
Citation: Yang, X.; Zhuang, C.; Feng,

W.; Yang, Z.; Wang, Q. FPGA

Implementation of a Deep Learning

Acceleration Core Architecture for

Image Target Detection. Appl. Sci.

2023, 13, 4144. https://doi.org/

10.3390/app13074144

Academic Editor: Juan A.

Gómez-Pulido

Received: 9 March 2023

Revised: 20 March 2023

Accepted: 21 March 2023

Published: 24 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

FPGA Implementation of a Deep Learning Acceleration Core
Architecture for Image Target Detection
Xu Yang 1 , Chen Zhuang 2,* , Wenquan Feng 1, Zhe Yang 1 and Qiang Wang 1

1 School of Electronic & Information Engineering, Beihang University, Beijing 100080, China
2 Hefei Innovation Research Institute of Beihang University, Hefei 230012, China
* Correspondence: zhuangchen0214@buaa.edu.cn

Abstract: Due to the flexibility and ease of deployment of Field Programmable Gate Arrays (FPGA),
more and more studies have been conducted on developing and optimizing target detection algo-
rithms based on Convolutional Neural Networks (CNN) models using FPGAs. Still, these studies
focus on improving the performance of the core algorithm and optimizing hardware structure, with
few studies focusing on the unified architecture design and corresponding optimization techniques
for the algorithm model, resulting in inefficient overall model performance. The essential reason
is that these studies do not address arithmetic power, speed, and resource consistency. In order to
solve this problem, we propose a deep learning acceleration core architecture based on FPGAs, which
is designed for target detection algorithms with CNN models, using multi-channel parallelization
of CNN network models to improve the arithmetic power, using scheduling tasks and intensive
computation pipelining to meet the algorithm’s data bandwidth requirements and unifying the
speed and area of the orchestrated computation matrix to save hardware resources. The proposed
framework achieves 14 Frames Per Second (FPS) inference performance of the TinyYolo model at
5 Giga Operations Per Second (GOPS) with 30% higher running clock frequency, 2–4 times higher
arithmetic power, and 28% higher Digital Signal Processing (DSP) resource utilization efficiency using
less than 25% of FPGA resource usage.

Keywords: target detection; TinyYolo; FPGA; acceleration core; parallel acceleration; pipeline;
resource optimization

1. Introduction

Target detection is a popular research field in computer vision, widely used in aerial
photography, intelligent surveillance, industrial inspection, and other fields. Compared
with traditional algorithms, deep learning methods have the advantages of high accu-
racy and robustness for target detection in complex scenarios. Deep learning detection
algorithms such as You Only Look Once (YOLO) [1], Faster Region Convolutional Neural
Networks (Faster R-CNN) [2] have shown higher accuracy and robustness than traditional
algorithms for target detection tasks in visible and Synthetic Aperture Radar (SAR) images.
YOLO, which stands for “You Only Look Once”, treats the object detection tasks as a
regression problem by taking the entire map as input to the network and using a CNN
structure to achieve end-to-end target detection. The YOLO network consists of several
convolutional layers and fully connected layers. The number of convolutional layers is
24, followed by two fully connected layers. The convolutional layer is used to extract
the features of the original image, and the fully connected layer is used to predict the
probability and coordinates of the output. Among them, the alternating 1 × 1 convolutional
layers are used to reduce the feature map space size of the previous layers. The final output
of the YOLO network is still a 7 × 7 × 30 tensor.

Sun et al. propose an “Auto-T-YOLO” network model based on YOLOv4, which
improves the accuracy of ship targets [3]. Sun et al. propose a novel YOLO-based arbitrary

Appl. Sci. 2023, 13, 4144. https://doi.org/10.3390/app13074144 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074144
https://doi.org/10.3390/app13074144
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3304-3686
https://orcid.org/0000-0001-5707-6805
https://doi.org/10.3390/app13074144
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074144?type=check_update&version=2

Appl. Sci. 2023, 13, 4144 2 of 26

directional SAR ship detector with Bi-directional Feature Fusion and Angle Classification
(BiFA-YOLO). Comparative experiments show that the method has better robustness and
adaptability [4]. Hu et al. propose a novel method for small ship detection based on the
basic YOLO network structure, which achieves state-of-the-art performance [5]. Li et al.
present a complete YOLO-based ship detection method using an improved YOLOv5s
model, providing a practical reference for large-scale ship detection [6]. Ye et al. propose a
Combined Attention Augmented YOLO (CAA-YOLO) algorithm to alleviate the recogni-
tion challenges of extremely multi-scale ships due to the severe lack of texture details [7].
Lu et al. propose an aerial image vehicle detection method based on the YOLO algorithm.
Experiments show that the training model performs well on unknown aerial images, es-
pecially for small objects and rotating objects [8]. Al-Batat et al. utilize a YOLO-based
end-to-end generic pipeline for vehicle detection without prior knowledge or additional
steps in inference and achieves average recognition accuracy of 90.3% [9]. Zhang et al.
propose a method for vehicle detection in different traffic scenarios based on an improved
YOLOv5 network to reduce the false detection rate of vehicle targets [10]. Liu et al. de-
velop a unique detection method based on YOLOv3 for small objects in the Unmanned
Aerial Vehicle (UAV) view. Experiments demonstrate that the performance of small object
detection is significantly improved [11]. Li et al. propose an improved Residual YOLO
(RES-YOLO) detection algorithm to solve the difficulties of automatic vehicle recognition.
The experimental results show that the proposed algorithm can automatically recognize
multiple vehicle targets and significantly reduce the missing and error rates [12]. Chen et al.
improve the Faster R-CNN for the bridge detection tasks of SAR images by combining
a multi-resolution attention network and region-binding network [13]. Li et al. combine
YOLOv4 with a point cloud algorithm to determine concrete cracks in bridges [14]. Du et al.
propose a target detection algorithm BE-YOLOv5S based on YOLO, which meets the needs
of bridge structure damage detection [15]. Lin et al. apply the YOLOv3 algorithm to the
spacecraft inspection task and improve the detection accuracy [16]. The network inference
capability of the above methods is based on a desktop Graphics Processing Unit (GPU),
which cannot guarantee real-time performance on embedded platforms. Therefore, these
methods often need to be accelerated by FPGAs, Digital Signal Processors (DSPs), and
Neural Processor Units (NPUs).

Madasamy et al. propose a deep YOLOv3 approach based on an embedded multi-
object detection and tracking system [17]. Jiang et al. designed a UAV Thermal Infrared
(TIR) object detection framework for images and videos based on a YOLO model with CNN
architecture. The highest Mean of Average Precision (mAP) is 88.69% [18]. Artamonov
et al. propose a YOLO approach to solve the traffic sign classification problem on the
mobile platform NVIDIA Jetson, which allows high-performance computing at low power
consumption [19]. Emin et al. propose a portable Advanced Driver Assistance System
(ADAS) based on the YOLOv5 algorithm for real-time traffic signs, vehicles, and pedestrians
detection. The system has excellent detection speed and accuracy for real-time road object
detection on a mobile platform [20]. Feng et al. propose a novel embedded YOLO model
to obtain real-time and high-accuracy performance on embedded devices. The embedded
YOLO model has only 3.53M parameters and can reach an average processing time of
155.1 FPS [21]. The network inference of the above approaches is based on mobile GPUs,
such as Nvidia’s TX2 with Nvidia Pascal architecture GPU. Although these GPUs are
robust and easy to deploy but still face the challenges of power, cost, and optimization.
In contrast, FPGAs have many advantages regarding unified design and optimization
capabilities of arithmetic power, speed, and resources for CNN. The FPGA can call and
optimize hardware resources at the trigger level, which can precisely adjust the algorithm
structure at the trigger and logic gate level to ensure the precise control of arithmetic power
and resources. The rich clock network and routing resources inside the FPGA can be
designed for speed and hardware resource consistency to ensure timing convergence and
resource coordination.

Appl. Sci. 2023, 13, 4144 3 of 26

Currently, FPGAs are increasingly being used to implement CNN acceleration. Zhang
et al. propose an ARM+FPGA architecture on Xilinx ZCU102 FPGA for YOLOv2 and
TinyYOLOv2 on Microsoft Common Objects in Context (COCO) and Visual Object Classes
(VOC) 2007, respectively, [22]. To address the YOLO algorithms’ high processing accuracy
and speed requirements, Babu et al. propose an algorithm of YOLOv4-based on a Xilinx
ZYNQ-7000 system for real-time object detection [23]. Using a hybrid architecture of ARM
and FPGA, Xiong et al. deploy the YOLO model on FPGA to improve the efficiency of
target identification and detection with low resource and power consumption [24]. Chen et
al. propose RS (Row stationery) data streams to reduce memory bandwidth requirements
by improving local storage utilization. AlexNet using RS data streams improves convo-
lutional layer performance by 1.4 times compared to existing data streams [25]. Liu et al.
propose a parallel framework including task, loop, and operation layers. The speedups of
AlexNet and Visual Geometry Group (VGG) were 6.96 times and 4.79 times, respectively,
compared with Intel i7-4790K CPU on Xilinx VC709 platform [26]. Peeman et al. propose a
memory-driven acceleration core with a hierarchical memory design without increasing
the bandwidth requirement, which reduces the resource consumption of FPGAs by 13
times [27]. Zhang et al. propose the Caffeine architecture, which achieves 365 GOPS on the
Xilinx KU060 platform [28]. Shen et al. divide FPGA resources into multiple subprocessors
according to the convolutional structure to improve the computational speed of CNN by
optimizing resource allocation and parallelism [29].

TinyYOLO is a lightweight and simplified version of YOLOv2. It is widely used
in real-time target detection due to its advantages, such as fast speed and low memory
consumption. On the VOC 2007 dataset, the mAP of TinyYOLO is 57.1, less accurate than
YOLOv2, but the frame rate reaches 207 FPS, about three times that of YOLOv2. Meanwhile,
the number of weight parameters is about 1/3 of YOLOv2.Because the application scenario
of our proposed architecture is mainly for the real-time detection of bridges in UAV aerial
images, the algorithm’s real-time performance and power consumption are the main
directions of our design and optimization. TinyYOLO achieves several times the detection
speed of other lightweight algorithms, which is suitable for some real-time detection
scenarios that do not require high accuracy. At the same time, since TinyYOLO has the
network structure of a typical CNN algorithm, it is convenient to fine-tune the proposed
architecture to apply it to other CNN algorithms. We also chose the TinyYOLO algorithm
to implement our proposed framework. Therefore, we choose the TinyYOLO algorithm as
the prototype for the framework implementation.In this paper, we propose an FPGA-based
deep learning acceleration core architecture to overcome the problem of large computational
and parametric volumes and low real-time performance of deep learning-based detection
algorithms deployed on embedded devices.

As shown in Figure 1, The architecture consists of three parts; the first part is the video
capture channel, which is used to pre-process the input video stream, such as decoding
and de-framing, and store the raw video data into off-chip storage, the second part is the
deep learning acceleration core, which is used for neural network inference and consists of
a data loading kernel, a computational kernel, and a data unloading kernel, the third part
is the scheduling system, which is used to schedule the components within the acceleration
core and also runs the embedded operating system. The second and third parts use the
Advanced eXtensible Interface Memory Map (AXI-MM) bus for data interaction, while
the components within the acceleration core cache small amounts of data through the
on-chip Block Random Access Memory (BRAM) and use the BRAM bus or registers for
internal data interaction. The data in the acceleration core is first loaded into the data load
buffer through the data loading kernel. The scheduling state machine in the computation
kernel transfers the data to the computation matrix. After a round of computation, the data
offloading kernel writes the data in the data storage buffer back to off-chip storage through
the AXI-MM bus.

Appl. Sci. 2023, 13, 4144 4 of 26

Figure 1. The architecture consists of three parts, the first part is the video capture channel, the
second part is the deep learning acceleration core, the third part is the scheduling system.

In brief, the main contributions of our proposed architecture are as follows:

1. We propose a parallel acceleration scheme for the three leading operators in CNN: con-
volutional layer, pooling layer, and fully connected layer. We improve the inference
speed of CNN by a parallel acceleration in three dimensions: input channel paral-
lelism, output channel parallelism, and pixel parallelism. We adopt a data address
remapping strategy to match the bandwidth needs of parallel computation of FPGAs.

2. We propose an architectural optimization strategy of the deep learning acceleration
core to improve the efficiency of data stream transfer. The task scheduling is designed
in a pipelined manner. Data accessing and parallel computing are carried out simulta-
neously to avoid data flow operations affecting the computational efficiency of the
parallel acceleration core.

3. The three-level data cache structure of off-chip storage, on-chip storage, and registers
is proposed. The on-chip storage is sliced to provide sufficient data access bandwidth
for parallel computing units. The implementation strategy of the computation matrix
across clock domains is adopted to reduce the DSP resource occupation rate to half of
the original one and improve the utilization of DSP resources on FPGAs.

2. Proposed Method

In order to solve the problem of consistency of arithmetic power, speed, and resources,
we make full use of the characteristics of FPGAs in the proposed architecture and adopt a
comprehensive optimization method of computation, timing, and resources for the CNN
model, using multi-channel parallelization to improve the arithmetic power, using schedul-
ing tasks and intensive computation pipelining to meet the data bandwidth requirements
of the algorithm, and uniformly scheduling the speed and area of the calculation matrix to
save hardware resources, the full view of the study is shown in Figure 2.

2.1. Parallel Acceleration of Computational Layers in CNN
2.1.1. Parallel Acceleration of Convolutional Layers

The convolutional layer is the most computationally intensive for a general CNN. For
an input size of 224 × 224 × 3, convolution with a 7 × 7 × 3 × 64 convolutional kernel is
approximately equivalent to the number of input parameters multiplied by the number of
convolutional kernel parameters; however, for batch, activation, and pooling layers, the
computation is only approximately the size of the input size itself, which is a reduction
in computation by thousands of times compared to convolutional layers. Therefore, the
design of the acceleration core for CNN needs to focus on the acceleration scheme of the
convolutional layer.

Appl. Sci. 2023, 13, 4144 5 of 26

Figure 2. A full view of our proposed method.

As shown in Figure 3, taking the example of a convolution operation between a 4 × 4 × 3
input tensor and a 2 × 2 × 3 × 2 convolution kernel, the parallel acceleration of the
convolution layer is divided into three main dimensions: input channel parallelism, output
channel parallelism, and pixel parallelism.

Figure 3. The parallel acceleration of the convolution layer is divided into three main dimensions:
input channel parallelism, output channel parallelism, and pixel parallelism.

Appl. Sci. 2023, 13, 4144 6 of 26

Input channel parallelism is the parallelization of the product of the input tensor and
the convolution kernel. The results are added together to obtain a pixel of the output
channels. Input channel parallelism calculates the channel vector of one pixel of the input
tensor and one pixel of the convolution kernel in a dot product operation each time and
finally adds up the results. The hardware implementation of this operation requires the
logic to access all channels of the input vector and the convolution kernel simultaneously,
so the bit width of the computational kernel needs to be adjusted accordingly. For example,
for a kernel with eight input channels in parallel, a single data transfer from the kernel
requires 8× the data bit width. If the number of input channels is less than 8, the rest of
the bit widths are complemented by 0. Suppose the number of input channels exceeds
8; only eight are counted in each computation. The computation is divided into multiple
computations, complementing the last by 0.

Output channel parallelism refers to the simultaneous convolution of an input tensor
with multiple convolution kernels to obtain multiple channels of the output tensor. This
operation does not increase the bandwidth requirement of the computational kernel for the
input data. However, it requires the computational kernel to be able to access the values of
the convolution kernel on multiple output channels at the same time.

Pixel parallelism means that the elements of the input tensor at different positions are
convolved with the convolution kernel. In contrast, the elements of the output tensor at
different positions are obtained in parallel. Take the example of a 4 × 4 × 3 input tensor
and a 2 × 2 × 3 × 2 convolution kernel. Assuming the top-left corner of the input tensor
is 1, the pixel values in the first row of the output tensor are obtained by simultaneously
computing the convolution of the pixels in positions 1, 2, and 3 with the convolution
kernel. This operation requires simultaneous access to the element values of the input
channel at different pixel points. It requires a hardware design that increases the access
bandwidth of the computational kernel. For example, in a parallel scheme with a pixel
parallelism of 4, the input tensor is divided into different data buffer groups by column. The
number of pixels in parallel is complemented by 0. As a result, the pixel values read by the
computational kernel are located in different buffer groups during the entire convolution
operation, thus increasing the access bandwidth of the computational kernel.

As shown in Figure 4, the similar scheme used is eight-input parallelism, eight-
output parallelism, and four-pixel parallelism. The computational kernel can compute
256 multiplication and addition operations in a single clock, i.e., 512 operations. The
computational kernel is intended to run at a minimum of 300 M, giving a computational
power of 153.6 GOPS. The accelerator will be able to run the 2 GOPS detection model
TinyYOLO in real-time.

Figure 4. Input channels are 3. Input parallelism is 8. Output parallelism is 8. Pixel parallelism is 4.
Internal data flow diagram of the Computational kernel.

Appl. Sci. 2023, 13, 4144 7 of 26

2.1.2. Parallel Acceleration of Pooling Layer and Fully Connected Layer

Compared to the convolutional layer, the pooling layer does not need to be loaded with
parameters. The computational effort and bandwidth of the accessed data are significantly
reduced, so only a reasonable parallel computation needs to be planned. The TinyYolo
model used in this paper contains only MaxPooling of size 2 × 2, so the parallel loop is
designed as follows:

1. The mapping strategy of the input data remains unchanged compared to that of the
convolutional layer, using input channel parallelism plus pixel parallelism so that the
pooling layer computational kernel accesses eight input channels and four pixels at
the same time.

2. The pooling layer differs from the convolutional layer in that the convolutional layer
needs to iterate through the length and width of the convolutional kernel on a pixel.
In contrast, the pooling layer must only iterate through each pixel once. Therefore,
after reading 4 pixels of data in this paper, we change rows and read 4 pixels in the
second row. After two reads of 2 × 4 pixels, the maximum value in the channel is
taken, and the data of the two output pixels is obtained. The specific pooling layer
parallelism method is shown in Figure 5.

Figure 5. Pooling layer parallel computing method.

The input data of the fully connected layer is 1 × 1 in length and width. However, the
number of input channels is generally more significant. The number of parameters needed
for computation is multiplied by the number of output channels, making the number of
parameters much larger than that of the convolutional layer. In this paper, we adopt a
similar approach to the partial loading of convolutional layers by partially loading the
parameters of the fully connected layer and loading only one or a few output channels at a
time to reduce the need for on-chip BRAM. The computational scheduling kernel transfers
the input data and weights to the external computation matrix in parallel. The FPGA’s
on-chip DSP performs the multiplication operation between them and then returns them to
the computational scheduling kernel for accumulation.

2.1.3. Data Remapping for the Convolutional Layer Computation Kernel

In order to match the high parallelism of the computational kernel and to avoid the
underutilization of the computational parallelism caused by the lack of access memory
bandwidth, this paper remapped the data and parameters. It changed the data arrangement
to ensure that the computational kernel can read the data for computation at the same time.
This paper uses an architecture with eight parallel inputs, eight parallel outputs, and four
parallel pixels. The data input required for the convolution kernel is the parallel input
number 8 × pixel parallel number 4, the parameter input required is the output parallel
number 8, the quantization of both data and parameter is a 16bit fixed point, the actual
data remapping scheme used is shown in Figure 6.

Appl. Sci. 2023, 13, 4144 8 of 26

Figure 6. Computational kernel data remapping.

In this paper, eight 16-bit data are combined into one word (WORD), which is used to
temporarily store data and parameters with the same BRAM bit width and word length of
128 bits so that the computational kernel can access eight data in parallel on the channel at
the same time. If the number of input channels is greater than 8, the data of subsequent
input channels are stored incrementally on the address. If the number of channels is not a
multiple of 8, the high bits are complemented by 0 to simplify the data reading operation.
A pixel stores all input channel data for output channel 1, then all input channel data for
output channel 2, and so on. The computational kernel can access the parameter data of
eight output channels simultaneously. The pixel parallel data access to the input data is
implemented as in Figure 7.

Figure 7. Computational kernel input data remapping.

In addition to channel remapping, the input data is also remapped within rows
according to the number of pixels in parallel and stored in different BRAMs. In this paper,
for example, the data in each row is grouped by the remainder of 4, i.e., column 0, column
4, etc. column 1, column 5, etc., and so on. If the number of columns is not a multiple of 4,
simplify the data reading operation by a multiple of 4. By storing the data in groups 1 to 4
in BRAMs, the convolutional computational kernel has four access ports and can access the
data in four BRAMs simultaneously.

Appl. Sci. 2023, 13, 4144 9 of 26

The computation unit must perform a Width × Height × Depth × Channel calculation
for each input pixel within a single convolutional layer calculation. In this paper, the
computational kernel takes the data of 8 input channels of 4 pixels, multiplies and adds the
data of 8 input channels of the first pixel of the convolution kernel, then iterates through the
input channels, then shifts the whole input data window right by one pixel, multiplies and
adds the data of the second pixel of the convolution kernel until the result of one output
channel is obtained, and finally iterates through the output channels, after this round of
computation, we get the result of the convolution of the 4 pixels in all output channels.

Considering the TinyYolo model, the batch layer and the Rectified Linear Unit (ReLU)
layer are both after the convolutional layer; this paper integrates the batch layer and the
activation layer with the convolutional layer in the processing flow so that, in practice, only
the results can be manipulated before the output data of the convolutional kernel, avoiding
reloading data and parameters and reducing data access requirements.

Due to a large number of parameters and the large amount of data in a single con-
volutional layer, the BRAM memory size may be exceeded, and the direct reading of the
Dynamic Random Access Memory (DRAM) may cause high read latency and reduce the
efficiency of the computation. Therefore, only a part of the data or parameters can be
loaded simultaneously. Then another part can be loaded after one calculation until the
convolutional layer is completed. The data within the layer is divided according to the
pixel location of the data, and each part of the data is divided by a multiple of the total
length and width to reduce the number of cycles.

Parallel acceleration of computational layers in CNN decomposes the computational
process of CNN models in three dimensions: input channel, output channel, and pixel.
Parallel acceleration of these dimensions significantly improves the efficiency of the CNN al-
gorithm. Traditional methods focus on the computational level of convolutional operations
and do not improve enough on the structural level of the algorithm.

2.2. Computational Scheduling Kernel Pipeline Design
2.2.1. Convolutional Layer, Pooling, Fully Connected Layer Pipelining Methods

This paper uses High-Level Synthesis Tool (HLS) pipeline and unroll methods to
constrain the loops within the scheduling kernel, the software code is synthesized into
pipelined hardware logic to improve computational efficiency.

As shown in Figure 8, the pipelined approach shortens the initial interval of hardware
execution so that a common computational logic between loops can implement different
computational steps within a loop. An unpipelined HLS logic has an initial interval equal
to the number of clocks, which takes three clocks to execute a round of computation.
The second loop starts three clocks from the start of the first loop, so the initial interval
is 3. The total time taken to complete the function is reduced from 9 clocks to 5 clocks,
resulting in a significant increase in computational efficiency. The HLS unroll constraint
allows operations within a loop to be executed separately so that operations with different
loop counts can be performed simultaneously. Unroll requires the HLS to instantiate a
finite number of hardware logic units for computation, the upper bound of the loop to be
parallelized must be fixed and known at the time of synthesis. Therefore, in this paper, the
number of parallelisms is set to a constant for each of the three levels of parallelism, input
channel parallelism, output channel parallelism, and pixel parallelism, so that the HLS can
perform the computation correctly in parallel. Compared to pipelining, parallelization takes
less time but consumes three times more resources and requires no logical dependencies
between loops. For example, if the second loop needs to use the result of the first loop, only
pipelined logic can be used, not parallelized logic. All loops within the pipeline bound
loop are parallelized, using parallel logic to implement the computation within the loop.

In order to improve the overall efficiency of the acceleration core, the convolutional,
pooling, and fully connected layers are all designed with independent pipelines at an
initial interval of 1 to maximize the use of parallel computation units and data throughput

Appl. Sci. 2023, 13, 4144 10 of 26

bandwidth. The loop logic of the convolutional layer is the most complex of the three
computations, and its loop nesting is shown in Algorithm 1.

Figure 8. Top: pipeline constraint effect. Bottom: unroll constraint effect.

Algorithm 1: Convolutional layer loop nesting algorithm

1: for each input_row_iter ∈ [0, INPUT_ROW_ROUND] do
2: // loop level 1
3: // the traversal of the number of rows of the input tensor
4: for each input_col_iter ∈ [0, INPUT_COL_ROUND] do
5: // loop level 2
6: // the traversal of the number of columns of the input tensor
7: for each ocp_round ∈ [0, OCP_ROUND] do
8: // loop level 3
9: // the traversal of the number of the output channels

10: for each iter_row ∈ [0, KERNEL_WH] do
11: // loop level 4
12: // the traversal of the convolution kernel tensor rows
13: for each iter_col ∈ [0, KERNEL_WH] do
14: // loop level 5
15: // the traversal of the convolution kernel tensor columns
16: for each icp_round ∈ [0, ICP_ROUND] do
17: // loop level 6
18: // the traversal of the convolution kernel input channels
19: #pragma HLS pipeline
20: for each iter_pp ∈ [0, PP] do
21: // loop level 7
22: // loops of pixel parallelism
23: for each iter_ocp ∈ [0, OCP] do
24: // loop level 8
25: // loops of output channel parallelism
26: for each iter_icp ∈ [0, ICP] do
27: // loop level 9
28: // loops of input channel parallelism
29: end for
30: end for
31: end for
32: end for
33: end for
34: end for
35: end for
36: end for
37: end for

Appl. Sci. 2023, 13, 4144 11 of 26

Loop level 1 represents the traversal of the number of rows of the input tensor. Loop
level 2 represents the traversal of the number of columns of the input tensor. For example,
suppose the number of parallel pixels is 4. In that case, the loop level means that after
each round of convolution, the pointer is shifted 4 pixels to the right until the traversal of a
row is completed. Loop level 3 represents the traversal of the number of output channels.
Loop levels 4 and 5 represent the traversal of the convolution kernel tensor rows and
columns, respectively. Loop level 6 represents the traversal of the convolution kernel input
channels. Loops 7, 8, and 9 are loops of pixel parallelism, input channel parallelism, and
output channel parallelism, respectively. Loops 1–6 use the pipeline constraint, which
means that these loops will be combined into one big loop, and the upper limit of the big
loop is the product of the upper limit of all small loops. Loops 7–9 below the pipeline
constraint are constrained to be unrolled loops. Within a convolutional operation, the
computation scheduling kernel iterates through all the elements of the output tensor by
loops 7–9, computes one of the element values by loops 4–6, and unrolls the convolutional
operation in parallel by loops 1–3 to improve the computational efficiency and finally
obtain the result of a whole convolutional layer.

As shown in Algorithm 2, the pooling layer does not need to consider input channel
parallelism compared to the convolutional layer since the number of input channels is the
same as the number of output channels. Only the output channels need to be parallelized.
Loop level 1 represents the traversal of the input tensor row direction. Loop level 2
represents the traversal of the input tensor column direction. Loop level 3 is the traversal
of the output channels. Loop level 4 is the traversal of the pooling range in the row
direction. Loop 5 is the traversal of the pooling range in the column direction. Loops 6 and
7 are for pixel and output channel parallelism, respectively. Loops 1 and 2 in the pooling
layer traverse the output tensor, and each element of the output tensor corresponds to the
maximum value of the pooling range in the input tensor; loops 4 and 5 are the traversal of
the pooling range, and loops 6 and 7 are parallel acceleration.

As shown in Algorithm 3, Considering TinyYolo’s 17th fully connected layer, with an
input tensor of 1 × 1 × 50,176 and an output tensor of 1 × 1 × 256, the fully connected
layer parameter of 1 × 1 × 50,176 × 256 is the most significant layer in the entire network.
Suppose the output channels are parallelized like the convolutional layer, the fully con-
nected layer must load at least 50,176 times the number of output channels in parallel with
16-bit fixed-point parameters, which takes up a lot of on-chip BRAM storage resources.
Therefore, in this paper, the fully connected layer includes only two dimensions: input
channel and pixel parallelism. The loop level 1 of the fully connected layer traverses the
input tensor channels. Loop level 2 traverses the output tensor channels. Loop levels 3 and
4 are pixel parallelism and input channel parallelism, respectively.

Appl. Sci. 2023, 13, 4144 12 of 26

Algorithm 2: Pooling layer loop nesting algorithm

1: for each input_row_iter ∈ [0, INPUT_ROW_ROUND] do
2: // loop level 1
3: // traversal of the input tensor row direction
4: for each input_col_iter ∈ [0, INPUT_COL_ROUND] do
5: // loop level 2
6: // traversal of the input tensor column direction
7: for each ocp_round ∈ [0, OCP_ROUND] do
8: // loop level 3
9: // traversal of the output channels

10: for each iter_row ∈ [0, KERNEL_WH] do
11: // loop level 4
12: // traversal of the pooling range in the row direction
13: for each iter_col ∈ [0, KERNEL_WH] do
14: // loop level 5
15: // traversal of the pooling range in the column direction
16: #pragma HLS pipeline
17: for each iter_pp ∈ [0, PP] do
18: // loop level 6
19: // pixel parallelism
20: for each iter_ocp ∈ [0, OCP] do
21: // loop level 7
22: // output channel parallelism
23: end for
24: end for
25: end for
26: end for
27: end for
28: end for
29: end for

Algorithm 3: Fully connected layer loop nesting algorithm

1: for each input_d_iter ∈ [0, INPUT_ROW_ROUND] do
2: // loop level 1
3: // traverses the input tensor channels
4: for each output_d ∈ [0, OUTPUT_D] do
5: // loop level 2
6: // traverses the output tensor channels
7: #pragma HLS pipeline
8: for each iter_pp ∈ [0, PP] do
9: // loop level 3

10: // pixel parallelism
11: for each iter_icp ∈ [0, ICP] do
12: // loop level 4
13: // input channel parallelism
14: end for
15: end for
16: end for
17: end for

Appl. Sci. 2023, 13, 4144 13 of 26

2.2.2. On-Chip Storage Resource Bandwidth Expansion

In the acceleration core, the convolutional scheduler needs to read a number of the
input channel parallelism × output channel parallelism parameters per clock, which are
preloaded by the parameter loading kernel through the AXI bus into the BRAM. In response,
the Xilinx HLS tool provides an array_partition constraint to break the BRAM into smaller
sub-BRAM cells with more interfaces to guarantee access bandwidth. The specific role of
the array_partition constraint is shown in Figure 9.

Figure 9. Array_partition constraint effect.

A BRAM capable of storing nine words is instantiated into three BRAMs capable of
storing three words after a memory decomposition constraint of factor 3, which expands
the access bandwidth of the memory to three times the original one. In this paper, since the
convolutional scheduling kernel needs to access the input channel parallelism × output
channel parallelism, and the BRAM bit width is 16 bits × input channel parallelism, the
storage decomposition factor is equal to the output channel parallelism number 8, thus
decomposing one BRAM into 8 in parallel on the output channel so that the scheduling
kernel can access all the required parameters simultaneously.

2.2.3. Partial Loading and Partial Calculation of Data within Layers

Due to the limited on-chip BRAM storage space, the data and parameters cannot be si-
multaneously loaded into the data storage area. If the data is accessed directly from DRAM,
it will greatly slow down the operation efficiency of the acceleration core. Considering that
the output of the convolutional layer and the fully connected layer is independent, the
acceleration core designed in this paper adopts a partial loading and partial computation
strategy, splitting the independent data and only computing the loaded data in each com-
putational kernel inference, then storing the output data in the DRAM. The output data
is then stored in the DRAM at the corresponding location to reassemble the output into a
complete computational layer.

On-chip storage includes the parameter buffers, the data loading buffers, and the data
storage buffers, which must be treated separately. If the storage space is too large, it will
take up too many BRAM resources on the FPGA, affecting the potential of the acceleration
core to scale parallelism for more computationally intensive models; if the storage space is
too small, the on-chip BRAM will not be able to load the input data required at a time. This

Appl. Sci. 2023, 13, 4144 14 of 26

situation would increase the bandwidth requirements of the acceleration core and increase
unnecessary parameter loading time. Considering that the input tensor size of the FC17
layer in the TinyYolo network is 1 × 1 × 50,176, which requires the most significant data
load buffer with a depth of 6272 at 128 bit width, this paper sets the data loading buffer
bits in depth to 2048 × 4. In addition, the data storage buffer is 128 bits in width and 8192
bits in depth, and the parameter storage is 128 bits in width and 2048 bits in depth. This
paper shows the partial loading strategy for each layer of the TinyYolo network inference
in Table 1.

Table 1. TinyYolo loading strategy for each layer part.

Input Tensor/Output
Tensor

Partial Loading Input
Tensor/ Output Tensor

Occupy the Data
Loading Area Depth

Occupy Data Storage
Area Depth

Occupy the Parameter
Storage Area Depth

CONV1 448 × 448 × 3/
448 × 448 × 16

56 × 56 × 3/
56 × 56 × 16

784 6272 18

POOL2 448 × 448 × 16/
224 × 224 × 16

56 × 56 × 16/
28 × 28 × 16

1568 1568 0

CONV3 224 × 224 × 16/
224 × 224 × 32

28 × 28 × 32/
28 × 28 × 32

784 3136 72

POOL4 224 × 224 × 32/
112 × 112 × 32

28 × 28 × 32/
14 × 14 × 32

784 784 0

CONV5 112 × 112 × 32/
112 × 112 × 64

28 × 28 × 32/
28 × 28 × 64

784 6272 288

POOL6 112 × 112 × 64/
56 × 56 × 64

28 × 28 × 64/
14 × 14 × 64

1568 1568 0

CONV7 56 × 56 × 64/
56 × 56 × 128

14 × 14 × 64/
14 × 14 × 128

392 3136 1152

POOL8 56 × 56 × 128/
28 × 28 × 128

14 × 14 × 128/
7 × 7 × 128

784 784 0

CONV9 28 × 28 × 128/
28 × 28 × 256

14 × 14 × 128/
14 × 14 × 64

784 1568 1152

POOL10 28 × 28 × 256/
14 × 14 × 256

14 × 14 × 256/
7 × 7 × 256

1568 1568 0

CONV11 14 × 14 × 256/
14 × 14 × 512

14 × 14 × 256/
14 × 14 × 32

1568 784 1152

POOL12 14 × 14 × 512/
7 × 7 × 512

2 × 2 × 512/
1 × 1 × 512

128 64 0

CONV13 7 × 7 × 512/
7 × 7 × 1024

7 × 7 × 512/
7 × 7 × 16

896 98 1152

CONV14 7 × 7 × 1024/
7 × 7 × 1024

7 × 7 × 1024/
7 × 7 × 8

1792 49 1152

CONV15 7 × 7 × 1024/
7 × 7 × 1024

7 × 7 × 1024/
7 × 7 × 8

1792 49 1152

FC17 1 × 1 × 50,176/
1 × 1 × 256

1 × 1 × 50,176/
1 × 1 × 2

1568 1 1568

FC18 1 × 1 × 256/
1 × 1 × 4096

1 × 1 × 256/
1 × 1 × 512

8 64 2048

FC19 1 × 1 × 4096/
1 × 1 × 1470

1 × 1 × 4096/
1 × 1 × 32

128 4 2048

As seen from Table 1, the parameter buffers, the data loading buffers, and the data
storage buffers were not overflowed during the inference process of the whole TinyYolo
network by the partial loading and partial computing strategy, and the BRAM resource
consumption of the whole acceleration core is kept within a reasonable range.

In order to make the access bandwidth of data meet the arithmetic power requirement
of the CNN algorithm after being accelerated, the access method of data must be specially
designed, for which we propose three methods: data streaming, BRAM expansion, and
partial calculation, which can significantly improve the matching requirement of data
and arithmetic power so that the CNN algorithm can execute almost at total capacity.
Traditional methods have yet to be studied in this area.

Appl. Sci. 2023, 13, 4144 15 of 26

2.3. Bus Access and DSP Resource Optimization Strategies
2.3.1. Bus Data Bandwidth Utilisation Optimization

The AXI bus is an on-chip bus protocol defined by ARM. The AXI4 bus used in
this document includes AXI4-LITE, AXI4-STREAM, and AXI4-MM. AXI4-MM is an AXI4
protocol used for efficient data interaction with memory cells. In this paper, the data
loading kernel, data unloading kernel, and parameter loading kernel all use the AXI4-MM
protocol to interact with DRAM efficiently.

In order to utilize the data transfer bandwidth of the AXI-MM bus as much as possible
and increase the data throughput, this paper optimizes the utilization of the AXI-MM bus
in three ways:

1. Using Burst mode increases data access and reduces the number of clocks occupied
by handshaking and transferring.

2. Using Outstanding mode to increase the number of reads and write, which AXI host
can launch before blocking.

3. Increasing the pipeline length to avoid the pipeline blocking caused by the AXI-MM
read and write instructions not returning.

The burst mode of AXI-MM can reduce the number of reads or write commands
initiated by a data access to DRAM by packaging multiple accesses on a single memory
address into multiple accesses to data on consecutive addresses. In this paper, since
the AXI-MM interfaces are all connected to the same Processing System (PS) HP (High
Performance) interface through the AXI interconnect. Burst mode reduces the number
of conflicts between the kernels. The timing diagram of the AXI burst mode is shown in
Figure 10.

The outstanding mode gives the AXI-MM host a data buffer, which allows the host
to make several requests without blocking. The outstanding mode data buffer length is
the outstanding number × the maximum burst length × the word length. An excessive
outstanding number can lead to crowding too many on-chip storage resources. Consider-
ing the storage resource consumption and AXI bus utilization, this paper’s outstanding
number is 8. The timing diagram for multiple consecutive read commands from the host in
outstanding mode is shown in Figure 11.

ACLK

ARBURST 0b01 0b01

ARADDR 0 0

ARLEN 0 0

ARSIZE 0b0100b010

ARREADY

ARVALID

RDATA D[3:0] D[7:4]D11:8] D[15:12]

RRESP

RLAST

RREADY

RVALID

Figure 10. AXI burst mode timing diagram in read mode.

Appl. Sci. 2023, 13, 4144 16 of 26

ACLK

ARBURST 0 0

ARADDR 0x0F 0x03

ARLEN 0b010 0b010

ARSIZE 0b01 0b01

ARREADY

ARVALID

RDATA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

RRESP 0

RLAST

RREADY

RVALID

Figure 11. AXI outstanding mode timing diagram in read mode.

In the AXI-MM bus access, the slave often needs several or even dozens of clocks to
respond to the host’s request. If the length of the pipeline is insufficient, it will reduce the
bus utilization and the overall operational efficiency of the module. Therefore, in this paper,
the modules interacting with the AXI-MM bus have extended the length of the pipeline by
128 clocks in order to wait for the AXI-MM slave to return data and avoid the host entering
a blocking state.

By combining the above three strategies for optimizing the AXI bus utilization, the
acceleration core designed in this paper achieves more than 85% utilization of the AXI
bus; taking the FC17 as an example, the number of parameters to be loaded in this layer is
50,176 × 256, the theoretical limit time is 5.35 ms, the actual time is 5.90 ms, compared with
the time of more than 10 ms before optimization. The AXI bus runs much more efficiently
and avoids memory access limitations to accelerate the efficiency of the computation.

2.3.2. Cross-Clock Domain Design of DSP Calculation Matrix

The logic unit for data transfer on the AXI bus often runs at a maximum of 300 MHz. In
contrast, the DSP48E core for computing the convolutional layer and fully connected layer
multiplication can run at 600 MHz. Therefore, this paper uses a cross-clock domain design
with a logic clock of 300 MHz and a DSP48E clock of 600 MHz, so that two multiplication
calculations can be multiplexed with a single DSP48E unit. In this paper, with eight
input channels in parallel, eight output channels in parallel, and 4 pixels in parallel,
256 fixed-point multiplications are computed per clock, while only 128 DSP48E units are
consumed. In order to simplify the data transfer between the 300 MHz base frequency
clock and the 600 MHz dual frequency clock, the two clocks are generated using the same
50 MHz input clock through Mixed-Mode Clock Manager (MMCM) or Phase Lock Loop
(PLL), and the two clocks are phase aligned. The two clocks generated this way ensure
that the frequencies are strictly duplexed. The rising edges are aligned so that the data
transferred between them can be steadily transferred by simply passing through the register
cache controlled by the two clock domains, eliminating the need for an asynchronous FIFO,
saving resources, and simplifying Placing and Routing (PR). Figure 12 shows a diagram of
two clocks generated using the same PLL.

Figure 12. Clock domain generation block diagram.

The four operands to be multiplied are first buffered in the 300 MHz clock domain
using a D flip-flop and then selected by a 600 MHz clock, with the first two operands
input at the odd 600 MHz clock and the last two operands input at the even clock. The
output of the DSP48E is buffered by two D flip-flops clocked, and the output of the two

Appl. Sci. 2023, 13, 4144 17 of 26

buffered flip-flops is tapped in the 300 MHz clock domain to obtain a stable output with no
sub-stability and convergence in timing. The above architecture works on a pipeline with
an initial interval of 1. Each fundamental clock can use one DSP48E to calculate fixed-point
multiplication twice, which realizes the time-division multiplexing of DSP48E resources
and reduces resource consumption. Cross-clock domain DSP48E unit is shown in Figure 13.

Figure 13. DSP48E Cross-Clock Domain Design.

A select signal in the above cross-clock domain design is identical to the 300 MHz
clock in the waveform. However, the clock signal is buffered by Global Buffer (BUFG) into
the clock network within the FPGA, which provides a stable clock signal for the global
flip-flop with low jitter and skew. Since there is no direct path from the clock network to the
logic input, the 300 MHz clock cannot be used as the select signal. We use a clock follower
to generate the select signal. The diagram of the clock follower and the output waveform
of each point are shown in Figure 14.

CLK1 300MHz

CLK2 600MHz

DFF1 Q

DFF2 Q

DFF3 Q

Figure 14. Diagram of clock follower and the output waveform of each point of the clock follower.

The DSP resources inside the FPGA are limited. Our proposed method takes advantage
of the strategy of doubling the computational efficiency in the high-speed clock domain
through a time-for-space approach to achieve the same computational efficiency with fewer
DSPs and specifically optimizes the access for the AXI bus operation timing so that the bus
can work almost at total capacity. Compared with the traditional method, we use fewer
DSP resources to do the same work or the same DSP resources to do twice the work.

3. Results and Discussion

To verify the generality and effectiveness of our deep learning acceleration core ar-
chitecture, we used the Xilinx ZU15EG chip to build a heterogeneous video processing
system. The PL side of the ZU15EG chip includes 26.2 Mb of on-chip storage resources, 3528
DSP48E2, and four external DDR4 chips on the PS side, with a maximum theoretical trans-
fer bandwidth of 38.4 GB/s. This paper’s data transfer bus is connected to the same AXI4
HP interface at 300 MHz, 128 bit width, and 4.8 GB/s theoretical maximum bandwidth.

Appl. Sci. 2023, 13, 4144 18 of 26

Therefore, the on-chip DDR bandwidth is sufficient to support the data transfer bandwidth
required for neural network computing. In addition, the input data for this paper comes
from a real-time input video stream, so the hardware platform is equipped with a camera
link chip for accessing the real-time video stream. The input video is processed by the
interface chip, waiting for the acceleration core to infer. The detected results are sent from
the PS to the PL side, overlaying the detected frame on the output video and displaying it
through the video interface. The hardware we use is shown in Figure 15. We have used
this hardware platform to implement and validate the deep learning acceleration core.

Figure 15. Video processing heterogeneous system board.

In order to objectively evaluate the ability of our proposed method to handle the
consistency problem of arithmetic power, speed, and resources, we make the following
assumptions.

1. Our proposed method will not be interrupted by unordered scheduling instructions
during network inference tasks, which include parameter updates, recovery after
video stream interruptions, and interruption exception handling.

2. The automatic optimization function of the synthesis tool is turned off since we have
already performed manual optimization specifically for the proposed method. The
secondary optimization of the automatic tool will affect the results.

3. When selecting other methods proposed in the literature for comparison, we try to
select FPGA chips of the same architecture system because the internal structure of
chips of different architectures is different, which will affect the evaluation of the
effect of resource optimization.

In Section 3.1, we illustrate the hardware implementation results and timing of the
convolutional and fully connected layer pipelines in the computational scheduling kernel,
list the hardware resources consumed by the computational scheduling kernel, and discuss
the resource usage. In Section 3.2, we list the hardware resources consumed by the deep
learning acceleration core and discuss the resource usage. In Section 3.3, we illustrate the
actual performance of the deep learning acceleration core, compare it cross-sectionally with
other similar lightweight acceleration cores, and discuss our method’s advantages.

3.1. Computational Scheduling Kernel Implementation and Validation

The computational scheduling kernel designed in this paper includes the computation
of the convolutional layer, the pooling layer, and the fully connected layer, where the
convolutional layer contains four pipelines: Pipeline 1 is the loading pipeline for the
parameter data when the number of output channels is equal to the output tensor channels
during partial computation, Pipeline 2 is the loading pipeline for the parameter data
when the number of output channels is not equal to the output tensor channels during
partial computation, Pipeline 3 is the loading pipeline for the bias data in the batch layer,

Appl. Sci. 2023, 13, 4144 19 of 26

Pipeline 4 is the main pipeline for reading the data stored on the chip and pushing it to
the computation matrix to get the result of the convolutional layer. All four pipelines have
an initial interval of 1 to maximize computational efficiency and data throughput. The
pipeline length of pipeline 2 is 173 because when the number of output channels of the
partial computation is not equal to the number of output channels of the output tensor,
the address of the parameter load is not continuous and needs to be cut off into several
burst transfers, so the pipeline is lengthened to avoid blocking caused by the untimely
return of AXI-MM data, which reduces the efficiency of data reading. The pooling layer has
the most straightforward pipeline since it does not require loading parameters, with only
one main pipeline for computation and the same initial interval of 1. The fully connected
layer contains three pipelines: pipeline one is the fully connected multiplication parameter
loading pipeline, pipeline 2 is the fully connected bias parameter loading pipeline, and
pipeline 3 is the main pipeline for computing the entire connection. Pipeline experiment
results are shown in Figure 16.

(a)

(b)

(c)
Figure 16. Pipeline experiment results: (a) Convolutional layer pipeline synthesis result. (b) Fully
connected layer pipeline synthesis results. (c) Computational scheduling kernel pipeline diagram.

The computational scheduling kernel runs at 300 MHz with 3.33 ns per clock cycle.
With the HLS pipeline design, the most extended single-cycle instruction takes 2.91 ns,
with a timing margin of 0.42 ns, which meets the setup hold time for FPGA operation. The
overall resource consumption of the computational scheduling kernel is shown in Table 2.

Table 2. Computational scheduling kernel resource consumption.

LUT FF DSP BRAM

Computational scheduling kernel as a whole 47739 33316 54 69.5
Convolutional Computing Pipeline 36847 25028 41 0
Pooling Computing pipeline 2400 1864 9 0
Fully Connected Computing Pipeline 7169 4756 4 0
ZU15EG on-chip resources 341280 682560 3528 744
Computational scheduling kernel Occupancy 13.9% 4.8% 1.5% 9.3%

The convolutional layer consumes the most lookup table and trigger resources, mainly
because it needs to compute the accumulation of three dimensions in parallel. In contrast,
the fully connected layer only needs to compute the accumulation of two dimensions,

Appl. Sci. 2023, 13, 4144 20 of 26

input channel parallelism and pixel parallelism. At the same time, the convolutional
layer computes data access addresses and loop counts most frequently, which requires
partial multiplication, such as calculating the data address of a pixel in the input tensor or
calculating the total number of current loops. Hence, the convolutional layer consumes the
most DSP resources of the three. Finally, the computational scheduling kernel stores the
multiplication and bias parameters for the convolution and fully connected layers in an
internal BRAM, with 8 channels, 2048 depth, 128 bit width memory for the multiplication
parameters and a 256 depth, 128 bit width memory for the bias parameters, which can
support the computation of a maximum 2048 output channel tensor. The parameters are
stored in BRAM36k, a 36 bit width, 1024 depth memory cell, consuming 69 BRAM36k and
1 BRAM18k.

3.2. Deep Learning Acceleration Core Implementation and Verification

This paper uses HLS to implement the calculation scheduling and data access core
and Verilog HDL to implement the DSP computation matrix across the clock domain. The
data loading kernel loads data from the DDR through the AXI bus and stores it in the
local cache through the BRAM bus. The computation scheduler kernel interacts with the
four BRAM local stores through the BRAM bus and sends the output data to the output
cache through the AXI bus. The data storage kernel reads the data from the output cache
and stores it in the DDR through the AXI bus. The PS section sends commands to each
sub-module through the AXI4-LITE bus to control its operating status and inform the data
storage address. The overall resource consumption of the deep learning acceleration core is
shown in Table 3.

Table 3. Deep learning acceleration core overall resource consumption.

LUT FF DSP BRAM

Computational scheduling kernel 47739 33316 54 69.5
Data Storage kernel 5563 5868 21 8
Data Loading kernel 2619 3428 6 7.5
Internal Storage 732 100 8 0
DSP Calculation Matrix 4994 31139 128 0
Acceleration core overall 61634 73761 209 165
Overall Occupancy 18.0% 10.8% 5.9% 22.1%

Regarding lookup tables, the computation scheduling kernel consumes a large amount
of data, mainly because its function is to remap the data addresses, output the data to
the computation matrix, and compute the accumulation of the convolutional layers. The
concurrency of the convolutional accumulation is the largest, requiring the sum of 256
fixed points in a pipeline, which consumes many lookup tables. On the one hand, the
computation scheduling kernel needs to store many intermediate results. On the other
hand, the cross-clock domain processing of the DSP computation matrix needs to use
different clock domain triggers to avoid timing problems, which require many trigger cache
data. In addition, the DSP consumption of this part is fixed and will not increase due to the
parallelism of data computation. In addition to the intermediate data storage, the burst and
outstanding modes of the AXI-MM bus require on-chip storage space to cache the data to
be sent or received on the bus, which consumes some of the BRAM. In general, the overall
resource consumption of the acceleration core architecture is less than 25% of the ZU15EG
platform used. In addition to the deep learning acceleration core, the hardware platform
also requires a video input and output path. With the addition of these external modules,
the overall resource consumption of the hardware platform is shown in Figure 17.

Appl. Sci. 2023, 13, 4144 21 of 26

Figure 17. Overall resource consumption of the hardware platform.

3.3. Performance Analysis of Deep Learning Acceleration Core Inference

The model for acceleration core inference designed in this paper is TinyYolo; the
input image is a three-channel image with a resolution of 448 × 448. The output is a
1 × 1470 tensor that includes information on confidence, target frame position, and size.
Nineteen layers are included in the TinyYolo model, of which nine layers are convolutional,
six layers are 2 × 2 pooling layers, three layers are fully connected, and one layer is an
unfolding operation. The total computational volume of the inference is 2.5 GOPS, the
number of parameters is 20 M, the parameter data volume is 40 MB for 16 bit quantization,
the intermediate result data volume is 11 M, and the data volume is 22 MB for 16 bit
quantization. The input and output tensor size, number of parameters, and data volume of
each layer are shown in Table 4.

Table 4. TinyYolo parameters for each layer part.

Layer Input Tensor Output Tensor Number of
Parameters Data Volume Calculated Volume

Input0 448 × 448 × 3 0 1605632 0
CONV1 448 × 448 × 3 448 × 448 × 16 1152 3211264 231211008
POOL2 448 × 448 × 16 224 × 224 × 16 0 802816 3211264
CONV3 224 × 224 × 16 224 × 224 × 32 4608 1605632 231211008
POOL4 224 × 224 × 32 112 × 112 × 32 0 401408 1605632
CONV5 112 × 112 × 32 112 × 112 × 64 18432 802816 231211008
POOL6 112 × 112 × 64 56 × 56 × 64 0 200704 802816
CONV7 56 × 56 × 64 56 × 56 × 128 73728 401408 231211008
POOL8 56 × 56 × 128 28 × 28 × 128 0 100352 401408
CONV9 28 × 28 × 128 28 × 28 × 256 294912 200704 231211008
POOL10 28 × 28 × 256 14 × 14 × 256 0 50176 200704
CONV11 14 × 14 × 256 14 × 14 × 512 1179648 100352 231211008
POOL12 14 × 14 × 512 7 × 7 × 512 0 25088 100352
CONV13 7 × 7 × 512 7 × 7 × 1024 4718592 50176 231211008
CONV14 7 × 7 × 1024 7 × 7 × 1024 9437182 50176 462422016
CONV15 7 × 7 × 1024 7 × 7 × 1024 9437182 50176 462422016
FLAT16 7 × 7 × 1024 1 × 1 × 50,176 0 50176 0

FC17 1 × 1 × 50,176 1 × 1 × 256 12845056 256 12845056
FC18 1 × 1 × 256 1 × 1 × 4096 1048576 4096 1048576
FC19 1 × 1 × 4096 1 × 1 × 1470 6021120 1470 6021120
Total 45080192 9664702 2569558016

The computational and parametric quantities of the convolutional layer in TinyYolo’s
inference are large, so parallel optimization of the convolutional layer is the most important.
The acceleration core designed in this paper computes the convolutional layer in parallel
with input channel parallel number 8, output channel parallel number 8, and pixel parallel
number 4. The computation time of the convolutional layer is shown in Table 5.

The task scheduling pipelining strategy used in this paper is to carry out data loading
and storage, and computation simultaneously to avoid data loading and storage affecting

Appl. Sci. 2023, 13, 4144 22 of 26

the parallel computation efficiency. However, the parameter loading part is inside the
computation scheduling kernel. The scheduling kernel cannot compute while loading
parameters, so the actual computation time of the convolutional layer is equal to the sum
of the parameter loading time and the computation time. The other computational layer in
TinyYolo that takes longer to infer, the fully connected layer, has a more significant number
of parameters making the parameter loading time longer, and the computational time
required to infer TinyYolo once is shown in Table 6.

Table 5. Calculation time for convolutional layers.

Layer
Data

Loading
Time

Data Storage
Time

Parameter
Loading

Time

Calculation
Time Actual Time

CONV1 0.67 ms 1.33 ms 0.00 ms 3.01 ms 3.01 ms
CONV3 0.33 ms 0.67 ms 0.00 ms 3.01 ms 3.01 ms
CONV5 0.16 ms 0.33 ms 0.00 ms 3.01 ms 3.01 ms
CONV7 0.08 ms 0.16 ms 0.03 ms 3.01 ms 3.14 ms
CONV9 0.04 ms 0.08 ms 0.12 ms 3.01 ms 3.13 ms
CONV11 0.02 ms 0.04 ms 0.49 ms 3.01 ms 3.50 ms
CONV13 0.01 ms 0.02 ms 1.96 ms 3.01 ms 4.97 ms
CONV14 0.02 ms 0.02 ms 3.93 ms 6.02 ms 9.95 ms
CONV15 0.02 ms 0.02 ms 3.93 ms 6.02 ms 9.95 ms

Total 1.35 ms 2.67 ms 10.46 ms 33.11 ms 43.57 ms

Table 6. Calculation time for fully connected layers.

Layer
Data

Loading
Time

Data Storage
Time

Parameter
Loading

Time

Calculation
Time Actual Time

FC17 0.02 ms 0.00 ms 5.35 ms 1.33 ms 6.68 ms
FC18 0.00 ms 0.00 ms 0.44 ms 0.11 ms 0.55 ms
FC19 0.00 ms 0.00 ms 2.50 ms 0.63 ms 3.13 ms
Total 0.02 ms 0.00 8.29 ms 2.07 ms 10.36 ms

In addition to the inference time consumed by the convolutional and fully connected
layers, the total inference time also includes the data access time of the pooling layer and
one input image normalization operation. The acceleration core inference designed in
this paper takes 71 ms for the whole network at one time, with an FPS of about 14, which
reaches the real-time standard. Considering that in order to optimize the stability of the
target detection frame, tracking is generally added after the detection result, a detection
result of 14 FPS is sufficient to provide the tracker with a real-time detection result as a
tracking target. The theoretical arithmetic power of the acceleration core in this paper is
150 GOPS, and 2.5 G times multiplication and addition are required to infer a TinyYolo, for
a total of 5 GOPS of computation, with a theoretical maximum frame rate of 30 FPS and
actual computational resource utilization of about 47%. Compared to other designs that
use FPGAs to build deep learning acceleration cores, the performance comparison of the
acceleration cores in this paper is shown in Table 7.

In this paper, the DSP doubling strategy is adopted. The bus frequency and DSP
running frequency are several times higher than other designs, so the acceleration core
designed in this paper can guarantee higher computational performance while minimizing
DSP consumption and significantly improving the utilization of DSP resources. In Table 7,
although different literature uses different hardware platforms and implements other
algorithmic models, the parameter Energy Efficiency allows normalizing the performance
of different algorithms within the same evaluation system. Our proposed architecture can
provide an arithmetic performance of 28.98 GOPS per unit power, which is 20.34% higher
than the 2nd place.

Appl. Sci. 2023, 13, 4144 23 of 26

Table 7. Comparison of different literature methods.

Method Literature
[30]

Literature
[31]

Literature
[29]

Literature
[32]

Literature
[33]

Literature
[34]

Literature
[35] This Paper

Hardware Platform VC707 VC707 Stratix-V
GSD8 XC7Z020 XC7Z045 XC7Z045 XC7Z045 ZU15EG

Clock frequency 100 MHz 100 MHz 120 MHz 214 MHz 225 MHz 200 MHz 125 MHz 300 MHz

DSP/Quantity 2800 2800 1963 220 576 900 900 209

Performance/GOPS 85.2 61.62 72.4 84.3 45.13 107 124 153.60

DSP efficiency/
(GOPS/Quantity) 0.030 0.022 0.037 0.38 0.078 0.12 0.14 0.734

Power 7.6 W 6.6 W 10.4 W 3.5 W 5.7 W 9.6 W 4.8 W 5.3 W

Energy Efficiency/
(GOPS/W) 11.2 9.336 6.96 24.08 7.91 11.14 25.8 28.98

Model KNN LSTM CNN CNN VGG16 U-Net VGG TinyYOLO

Here we have to point out that since our proposed method utilizes a lot of hardware
design tricks to optimize specifically for CNN-based models and FPGA structures, it has a
good migration capability for algorithms of CNN-based models such as VGG, Multi-scale
Residual Aggregation Network (MSRANet), GoogleNet, Inception, Faster R-CNN, etc. For
other models, such as Recurrent Neural Networks (RNN) or Generative Adversarial Nets
(GAN) models, there is only some optimization capability at the FPGA structure level.
Further, since the performance gains in arithmetic power and speed of our proposed deep
learning acceleration core rely on highly streamlined and parallelized processing of the
hardware, this requires predictable behavior of the inference network because if a random
operation interrupts this predictable behavior, such as a parameter update or a bus transfer
failure, then all streamlined work has to be restarted, which often results in massive latency.
For real-time tasks, this latency is often intolerable.

The test result is shown in Figure 18.

Figure 18. The actual output of the bridge detection in the aerial video using TinyYolo inference with
the acceleration core.

Appl. Sci. 2023, 13, 4144 24 of 26

4. Conclusions

This paper proposes an FPGA-based deep learning acceleration core architecture for
image target detection, which designs a parallel acceleration scheme to address the problem
of arithmetic power, speed, and resource consistency. In this paper, the computational
scheduling kernel is streamlined so that the computation unit can perform one parallel
computation per clock without waiting for data pre-processing. In order to provide suf-
ficient data access bandwidth for parallel computing units, this paper also designs and
implements a three-level data cache architecture of off-chip storage, on-chip storage, and
registers, which provides high bandwidth data streams for parallel computing units by slic-
ing on-chip storage to avoid data stream operations affecting the computational efficiency
of parallel acceleration cores. Using bus accessing and DSP resource optimization strategies
improves bus bandwidth utilization and saves computational resources, reducing the DSP
resource to half the original. This paper uses the HLS high-level synthesis tool for deep
learning acceleration core development on FPGAs and achieves 14 FPS inference for the
TinyYolo model with 5 GOPS computation using less than 25% of the FPGA resource. The
acceleration core can run at 30% higher clock frequency, 2–4 times higher arithmetic power,
and 28% more efficient DSP resource utilization than other methods. The limitation of this
paper is that our proposed parallel acceleration algorithm is only suitable for CNN-based
models, and further research on acceleration algorithms for RNN-based or GAN-based
models should be conducted in the future.

Author Contributions: Conceptualization, X.Y. and C.Z.; methodology, W.F.; software, X.Y.; valida-
tion, X.Y., Z.Y. and Q.W.; formal analysis, C.Z.; investigation, X.Y.; resources, X.Y.; data curation, X.Y.;
writing—original draft preparation, X.Y.; writing—review and editing, X.Y. and C.Z.; visualization,
X.Y.; supervision, C.Z.; project administration, W.F. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China under grant
number 61901015.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge graduate student Xu Yang for his contribution to
literature search and collation.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

FPGA Field Programmable Gate Array
CNN Convolutional Neural Networks
DSP Digital Signal Processing
YOLO You Only Look Once
Faster R-CNN Faster Region Convolutional Neural Networks
SAR Synthetic Aperture Radar
mAP Mean of Average Precision
AP Average Precision
AR Average Recall
UAV Unmanned Aerial Vehicle
RES-YOLO Residual YOLO
GPU Graphics Processing Unit
DSPs Digital Signal Processors
NPUs Neural Processor Units
FPS frames per second

Appl. Sci. 2023, 13, 4144 25 of 26

GOPS Giga Operations Per Second
COCO Microsoft Common Objects in Context
VOC Visual Object Classes
RS Row stationery
VGG Visual Geometry Group
HLS High-Level Synthesis Tool
AXI-MM Advanced eXtensible Interface Memory Map
BRAM Block Random Access Memory
DRAM Dynamic Random Access Memory
HDL Hardware Description Language
MCMM Mixed Mode Clock Manager
PLL Phase Lock Loop
PR Placing and Routing
BUFG Global Buffer
FIFO First Input First Output
DDR Double Data Rate
HP High Performance
PS Processing System
KNN k-Nearest Neighbor
RNN Recurrent Neural Networks
GAN Generative Adversarial Nets
MSRANet Multi-scale Residual Aggregation Network
LSTM Long Short-Term Memory

References
1. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
2. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural

Inf. Process. Syst. 2015, 28, 91 [CrossRef] [PubMed]
3. Sun, B.; Wang, X.; Oad, A.; Pervez, A.; Dong, F. Automatic Ship Object Detection Model Based on YOLOv4 with Transformer

Mechanism in Remote Sensing Images. Appl. Sci. 2023, 13, 2488. [CrossRef]
4. Sun, Z.; Leng, X.; Lei, Y.; Xiong, B.; Ji, K.; Kuang, G. BiFA-YOLO: A novel YOLO-based method for arbitrary-oriented ship

detection in high-resolution SAR images. Remote Sens. 2021, 13, 4209. [CrossRef]
5. Hu, J.; Zhi, X.; Shi, T.; Zhang, W.; Cui, Y.; Zhao, S. PAG-YOLO: A portable attention-guided YOLO network for small ship

detection. Remote Sens. 2021, 13, 3059. [CrossRef]
6. Li, L.; Jiang, L.; Zhang, J.; Wang, S.; Chen, F. A complete YOLO-based ship detection method for thermal infrared remote sensing

images under complex backgrounds. Remote Sens. 2022, 14, 1534. [CrossRef]
7. Ye, J.; Yuan, Z.; Qian, C.; Li, X. Caa-yolo: Combined-attention-augmented yolo for infrared ocean ships detection. Sensors 2022,

22, 3782. [CrossRef] [PubMed]
8. Lu, J.; Ma, C.; Li, L.; Xing, X.; Zhang, Y.; Wang, Z.; Xu, J. A vehicle detection method for aerial image based on YOLO. J. Comput.

Commun. 2018, 6, 98–107. [CrossRef]
9. Al-Batat, R.; Angelopoulou, A.; Premkumar, S.; Hemanth, J.; Kapetanios, E. An end-to-end automated license plate recognition

system using YOLO based vehicle and license plate detection with vehicle classification. Sensors 2022, 22, 9477. [CrossRef]
[PubMed]

10. Zhang, Y.; Guo, Z.; Wu, J.; Tian, Y.; Tang, H.; Guo, X. Real-Time Vehicle Detection Based on Improved YOLO v5. Sustainability
2022, 14, 12274. [CrossRef]

11. Liu, M.; Wang, X.; Zhou, A.; Fu, X.; Ma, Y.; Piao, C. Uav-yolo: Small object detection on unmanned aerial vehicle perspective.
Sensors 2020, 20, 2238. [CrossRef]

12. Li, Y.; Wang, J.; Huang, J.; Li, Y. Research on Deep Learning Automatic Vehicle Recognition Algorithm Based on RES-YOLO
Model. Sensors 2022, 22, 3783. [CrossRef] [PubMed]

13. Chen, L.; Weng, T.; Xing, J.; Pan, Z.; Yuan, Z.; Xing, X.; Zhang, P. A new deep learning network for automatic bridge detection
from SAR images based on balanced and attention mechanism. Remote Sens. 2020, 12, 441. [CrossRef]

14. Li, X.; Meng, Q.; Wei, M.; Sun, H.; Zhang, T.; Su, R. Identification of Underwater Structural Bridge Damage and BIM-Based
Bridge Damage Management. Appl. Sci. 2023, 13, 1348. [CrossRef]

15. Du, F.; Jiao, S.; Chu, K. Application research of bridge damage detection based on the improved lightweight convolutional neural
network model. Appl. Sci. 2022, 12, 6225. [CrossRef]

16. Lin, Y.C.; Chen, W.D. Automatic aircraft detection in very-high-resolution satellite imagery using a YOLOv3-based process. J.
Appl. Remote Sens. 2021, 15, 018502. [CrossRef]

http://doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.3390/app13042488
http://dx.doi.org/10.3390/rs13214209
http://dx.doi.org/10.3390/rs13163059
http://dx.doi.org/10.3390/rs14071534
http://dx.doi.org/10.3390/s22103782
http://www.ncbi.nlm.nih.gov/pubmed/35632198
http://dx.doi.org/10.4236/jcc.2018.611009
http://dx.doi.org/10.3390/s22239477
http://www.ncbi.nlm.nih.gov/pubmed/36502178
http://dx.doi.org/10.3390/su141912274
http://dx.doi.org/10.3390/s20082238
http://dx.doi.org/10.3390/s22103783
http://www.ncbi.nlm.nih.gov/pubmed/35632188
http://dx.doi.org/10.3390/rs12030441
http://dx.doi.org/10.3390/app13031348
http://dx.doi.org/10.3390/app12126225
http://dx.doi.org/10.1117/1.JRS.15.018502

Appl. Sci. 2023, 13, 4144 26 of 26

17. Madasamy, K.; Shanmuganathan, V.; Kandasamy, V.; Lee, M.Y.; Thangadurai, M. OSDDY: Embedded system-based object
surveillance detection system with small drone using deep YOLO. EURASIP J. Image Video Process. 2021, 2021, 1–14. [CrossRef]

18. Jiang, C.; Ren, H.; Ye, X.; Zhu, J.; Zeng, H.; Nan, Y.; Sun, M.; Ren, X.; Huo, H. Object detection from UAV thermal infrared images
and videos using YOLO models. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102912. [CrossRef]

19. Artamonov, N.; Yakimov, P. Towards real-time traffic sign recognition via YOLO on a mobile GPU. J. Phys. Conf. Ser. 2018, 1096,
012086. [CrossRef]

20. Güney, E.; Bayilmiş, C.; Cakan, B. An implementation of real-time traffic signs and road objects detection based on mobile GPU
platforms. IEEE Access 2022, 10, 86191–86203. [CrossRef]

21. Feng, W.; Zhu, Y.; Zheng, J.; Wang, H. Embedded YOLO: A real-time object detector for small intelligent trajectory cars. Math.
Probl. Eng. 2021, 2021, 6555513. [CrossRef]

22. Zhang, S.; Cao, J.; Zhang, Q.; Zhang, Q.; Zhang, Y.; Wang, Y. An fpga-based reconfigurable cnn accelerator for yolo. In Proceedings
of the 2020 IEEE 3rd International Conference on Electronics Technology (ICET), Chengdu, China, 8–11 May 2020; pp. 74–78.

23. Babu, P.; Parthasarathy, E. Hardware acceleration for object detection using YOLOv4 algorithm on Xilinx Zynq platform. J.
Real-Time Image Process. 2022, 19, 931–940. [CrossRef]

24. Xiong, Q.; Liao, C.; Yang, Z.; Gao, W. A Method for Accelerating YOLO by Hybrid Computing Based on ARM and FPGA. In
Proceedings of the 2021 4th International Conference on Algorithms, Computing and Artificial Intelligence, Sanya, China, 22–24
December 2021; pp. 1–7.

25. Chen, Y.H.; Emer, J.; Sze, V. Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural networks. ACM
SIGARCH Comput. Archit. News 2016, 44, 367–379. [CrossRef]

26. Liu, Z.; Dou, Y.; Jiang, J.; Xu, J.; Li, S.; Zhou, Y.; Xu, Y. Throughput-optimized FPGA accelerator for deep convolutional neural
networks. ACM Trans. Reconfigurable Technol. Syst. 2017, 10, 1–23. [CrossRef]

27. Peemen, M.; Setio, A.A.; Mesman, B.; Corporaal, H. Memory-centric accelerator design for convolutional neural networks. In
Proceedings of the 2013 IEEE 31st International Conference on Computer Design (ICCD), Asheville, NC, USA, 6–9 October 2013;
pp. 13–19.

28. Zhang, C.; Sun, G.; Fang, Z.; Zhou, P.; Pan, P.; Cong, J. Caffeine: Toward uniformed representation and acceleration for deep
convolutional neural networks. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2018, 38, 2072–2085. [CrossRef]

29. Shen, Y.; Ferdman, M.; Milder, P. Maximizing CNN accelerator efficiency through resource partitioning. ACM SIGARCH Comput.
Archit. News 2017, 45, 535–547. [CrossRef]

30. Peng, H.; Chen, S.; Wang, Z.; Yang, J.; Weitze, S.A.; Geng, T.; Li, A.; Bi, J.; Song, M.; Jiang, W.; et al. Optimizing fpga-based
accelerator design for large-scale molecular similarity search (special session paper). In Proceedings of the 2021 IEEE/ACM
International Conference On Computer Aided Design (ICCAD), Munich, Germany, 1–4 November 2021; pp. 1–7.

31. Azari, E.; Vrudhula, S. ELSA: A throughput-optimized design of an LSTM accelerator for energy-constrained devices. ACM
Trans. Embed. Comput. Syst. 2020, 19, 1–21. [CrossRef]

32. Gong, H.J. Research and Implementation of FPGA-Based Acceleration Method for Convolutional Neural Networks. Master’s
Thesis, University of Chinese Academy of Sciences, National Space Science Center, Chinese Academy of Sciences, Beijing, China,
2021.

33. Guo, K.; Sui, L.; Qiu, J.; Yu, J.; Wang, J.; Yao, S.; Han, S.; Wang, Y.; Yang, H. Angel-eye: A complete design flow for mapping CNN
onto embedded FPGA. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2017, 37, 35–47. [CrossRef]

34. Liu, S.; Fan, H.; Niu, X.; Ng, H.C.; Chu, Y.; Luk, W. Optimizing CNN-based segmentation with deeply customized convolutional
and deconvolutional architectures on FPGA. ACM Trans. Reconfigurable Technol. Syst. 2018, 11, 1–22. [CrossRef]

35. Venieris, S.I.; Bouganis, C.S. fpgaConvNet: Mapping regular and irregular convolutional neural networks on FPGAs. IEEE Trans.
Neural Netw. Learn. Syst. 2018, 30, 326–342. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1186/s13640-021-00559-1
http://dx.doi.org/10.1016/j.jag.2022.102912
http://dx.doi.org/10.1088/1742-6596/1096/1/012086
http://dx.doi.org/10.1109/ACCESS.2022.3198954
http://dx.doi.org/10.1155/2021/6555513
http://dx.doi.org/10.1007/s11554-022-01234-y
http://dx.doi.org/10.1145/3007787.3001177
http://dx.doi.org/10.1145/3079758
http://dx.doi.org/10.1109/TCAD.2017.2785257
http://dx.doi.org/10.1145/3140659.3080221
http://dx.doi.org/10.1145/3366634
http://dx.doi.org/10.1109/TCAD.2017.2705069
http://dx.doi.org/10.1145/3242900
http://dx.doi.org/10.1109/TNNLS.2018.2844093
http://www.ncbi.nlm.nih.gov/pubmed/29994725

	Introduction
	Proposed Method
	Parallel Acceleration of Computational Layers in CNN
	Parallel Acceleration of Convolutional Layers
	Parallel Acceleration of Pooling Layer and Fully Connected Layer
	Data Remapping for the Convolutional Layer Computation Kernel

	Computational Scheduling Kernel Pipeline Design
	Convolutional Layer, Pooling, Fully Connected Layer Pipelining Methods
	On-Chip Storage Resource Bandwidth Expansion
	Partial Loading and Partial Calculation of Data within Layers

	Bus Access and DSP Resource Optimization Strategies
	Bus Data Bandwidth Utilisation Optimization
	Cross-Clock Domain Design of DSP Calculation Matrix

	Results and Discussion
	Computational Scheduling Kernel Implementation and Validation
	Deep Learning Acceleration Core Implementation and Verification
	Performance Analysis of Deep Learning Acceleration Core Inference

	Conclusions
	References

