheme remains
the same for all different training sets and learning algorithms or base classifiers [72].

Stacked generalization is a technique by which the way in which the outputs of the
basic learners are combined is not necessarily linear but is learned through an associative
system f (|Φ), another learner whose Φ parameters are also trained (Figure 6) [67]. We have

y = f (d1, d2, . . . , dL|Φ). (6)

The combiner learns what the output is from a given combination of outputs. The training
data cannot be used to train the combiner function, as the primary learner may memorize
the training set. A relational system must really learn how base learners make mistakes.
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Stacking is a method of predicting and correcting for key base learners. Therefore, the
relational basis should be trained on unused data to train students [67].
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Stacking has no constraints on the combination function, and unlike voting, f ( ) can
be nonlinear [67]. The output of the basic learning dj defines a new L-dimensional space
where the output regression function is learned by the combined function [67].

In stacking, basic learners can complement each other through the different learning
algorithms [66]. When comparing voting and stacking, the trained rule in stacking is more
flexible but requires extra parameters and creates variance [67].

2.4. Multioutput Regressor (MOR)

A multioutput regression is also known as multitarget regression or multiresponse
regression [74]. Multioutput regressor uses multiple single-target regression models for
each output [75]. Multitarget model trees achieve comparable (sometimes better) accu-
racy, despite being much smaller than single-target model trees [76]. MOR refers to the
simultaneous prediction of multiple output variables [77]. Multioutput regression accord-
ingly delivers modelsthat are smaller and learn faster [78] with equally good predictive
power. Figure 7 represents an illustration of the underlying multiinput multioutput as a
scheme [79].
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For the data linear regression, decision tree regression, elastic net regression, K neigh-
bors regression, support vector regression, random forest regression, gradient boosting
regression, histogram-based gradient boosting regression, and voting and stacking are
selected. Since a model is required to predict all three values for each section, the multiple
output regressor of the scikit-learn library is used.

2.5. Performance Criterion

Model evaluation criteria are extremely important for comparing studies by using
different models or algorithms. It has been determined that various evaluation criteria are
used in studies (Bekdaş et al. [80]; Cakiroglu et al. [81]) in which the criteria of different
works of literature using ML methods are compared. As a result of the examination of
the aforementioned studies, square correlation coefficient (R2), root mean squared error
(RMSE), mean absolute error (MAE), and mean squared error (MSE) performance criteria
were used to evaluate the performance of the models in our study.

The performance of an ML model is evaluated through metrics. Frequently used
regression metrics include RMSE and MAE. An R2 score is also calculated to ascertain how
well the regression models approximate real data points.

The main evaluation criteria in this paper are R2 as Equation (5), RMSE as Equation (6),
MAE as Equation (7), and MSE as Equation (8). Among them, R2 is the variance in the
dependent variable accounted for by the specified model [82]. MSE is a measure of change
in evaluation data that represents the expectation between the predicted value and the
target value [83]. By taking the square root of the MSE value, the root mean squared error
(RMSE) is calculated. MAE gives equal weight to all errors, while RMSE penalizes variance.
This is because errors with a large absolute value are weighted more than errors with a small
absolute value [84]. RMSE is the average squared root error between actual observation and
model output [70]. The lower the measures, the more accurate the prediction results [85].
We have

R2 = 1− ∑n
i=1(yi − xi)

2

∑n
i=1(yi − xi)

2 (7)

RMSE =

√√√√ n

∑
i=1

(yi − xi)
2

n
(8)

MAE =
∑n

i=1|yi − xi|
n

(9)

MSE =
n

∑
i=1

(yi − xi)
2

n
, (10)

where xi represents the predicted value for the ith observation, yi represents the actual
value for the ith observation, xi represents the average of predicted values, and n represents
the number of observations [70].

Since it is important for the validity of the model to test a model created in ML with
new data that is not in the dataset, it is necessary to split the data set into training and
test sets. The purpose of using training data is to determine the best values of the control
parameters of the various ML algorithms used. The generalization power of the model
developed after the training phase, which expresses the real-life success, is measured with
the help of test data. For the ML methods used in the analysis, the training phase with the
data corresponding to 70% of the total 4429 data; the test phase was carried out with the
data corresponding to the remaining 30%. Test data must show high performance and at
the same time, the performance values of the ML model in the training and test data are
expected to be close to each other. Irregularities that may occur in the distribution of the
dataset during the splitting of the dataset as training and test sets may adversely affect the
performance of the ML model. This problem can be solved with the k-fold cross-validation
method developed by Stone [86] in 1974. If more data is needed, the data is split into
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training data and test data. The higher the classification accuracy of the training data, the
more efficiently the test data create tests. Figure 8 shows the flowchart for the creation and
evaluation of ML models.
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3. Results

In this study, predictions were made by using different ML algorithms for achieving
the ecofriendly optimum design of a rectangular RC column. Bending moment and axial
force features were used as inputs while reinforced rectangular column dimensions and the
total area of the longitudinal reinforcement features were taken as outputs to be predicted
with the MOR algorithm (Figure 9). The data used in the prediction was generated with
HS algorithm as explained before. The HS algorithm was implemented to determine the
optimal reinforced rectangular column dimensions and reinforcement area.
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The input dataset consisted of 4429 rows. Regression algorithms were used to pre-
dict optimal RC rectangular column dimensions and the total area of the longitudinal
reinforcement based on the model inputs.

Linear regression, decision tree regression, elastic net regression, K neighbors regres-
sion, support vector regression, random forest regression, gradient boosting regression,
histogram-based gradient boosting regression, voting, and stacking models were tested
during the study.

To ensure the validity of the models, the 10-fold cross-validation method was applied
in the model training process. In the 10-fold cross-validation, the dataset is divided into
10 parts. One of these parts is used as the test and the remaining nine parts are used as the
training dataset. This process is repeated 10 times. To ensure each of these parts, it is used
at least once as the test dataset. The accuracy of the model is then determined by averaging
the accuracy values for all folds of the test datasets. The regression metrics of the models
using different learning methods are shown in Table 4. The metrics used to assess models
were coefficient of determination (R), negative root mean squared error (NRMSE), negative
mean absolute error (NMAE) and negative mean squared error (NMSE).

Table 4. Performance results of the model.

Model R2 NRMSE NMAE NMSE

Foundational
Linear Regression 0.550 245.971 202.094 170,863.191

Decision Tree Regressor 0.996 29.915 16.465 2505.221
Elastic Net 0.546 243.435 204.567 166,992.364

K Neighbors Regressor 0.617 154.277 104.274 54,986.445
SVR 0.016 406.631 286.463 371,551.833

Ensemble
Random Forest Regressor 0.998 17.777 10.162 840.449

Hist. Gradient Boosting Regressor 0.997 20.212 12.456 1090.250
Gradient Boosting Regressor 0.995 33.965 22.829 3406.932

Voting
Combinations

Triple combinations
hgbr,rfr,gbr 0.998 19.921 12.868 1211.681
hgbr,gbr,rfr 0.998 20.408 13.191 1123.193
rfr,hgbr,gbr 0.998 20.565 13.153 1133.298
rfr,gbr,hgbr 0.998 19.952 12.862 1156.364
gbr,hgbr,rfr 0.998 20.170 13.120 1160.247
gbr,rfr,hgbr 0.998 19.849 13.196 1155.065

Quad combinations
lm,dtr,knr,svr 0.738 177.226 137.481 74,641.302
lm,dtr,ent,knr 0.790 148.851 120.047 59,889.432
lm,svr,rfr,hgbr 0.852 150.574 117.956 56,440.011
lm,rfr,hgbr,gbr 0.969 66.7835 53.160 12,304.705
dtr,lm,hgbr,ent 0.886 123.958 102.064 43,174.734
dtr,rfr,hgbr,gbr 0.998 19.608 12.668 1155.584
ent,rfr,hgbr,gbr 0.968 62.278 53.828 12,587.107
knr,rfr,hgbr,gbr 0.975 45.830 31.108 5089.051
svr,lm,hgbr,rfr 0.852 151.568 118.307 56,129.966
svr,dtr,ent,gbr 0.851 153.118 119.770 57,176.112
lm,rfr,knr,ent 0.790 149.798 120.438 60,492.775
lm,ent,knr,svr 0.786 232.016 184.786 135,143.241
lm,knr,svr,rfr 0.788 178.366 137.091 75,001.233
knr,svr,lm,dtr 0.785 179.431 137.158 75,382.651

knr,svr,ent,hgbr 0.787 177.944 137.468 74,679.626
gbr,hgbr,rfr,ent 0.969 66.271 53.565 12,658.159



Appl. Sci. 2023, 13, 4117 14 of 19

Table 4. Cont.

Model R2 NRMSE NMAE NMSE

Quintuple combinations
lm, dtr,ent,knr,svr 0.718 184.846 147.726 86,664.231
lm,ent,knr,dtr,svr 0.719 185.841 148.288 87,732.871
knr,lm,dtr,svr,ent 0.7196 186.463 148.442 86,791.598
Knr, dtr,svr,lm,ent 0.724 185.953 149.100 86,301.562
dtr,knr,lm,svr,ent 0.7208 187.130 146.722 85,077.065

dtr,svr, lm, ent,knr 0.720 184.505 147.026 86,665.337
ent,dtr,lm,knr,svr 0.722 186.811 148.981 86,171.159
ent,svr,dtr,lm,knr 0.719 185.300 146.752 86,947.917
svr,ent,dtr,lm,knr 0.719 184.548 147.960 87,283.171
svr,lm,ent,dtr,knr 0.718 185.733 148.987 86,629.887

Octal combinations
gbr,hgbr,rfr,ent,lm,dtr,knr,svr 0.888 119.027 93.466 35,191.334
hgbr,rfr,lm,dtr,knr,gbr,ent,svr 0.889 118.193 93.847 35,303.200
svr,knr,ent,dtr,rfr,gbr,lm,hgbr 0.888 118.854 94.387 35,349.299

Stacking
Final Estimator = Gradient Boosting Regressor

gbr,hgbr,rfr,ent 0.998 18.155 11.1406 876.063
lm,dtr,ent,knr,svr 0.996 30.292 18.912 2547.112

hgbr,gbr,rfr 0.998 17.952 11.102 881.042
gbr,hgbr,rfr,ent,lm,dtr,knr,svr 0.998 18.445 11.616 895.697

Final Estimator = Hist. Gradient Boosting Regressor
gbr,hgbr,rfr,ent 0.997 18.080 11.1449 866.437

lm,dtr,ent,knr,svr 0.996 30.388 17.929 2840.752
hgbr,gbr,rfr 0.997 19.249 11.326 1028.443

gbr,hgbr,rfr,ent,lm,dtr,knr,svr 0.997 18.023 11.443 1021.252
Final Estimator = Random Forest Regressor

gbr,hgbr,rfr,ent 0.998 17.589 11.173 864.799
lm,dtr,ent,knr,svr 0.996 30.151 18.697 2897.098

hgbr,gbr,rfr 0.998 18.106 11.824 939.706
gbr,hgbr,rfr,ent,lm,dtr,knr,svr 0.998 17.582 10.921 912.215

When the accuracy metrics of the regression algorithms were examined, it was shown
that random forest regressor provided the best results, followed by decision tree. The R2

value of random forest was 0.9984, the NRMSE value was 17.7774, the NMAE value was
10.1621, and the NMSE value was 840.4499. The closest result to these results was obtained
with the decision tree. The R2 value was 0.9984, the NRMSE value was 29.9151, the NMAE
value was 16.4650, and the NMSE value was 2505.2210. The best accuracy was achieved
with the random forest algorithm.

The decision tree model follows the random forest model in terms of overall accuracy
rate. Decision tree has the highest correlation coefficient determination coefficients (R2)
and lowest NRMSE, NMAE, and NMSE values among foundational models.

Among the different regression techniques, the worst result is obtained with the SVR
model. In the results obtained with the support vector regressor, the result is 0.0168 for
R2. When the NRMSE value is examined, the highest error value also belonged to support
vector regressor as 416.6314.

In the next stage, we tested different base estimator combinations in voting and stack-
ing algorithms. The highest R2 in voting models was achieved with the triple combination
of gradient boosting, histogram-based gradient boosting, and random forest. The lowest R2

in voting was obtained from the quintet combination of linear model, decision tree, elastic
net, K neighbors, and support vector.

In stacking, R2 was usually very high (more than 99%). The highest R2 in stacking was
achieved at octal combination of gradient boosting, histogram-based gradient boosting,
random forest, elastic net, linear model, decision tree, K neighbors, and support vector has
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been obtained. The lowest R2 in stacking was obtained from the quintuple combination of
linear model, decision tree, elastic net, K neighbors, and support vector.

Most of the modelers did well in predicting the outcomes. The average correlation
coefficients (R2) between actual values and estimates range from 0.71 to 0.99. In cases where
the RMSE value is close to 0, it is evident that the models predict very low error rates.

4. Discussion

Since RC columns are widely used, this increases CO2 emissions. The optimum design
of these structural elements must be done with a focus on minimizing the carbon footprint.
In this study, we focus on the design optimization of RC concrete columns with the focus
of minimizing the carbon footprint. A dataset of 4429 rows was produced by utilizing an
HS optimization algorithm that generates optimal b, h, and As values of an RC rectangular
column based on M and N values to conform to the optimal design objective. Next, we
trained a set of ML algorithms by utilizing this dataset and derived ML models to predict
optimal b, h, and As values based on input features M and N. The last stage of the study was
focused on a comparison of the prediction capability of ML models. Mostly, the coefficient
of determination (R2) is used for the evaluation/comparison of ML models. In this sense,
decision tree was found to be the most successful model (R2: 0.996) among the foundational
methods. Random forest was the most successful model among the ensemble methods
(R2: 0.9984). In addition, most boosting classifiers in the methods group performed well
(R2: 0.995–0.997). The highest accuracy (R2 > 0.99) in different combination types tested
for the voting technique was obtained in cases where ensemble methods (random forest,
gradient boosting, and histogram-based gradient boosting) combination. This high accuracy
is achieved as the result of the risk-reduction strategy applied by the voting approach. The
highest accuracy (R2: 0.96–0.99) in the stacking technique was obtained in cases where
ensemble methods were combined.

Among similar studies, Lavercombe et al. [87] aimed to predict the compressive
strength and embodied carbon of cement replacement concrete by using machine learning
algorithms (deep neural network (DNN), support vector regression (SVR), gradient boost-
ing regression (GBR), random forest (RF), k-nearest neighbors (KNN), and decision tree
regression (DTR)). GBR models achieved the best prediction of the compressive strength
and embodied carbon. The R2 of the GBR models for predicting the compressive strength
and embodied carbon were 0.946 and 0.999, respectively. When compared with [87], our
results are very similar in terms of performance metrics. Obtaining lower R2 values in
analyses with foundational methods confirmed that ensemble methods provide better
results for this prediction process.

In another similar effort, to estimate the environmental impacts of emissions from
multiple construction activities, Fang et al. [88] applied a random forest-based estimation
method. The R2 of the RF model used to estimate the construction phase carbon emissions
during the early design phase was 0.605. Our results demonstrate a significant improvement
in the accuracy of prediction (R2 = 0.99), as a study with a similar focus.

Since the main carbon emission from the concrete industry is due to the production
of Portland cement, which is its main binder, finally in another similar study, Mansouri
et al. [89] predicted the compressive strength of environmentally friendly concrete by using
hybrid machine learning based on 147 datasets. The coefficient of determination (R2) of
their study’s gradient boosting regressor model was 0.9528 while our study’s coefficient
of determination of the gradient boosting regressor model was 0.995, which indicates a
significant improvement for a study with a similar focus.

5. Conclusions

One of the most important factors regarding environmental pollution is the greenhouse
effect caused by the release of toxic gases such as CO2 into the atmosphere. These types
of gases eventually deplete the ozone layer, increase the air temperature, and thus pose a
threat to living things. CO2 causes increasing damage to the world and all living things
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day by day. The control of CO2 in concrete production is important for environmental
protection. Environmentally friendly design has become even more important, especially
in recent years. Based on the efficient use of ML, this research aimed to contribute to the
minimization of the CO2 emissions related to concrete production. In the study, columns
under uniaxial bending and axial load were examined. Cross-section and reinforcement
optimization were made according to the minimum CO2 emission objective function
depending on the bending moment direction and axial load. The bending axis has been
taken as similar in all cases for comparison purposes.

First, a data-generation process is performed through HS, with a focus on finding
optimal values of design variables (such as dimensions and reinforcement area in the cross-
section) based on bending moment (M) and axial force (N). Following this, several machine
learning (foundational and ensemble) models were trained with the dataset generated by
HS, with a focus on the development of a model to predict the optimal design variables
based on M and N values. The ML techniques are data-driven and the relatively large size of
the dataset generated by using the HS optimization algorithm (i.e., 4429 rows) contributed
to the accuracy of the prediction models. Thus, a more efficient machine learning process
was carried out with this large amount of data.

Foundational methods, ensemble methods and additional voting and stacking mod-
els with various combinations (of base learners such as linear regression, decision tree
regression, elastic net regression, K neighbors regression, support vector regression, ran-
dom forest regression, gradient boosting regression, and histogram-based regression) were
tested during the study. Random forest regression, gradient boosting regression, histogram-
based regression, and voting and stacking provided a significantly good performance on
this dataset with an R2 score greater than 0.99. The models with the worst performance
were the ones trained by the SVR method.

The coefficient of determination (R2) in the random forest model was found as 0.9984.
This finding indicates a perfect relationship between the ground truth and the estimated
values. High prediction accuracies of ML models confirmed that ML can be utilized as an
efficient method and tool for structural engineering for ecofriendly design.

The experiments demonstrated that optimization and ML models can be combined
through a manual pipeline, and this pipeline can be used as an efficient medium by which
to develop predictive models in support of ecofriendly RC column design. Our future
studies will focus on automation of this optimization and ML modeling pipeline.
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Appendix A

In Table A1, i is the iteration number and max(i) is the maximum number of iterations.

Table A1. HS Algorithm Parameters.

Harmony Memory Considering Rate (HMCR) HMCR = 0.5(1 − i/(max(i)))

Pitch Adjustment Rate (PAR) PAR = 0.05(1 − i/(max(i)))



Appl. Sci. 2023, 13, 4117 17 of 19

References
1. Bera, S. A Linear Optimization Model for Reducing CO2 Emission from Power Plants. In Proceedings of the International

Conference on Industrial Engineering and Operations Management, Bangalore, India, 16–18 August 2021.
2. Past Eight Years Confirmed to be the Eight Warmest on Record. Available online: https://public.wmo.int/en/media/press-

release/past-eight-years-confirmed-be-eight-warmest-record (accessed on 31 January 2023).
3. Provisional State of the Global Climate in 2022. Available online: https://public.wmo.int/en/our-mandate/climate/wmo-

statement-state-of-global-climate (accessed on 31 January 2023).
4. NASA Says 2022 Fifth Warmest Year on Record, Warming Trend Continues. Available online: https://www.nasa.gov/press-

release/nasa-says-2022-fifth-warmest-year-on-record-warming-trend-continues (accessed on 31 January 2023).
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28. Arama, Z.A.; Kayabekir, A.E.; Bekdaş, G.; Geem, Z.W. CO2 and cost optimization of reinforced concrete cantilever soldier piles: A

parametric study with harmony search algorithm. Sustainability 2020, 12, 5906. [CrossRef]
29. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68.

[CrossRef]
30. The MathWorks, Matlab R2022a; The MathWorks: Natick, MA, USA, 2022.
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