Pediatric Asthma: Where Has Montelukast Gone?
Abstract
:1. Introduction
2. Search of the Relevant Literature
3. Biological Mechanisms and Effects
4. Montelukast in Pediatric Asthma
4.1. Montelukast’s First Steps in Asthma Treatment
4.2. Adverse Reactions
4.3. Preschool Wheezing
4.4. School-Age Asthma
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sarau, H.M.; Ames, R.S.; Chambers, J.; Ellis, C.; Elshourbagy, N.; Foley, J.J.; Schmidt, D.B.; Muccitelli, R.M.; Jenkins, O.; Murdock, P.R.; et al. Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. Mol. Pharmacol. 1999, 56, 657–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paggiaro, P.; Bacci, E. Montelukast in asthma: A review of its efficacy and place in therapy. Ther. Adv. Chronic Dis. 2011, 2, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Gupta, S.; Dastidar, S.; Ray, A. Cysteinyl leukotrienes and their receptors: Molecular and functional characteristics. Pharmacology 2010, 85, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Yokomizo, T. The role of leukotrienes in allergic diseases. Allergol. Int. 2015, 64, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Walia, M.; Lodha, R.; Kabra, S.K. Montelukast in pediatric asthma management. Indian J. Pediatr. 2006, 73, 275–282. [Google Scholar] [CrossRef]
- Singh, R.K.; Tandon, R.; Dastidar, S.G.; Ray, A. A review on leukotrienes and their receptors with reference to asthma. J. Asthma 2013, 50, 922–931. [Google Scholar] [CrossRef]
- Montella, S.; Maglione, M.; De Stefano, S.; Manna, A.; Di Giorgio, A.; Santamaria, F. Update on leukotriene receptor antagonists in preschool children wheezing disorders. Ital. J. Pediatr. 2012, 38, 29. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, B.F.; Jeyaraman, M.M.; Singh Mann, A.; Lys, J.; Abou-Setta, A.M.; Zarychanski, R.; Ducharme, F.M. Addition of anti-leukotriene agents to inhaled corticosteroids for adults and adolescents with persistent asthma. Cochrane Database Syst. Rev. 2017, 3, CD010347. [Google Scholar] [CrossRef]
- Morita, Y.; Campos Alberto, E.; Suzuki, S.; Sato, Y.; Hoshioka, A.; Abe, H.; Saito, K.; Tsubaki, T.; Haraki, M.; Sawa, A.; et al. Pranlukast reduces asthma exacerbations during autumn especially in 1- to 5-year-old boys. Asia Pac. Allergy 2017, 7, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Meng, L.; Xie, Y.; Guo, W. lncRNA PCGEM1 strengthens anti-inflammatory and lung protective effects of montelukast sodium in children with cough-variant asthma. Braz. J. Med. Biol. Res. 2020, 53, e9271. [Google Scholar] [CrossRef]
- Tenero, L.; Piazza, M.; Sandri, M.; Azzali, A.; Chinellato, I.; Peroni, D.; Boner, A.; Piacentini, G. Effect of montelukast on markers of airway remodeling in children with asthma. Allergy Asthma Proc. 2016, 37, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Al Saadi, M.M.; Meo, S.A.; Mustafa, A.; Shafi, A.; Tuwajri, A.S. Effects of Montelukast on free radical production in whole blood and isolated human polymorphonuclear neutrophils (PMNs) in asthmatic children. Saudi Pharm. J. 2011, 19, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlin, A.; Litonjua, A.; Irvin, C.G.; Peters, S.P.; Lima, J.J.; Kubo, M.; Tamari, M.; Tantisira, K.G. Genome-wide association study of leukotriene modifier response in asthma. Pharm. J. 2016, 16, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, C.F.; Marques, M.M.; Justino, G.C. Leukotrienes vs. Montelukast-Activity, Metabolism, and Toxicity Hints for Repurposing. Pharmaceuticals 2022, 23, 1039. [Google Scholar] [CrossRef]
- Dey, M.; Singh, R.K. Possible therapeutic potential of cysteinyl leukotriene receptor antagonist Montelukast in treatment of SARS-CoV-2-induced COVID-19. Pharmacology 2021, 106, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Sanghai, N.; Tranmer, G.K. Taming the cytokine storm: Repurposing montelukast for the attenuation and prophylaxis of severe COVID-19 symptoms. Drug Discov. Today 2020, 25, 2076–2079. [Google Scholar] [CrossRef]
- Kerget, B.; Kerget, F.; Aydın, M.; Karaşahin, Ö. Effect of montelukast therapy on clinical course, pulmonary function, and mortality in patients with COVID-19. J. Med. Virol. 2022, 94, 1950–1958. [Google Scholar] [CrossRef]
- Khan, A.R.; Misdary, C.; Yegya-Raman, N.; Kim, S.; Narayanan, N.; Siddiqui, S.; Salgame, P.; Radbel, J.; Groote, F.; Michel, C.; et al. Montelukast in hospitalized patients diagnosed with COVID-19. J. Asthma 2022, 59, 780–786. [Google Scholar] [CrossRef]
- Wang, X.Y.; Tang, S.S.; Hu, M.; Long, Y.; Li, Y.Q.; Liao, M.X.; Ji, H.; Hong, H. Leukotriene D4 induces amyloid-β generation via CysLT1R-mediated NF-κB pathways in primary neurons. Neurochem. Int. 2013, 62, 340–347. [Google Scholar] [CrossRef]
- Marschallinger, J.; Schäffner, I.; Klein, B.; Gelfert, R.; Rivera, F.J.; Illes, S.; Grassner, L.; Janssen, M.; Rotheneichner, P.; Schmuckermair, C.; et al. Structural and functional rejuvenation of the aged brain by an approved anti-asthmatic drug. Nat. Commun. 2015, 6, 8466. [Google Scholar] [CrossRef] [Green Version]
- Lai, J.; Hu, M.; Wang, H.; Hu, M.; Long, Y.; Miao, M.X.; Li, J.C.; Wang, X.B.; Kong, L.Y.; Hong, H. Montelukast targeting the cysteinyl leukotriene receptor 1 ameliorates Aβ1-42-induced memory impairment and neuroinflammatory and apoptotic responses in mice. Neuropharmacology 2014, 79, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Kim, S.; Lee, J.M.; Oh, Y.S.; Park, S.M.; Kim, S.R. Montelukast treatment protects nigral dopaminergic neurons against microglial activation in the 6-hydroxydopamine mouse model of Parkinson’s disease. Neuroreport 2017, 28, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Wallin, J.; Svenningsson, P. Potential effects of Leukotriene Receptor Antagonist Montelukast in treatment of neuroinflammation in Parkinson’s Disease. Int. J. Mol. Sci. 2021, 22, 5606. [Google Scholar] [CrossRef]
- Nagarajan, V.B.; Marathe, P.A. Effect of montelukast in experimental model of Parkinson’s disease. Neurosci. Lett. 2018, 682, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Kalonia, H.; Kumar, P.; Kumar, A.; Nehru, B. Protective effect of montelukast against quinolinic acid/malonic acid induced neurotoxicity: Possible behavioral, biochemical, mitochondrial and tumor necrosis factor-α level alterations in rats. Neuroscience 2010, 171, 284–299. [Google Scholar] [CrossRef] [PubMed]
- Tassan Mazzocco, M.; Murtaj, V.; Martins, D.; Schellino, R.; Coliva, A.; Toninelli, E.; Vercelli, A.; Turkheimer, F.; Belloli, S.; Moresco, R.M. Exploring the neuroprotective effects of montelukast on brain inflammation and metabolism in a rat model of quinolinic acid-induced striatal neurotoxicity. J. Neuroinflammation 2023, 20, 34. [Google Scholar] [CrossRef]
- Michael, J.; Unger, M.S.; Poupardin, R.; Schernthaner, P.; Mrowetz, H.; Attems, J.; Aigner, L. Microglia depletion diminishes key elements of the leukotriene pathway in the brain of Alzheimer’s Disease mice. Acta Neuropathol. Commun. 2020, 8, 129. [Google Scholar] [CrossRef]
- Xiong, L.Y.; Ouk, M.; Wu, C.Y.; Rabin, J.S.; Lanctôt, K.L.; Herrmann, N.; Black, S.E.; Edwards, J.D.; Swardfager, W. Leukotriene receptor antagonist use and cognitive decline in normal cognition, mild cognitive impairment, and Alzheimer’s dementia. Alzheimers Res. Ther. 2021, 13, 147. [Google Scholar] [CrossRef]
- Grinde, B.; Schirmer, H.; Eggen, A.E.; Aigner, L.; Engdahl, B. A possible effect of montelukast on neurological aging examined by the use of register data. Int. J. Clin. Pharm. 2021, 43, 541–548. [Google Scholar] [CrossRef]
- Gate, D.; Saligrama, N.; Leventhal, O.; Yang, A.C.; Unger, M.S.; Middeldorp, J.; Chen, K.; Lehallier, B.; Channappa, D.; Mark, B.; et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 2020, 577, 399–404. [Google Scholar] [CrossRef]
- Reiss, T.F.; Chervinsky, P.; Dockhorn, R.J.; Shingo, S.; Seidenberg, B.; Edwards, T.B. Montelukast, a once-daily leukotriene receptor antagonist, in the treatment of chronic asthma. Arch. Intern. Med. 1998, 158, 1213–1220. [Google Scholar] [CrossRef] [Green Version]
- Leff, J.A.; Busse, W.W.; Pearlman, D.; Bronsky, E.A.; Kemp, J.; Hendeles, L.; Dockhorn, R.; Kundu, S.; Zhang, J.; Sei-denberg, B.C.; et al. Montelukast, a leukotriene-receptor antagonist, for the treatment of mild asthma and exercise-induced bronchoconstriction. N. Engl. J. Med. 1998, 339, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Bisgaard, H.; Skoner, D.; Boza, M.L.; Tozzi, C.A.; Newcomb, K.; Reiss, T.F.; Knorr, B.; Noonan, G. Safety and tolerability of montelukast in placebo-controlled pediatric studies and their open-label extensions. Pediatr. Pulmonol. 2009, 44, 568–579. [Google Scholar] [CrossRef]
- Knorr, B.; Matz, J.; Bernstein, J.A.; Nguyen, H.; Seidenberg, B.C.; Reiss, T.F.; Becker, A. Montelukast for chronic asthma in 6- to 14-year-old children: A randomized, double-blind trial. Pediatric Montelukast Study Group. JAMA 1998, 279, 1181–1186. [Google Scholar] [CrossRef] [Green Version]
- Bisgaard, H.; Nielsen, K.G. Bronchoprotection with a leukotriene receptor antagonist in asthmatic preschool children. Am. J. Respir. Crit. Care Med. 2000, 162, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Knorr, B.; Franchi, L.M.; Bisgaard, H.; Vermeulen, J.H.; LeSouef, P.; Santanello, N.; Michele, T.M.; Reiss, T.F.; Nguyen, H.H.; Bratton, D.L. Montelukast, a leukotriene receptor antagonist, for the treatment of persistent asthma in children aged 2 to 5 years. Pediatrics 2001, 108, E48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stelmach, I.; Majak, P.; Jerzynska, J.; Stelmach, W.; Kuna, P. Comparative effect of triamcinolone, nedocromil and montelukast on asthma control in children: A randomized pragmatic study. Pediatr. Allergy Immunol. 2004, 15, 359–364. [Google Scholar] [CrossRef]
- Bukstein, D.A.; Bratton, D.L.; Firriolo, K.M.; Estojak, J.; Bird, S.R.; Hustad, C.M.; Edelman, J.M. Evaluation of Parental Preference for the Treatment of Asthmatic Children Aged 6 to 11 Years with Oral Montelukast or Inhaled Cromolyn: A Randomized, Open-Label, Crossover Study. J. Asthma 2003, 40, 475–485. [Google Scholar] [CrossRef]
- 2002 GINA Report, Global Strategy for Asthma Management and Prevention. Available online: https://ginasthma.org/wp-content/uploads/2019/01/2002-GINA.pdf (accessed on 10 November 2022).
- Ng, D.; Salvio, F.; Hicks, G. Anti-leukotriene agents compared to inhaled corticosteroids in the management of recurrent and/or chronic asthma in adults and children. Cochrane Database Syst. Rev. 2004, 2, CD002314. [Google Scholar]
- 2012 GINA Report, Global Strategy for Asthma Management and Prevention. Available online: https://ginasthma.org/wp-content/uploads/2019/01/2012-GINA.pdf (accessed on 10 November 2022).
- Jat, G.C.; Mathew, J.L.; Singh, M. Treatment with 400 microg of inhaled budesonide vs 200 microg of inhaled budesonide and oral montelukast in children with moderate persistent asthma: Randomized controlled trial. Ann. Allergy Asthma Immunol. 2006, 97, 397–401. [Google Scholar] [CrossRef]
- Strunk, R.C.; Bacharier, L.B.; Phillips, B.R.; Szefler, S.J.; Zeiger, R.S.; Chinchilli, V.M.; Martinez, F.D.; Lemanske, R.F., Jr.; Taussig, L.M.; Mauger, D.T.; et al. CARE Network. Azithromycin or montelukast as inhaled corticosteroid-sparing agents in moderate-to-severe childhood asthma study. J. Allergy Clin. Immunol. 2008, 122, 1138–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisgaard, H.; Zielen, S.; Garcia-Garcia, M.L.; Johnston, S.L.; Gilles, L.; Menten, J.; Tozzi, C.A.; Polos, P. Montelukast reduces asthma exacerbations in 2-to 5-year-old children with intermittent asthma. Am. J. Respir. Crit. Care Med. 2005, 171, 315–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, P.L.; Baraldi, E.; Bisgaard, H.; Boner, A.L.; Castro-Rodriguez, J.A.; Custovic, A.; de Blic, J.; de Jongste, J.C.; Eber, E.; Everard, M.L.; et al. Definition, assessment and treatment of wheezing disorders in preschool children: An evidence-based approach. Eur. Respir. J. 2008, 32, 1096–1110. [Google Scholar] [CrossRef] [PubMed]
- Szefler, S.J.; Baker, J.W.; Uryniak, T.; Goldman, M.; Silkoff, P.E. Comparative study of budesonide inhalation suspension and montelukast in young children with mild persistent asthma. J. Allergy Clin. Immunol. 2007, 120, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Robertson, C.F.; Price, D.; Henry, R.; Mellis, C.; Glasgow, N.; Fitzgerald, D.; Lee, A.J.; Turner, J.; Sant, M. Short-course montelukast for intermittent asthma in children: A randomized controlled trial. Am. J. Respir. Crit. Care Med. 2007, 175, 323–329. [Google Scholar] [CrossRef]
- Straub, D.A.; Minocchieri, S.; Moeller, A.; Hamacher, J.; Wildhaber, J.H. The effect of montelukast on exhaled nitric oxide and lung function in asthmatic children 2 to 5 years old. Chest 2005, 127, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Forrester, M.B. Pediatric montelukast ingestions reported to Texas poison control centers, 2000–2005. J. Toxicol. Environ. Health A 2007, 70, 1792–1797. [Google Scholar] [CrossRef]
- Glockler-Lauf, S.D.; Finkelstein, Y.; Zhu, J.; Feldman, L.Y.; To, T. Montelukast and Neuropsychiatric Events in Children with Asthma: A Nested Case-Control Study. J. Pediatr. 2019, 209, 176–182. [Google Scholar] [CrossRef]
- Aldea Perona, A.; García-Sáiz, M.; Sanz Álvarez, E. Psychiatric Disorders and Montelukast in Children: A Disproportionality Analysis of the VigiBase(®). Drug Saf. 2016, 39, 69–78. [Google Scholar] [CrossRef]
- Kocyigit, A.; Gulcan Oksuz, B.; Yarar, F.; Uzun, F.; Igde, M.; Islek, I. Hallucination development with montelukast in a child with asthma: Case presentation. Iran J. Allergy Asthma Immunol. 2013, 12, 397–399. [Google Scholar]
- Byrne, F.; Oluwole, B.; Whyte, V.; Fahy, S.; McGuinness, D. Delayed Onset of Neuropsychiatric Effects Associated with Montelukast. Ir. J. Psychol. Med. 2012, 29, 125–127. [Google Scholar] [CrossRef] [PubMed]
- Carnovale, C.; Gentili, M.; Antoniazzi, S.; Radice, S.; Clementi, E. Montelukast-induced metamorphopsia in a pediatric patient: A case report and a pharmacovigilance database analysis. Ann. Allergy Asthma Immunol. 2016, 116, 370–371. [Google Scholar] [CrossRef] [PubMed]
- Benard, B.; Bastien, V.; Vinet, B.; Yang, R.; Krajinovic, M.; Ducharme, F.M. Neuropsychiatric adverse drug reactions in children initiated on montelukast in real-life practice. Eur. Respir. J. 2017, 50, 1700148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callero-Viera, A.; Infante, S.; Fuentes-Aparicio, V.; Zapatero, L.; Alonso-Lebrero, E. Neuropsychiatric reactions to montelukast. J. Investig. Allergol. Clin. Immunol. 2012, 22, 452–453. [Google Scholar] [PubMed]
- Paljarvi, T.; Forton, J.; Luciano, S.; Herttua, K.; Fazel, S. Analysis of Neuropsychiatric Diagnoses After Montelukast Initiation. JAMA Netw. Open 2022, 5, e2213643. [Google Scholar] [CrossRef] [PubMed]
- Watson, S.; Kaminsky, E.; Taavola, H.; Attalla, M.; Yue, Q.Y. Montelukast and Nightmares: Further Characterisation Using Data from VigiBase. Drug Saf. 2022, 45, 675–684. [Google Scholar] [CrossRef]
- Bian, S.; Li, L.; Wang, Z.; Cui, L.; Xu, Y.; Guan, K.; Zhao, B.; Wang, L.; Yin, J. Neuropsychiatric side reactions of leukotriene receptor antagonist, antihistamine, and inhaled corticosteroid: A real-world analysis of the Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). World Allergy Organ. J. 2021, 14, 100594. [Google Scholar] [CrossRef]
- Dixon, E.G.; Rugg-Gunn, C.E.; Sellick, V.; Sinha, I.P.; Hawcutt, D.B. Adverse drug reactions of leukotriene receptor antagonists in children with asthma: A systematic review. BMJ Paediatr. Open 2021, 5, e001206. [Google Scholar] [CrossRef]
- Yilmaz Bayer, O.; Turktas, I.; Ertoy Karagol, H.I.; Soysal, S.; Yapar, D. Neuropsychiatric adverse drug reactions induced by montelukast impair the quality of life in children with asthma. J. Asthma 2022, 59, 580–589. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Singulair (Montelukast) and All Generics: Strengthened Boxed Warning. Available online: https://www.fda.gov/safety/medical-product-safety-information/singulair-montelukast-and-all-montelukast-generics-strengthened-boxed-warning-due-restricting-use (accessed on 2 December 2022).
- Els, I.; Webb, S. Neuropsychiatric Event on Withdrawal of Montelukast. J. Paediatr. Child Health 2022, 58, 741. [Google Scholar] [CrossRef]
- Marques, C.F.; Marques, M.M.; Justino, G.C. The mechanisms underlying montelukast’s neuropsychiatric effects—New insights from a combined metabolic and multiomics approach. Life Sci. 2022, 310, 121056. [Google Scholar] [CrossRef] [PubMed]
- Umetsu, R.; Tanaka, M.; Nakayama, Y.; Kato, Y.; Ueda, N.; Nishibata, Y.; Hasegawa, S.; Matsumoto, K.; Takeyama, N.; Iguchi, K.; et al. Neuropsychiatric Adverse Events of Montelukast: An Analysis of Real-World Datasets and drug-gene Interaction Network. Front. Pharmacol. 2021, 12, 764279. [Google Scholar] [CrossRef] [PubMed]
- Calapai, G.; Casciaro, M.; Miroddi, M.; Calapai, F.; Navarra, M.; Gangemi, S. Montelukast-induced adverse drug reactions: A review of case reports in the literature. Pharmacology 2014, 94, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Incecik, F.; Onlen, Y.; Sangun, O.; Akoglu, S. Probable montelukast-induced hepatotoxicity in a pediatric patient: Case report. Ann. Saudi. Med. 2007, 27, 462–463. [Google Scholar]
- Cetkovska, P.; Pizinger, K. Childhood pemphigus associated with montelukast administration. Clin. Exp. Dermatol. 2003, 28, 328–329. [Google Scholar] [CrossRef]
- Brenner, S.; Bialy-Golan, A.; Ruocco, V. Drug-induced pemphigus. Clinics Dermatol. 1998, 16, 393–397. [Google Scholar] [CrossRef]
- Trayer, J.; Nadeem, M.; Elnazir, B. Lower Limb Bruising Associated with Montelukast in an Asthmatic Child. J. Paediatr. Child Health 2021, 57, 1343. [Google Scholar] [CrossRef]
- Aypak, C.; Türedi, Ö.; Solmaz, N.; Yıkılkan, H.; Görpelioğlu, S. A rare adverse effect of montelukast treatment: Ecchymosis. Respir. Care 2013, 58, e104–e106. [Google Scholar] [CrossRef] [Green Version]
- Hauser, T.; Mahr, A.; Metzler, C.; Coste, J.; Sommerstein, R.; Gross, W.L.; Guillevin, L.; Hellmich, B. The leucotriene receptor antagonist montelukast and the risk of Churg-Strauss syndrome: A case-crossover study. Thorax 2008, 63, 677–682. [Google Scholar] [CrossRef] [Green Version]
- Haarman, M.G.; van Hunsel, F.; de Vries, T.W. Adverse drug reactions of montelukast in children and adults. Pharmacol. Res. Perspect. 2017, 5, e00341. [Google Scholar] [CrossRef]
- Wechsler, M.E.; Finn, D.; Gunawardena, D.; Westlake, R.; Barker, A.; Haranath, S.P.; Pauwels, R.A.; Kips, J.C.; Drazen, J.M. Churg-Strauss syndrome in patients receiving montelukast as treatment for asthma. Chest 2000, 117, 708–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brand, P.L.; Caudri, D.; Eber, E.; Gaillard, E.A.; Garcia-Marcos, L.; Hedlin, G.; Henderson, J.; Kuehni, C.E.; Merkus, P.J.; Pedersen, S.; et al. Classification and pharmacological treatment of preschool wheezing: Changes since 2008. Eur. Respir. J. 2014, 43, 1172–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szefler, S.J.; Carlsson, L.G.; Uryniak, T.; Baker, J.W. Budesonide inhalation suspension versus montelukast in children aged 2 to 4 years with mild persistent asthma. J. Allergy Clin. Immunol. Pract. 2013, 1, 58–64. [Google Scholar] [CrossRef]
- Jehan, N.; Rehman, M.U.; Zarkoon, M.H. To determine the efficacy of inhaled corticosteroids compared to montelukast in reducing exacerbation in uncontrolled asthma in children 6 months to 5 years. Pak. J. Med. Health Sci. 2014, 8, 662–666. [Google Scholar]
- Wang, X.; Fang, H.; Shen, K.; Liu, T.; Xie, J.; Liu, Y.; Wu, P.; Chen, Y.; Zhong, J.; Wu, E.; et al. Cost-effectiveness analysis of double low-dose budesonide and low-dose budesonide plus montelukast among pediatric patients with persistent asthma receiving Step 3 treatment in China. J. Med. Econ. 2020, 23, 1630–1639. [Google Scholar] [CrossRef]
- Nwokoro, C.; Pandya, H.; Turner, S.; Eldridge, S.; Griffiths, C.J.; Vulliamy, T.; Price, D.; Sanak, M.; Holloway, J.W.; Brugha, R.; et al. Intermittent montelukast in children aged 10 months to 5 years with wheeze (WAIT trial): A multicentre, randomised, placebo-controlled trial. Lancet Respir. Med. 2014, 2, 796–803. [Google Scholar] [CrossRef] [Green Version]
- Castro-Rodriguez, J.A.; Rodriguez-Martinez, C.E.; Ducharme, F.M. Daily inhaled corticosteroids or montelukast for preschoolers with asthma or recurrent wheezing: A systematic review. Pediatr. Pulmonol. 2018, 53, 1670–1677. [Google Scholar] [CrossRef]
- Fitzpatrick, A.M.; Jackson, D.J.; Mauger, D.T.; Boehmer, S.J.; Phipatanakul, W.; Sheehan, W.J.; Moy, J.N.; Paul, I.M.; Bacharier, L.B.; Cabana, M.D.; et al. NIH/NHLBI AsthmaNet. Individualized therapy for persistent asthma in young children. J. Allergy Clin. Immunol. 2016, 138, 1608–1618. [Google Scholar] [CrossRef] [Green Version]
- Hussein, H.R.; Gupta, A.; Broughton, S.; Ruiz, G.; Brathwaite, N.; Bossley, C.J. A meta-analysis of montelukast for recurrent wheeze in preschool children. Eur. J. Pediatr. 2017, 176, 963–969. [Google Scholar] [CrossRef] [Green Version]
- Brodlie, M.; Gupta, A.; Rodriguez-Martinez, C.E.; Castro-Rodriguez, J.A.; Ducharme, F.M.; McKean, M.C. Leukotriene receptor antagonists as maintenance and intermittent therapy for episodic viral wheeze in children. Cochrane Database Syst. Rev. 2015, 10, CD008202. [Google Scholar] [CrossRef]
- Nagao, M.; Ikeda, M.; Fukuda, N.; Habukawa, C.; Kitamura, T.; Katsunuma, T.; Fujisawa, T.; LePAT (Leukotriene and Pediatric Asthma Translational Research Network) investigators. Early control treatment with montelukast in preschool children with asthma: A randomized controlled trial. Allergol. Int. 2018, 67, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Krawiec, M.; Strzelak, A.; Krenke, K.; Modelska-Wozniak, I.; Jaworska, J.; Kulus, M. Fluticasone or montelukast in preschool wheeze: A randomized controlled trial. Clin. Pediatr. 2015, 54, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Lu, Y.; Li, Y.; Zhou, W.; Qin, F. Efficacy of treatment with montelukast, fluticasone propionate and budesonide liquid suspension for the prevention of recurrent asthma paroxysms in children with wheezing disorders. Exp. Ther. Med. 2019, 18, 3090–3094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inhaler Error Steering Committee; Price, D.; Bosnic-Anticevich, S.; Briggs, A.; Chrystyn, H.; Rand, C.; Scheuch, G.; Bousquet, J. Inhaler competence in asthma: Common errors, barriers to use and recommended solutions. Respir. Med. 2013, 107, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Capanoglu, M.; Dibek Misirlioglu, E.; Toyran, M.; Civelek, E.; Kocabas, C.N. Evaluation of inhaler technique, adherence to therapy and their effect on disease control among children with asthma using metered dose or dry powder inhalers. J. Asthma 2015, 52, 838–845. [Google Scholar] [CrossRef]
- Lavorini, F.; Chudek, J.; Gálffy, G.; Pallarés-Sanmartin, A.; Pelkonen, A.S.; Rytilä, P.; Syk, J.; Szilasi, M.; Tamási, L.; Xanthopoulos, A.; et al. Switching to the Dry-Powder Inhaler Easyhaler®: A Narrative Review of the Evidence. Pulm. Ther. 2021, 7, 409–427. [Google Scholar] [CrossRef]
- Kramer, S.; Rottier, B.L.; Scholten, R.J.; Boluyt, N. Ciclesonide vs. other inhaled corticosteroids for chronic asthma in children. Cochrane Database Syst. Rev. 2013, 2, CD010352. [Google Scholar]
- Milgrom, H. Mometasone furoate in children with mild to moderate persistent asthma: A review of the evidence. Paediatr Drugs 2010, 12, 213–221. [Google Scholar] [CrossRef]
- Maglione, M.; Poeta, M.; Santamaria, F. New Drugs for Pediatric Asthma. Front. Pediatr. 2019, 6, 432. [Google Scholar] [CrossRef]
- Marguet, C.; Couderc, L.; Le Roux, P.; Jeannot, E.; Lefay, V.; Mallet, E. Inhalation treatment: Errors in application and difficulties in acceptance of the devices are frequent in wheezy infants and young children. Pediatr. Allergy Immunol. 2001, 12, 224–230. [Google Scholar] [CrossRef]
- Chen, Z.M.; Zhao, D.Y.; Xiang, L.; Hong, J.G. Treatment of pediatric mild persistent asthma with low-dose budesonide inhalation suspension vs. montelukast in China. World J. Pediatr. 2021, 17, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.; Oh, S.J.; Petigara, T.; Tunceli, K.; Urdaneta, E.; Navaratnam, P.; Friedman, H.S.; Park, S.W.; Hong, S.H. Comparative effectiveness of budesonide inhalation suspension and montelukast in children with mild asthma in Korea. J. Asthma 2020, 57, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.B.; Gohil, J.; Khapekar, S.; Dave, J. Montelukast versus budesonide as a first line preventive therapy in mild persistent asthma in 2 to 18 y. Indian J. Pediatr. 2014, 81, 655–659. [Google Scholar] [CrossRef]
- Bérubé, D.; Djandji, M.; Sampalis, J.S.; Becker, A. Effectiveness of montelukast administered as monotherapy or in combination with inhaled corticosteroid in pediatric patients with uncontrolled asthma: A prospective cohort study. Allergy Asthma Clin. Immunol. 2014, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.; Zhao, Z.; Zhou, D. Effect of Montelukast sodium combined with Budesonide aerosol on airway function and T lymphocytes in asthmatic children. Pak. J. Med. Sci. 2022, 38, 1265–1270. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, H. Efficacy of montelukast sodium chewable tablets combined with inhaled budesonide in treating pediatric asthma and its effect on inflammatory factors. Pharmazie 2019, 74, 694–697. [Google Scholar]
- Stelmach, I.; Ożarek-Hanc, A.; Zaczeniuk, M.; Stelmach, W.; Smejda, K.; Majak, P.; Jerzynska, J.; Anna, J. Do children with stable asthma benefit from addition of montelukast to inhaled corticosteroids: Randomized, placebo controlled trial. Pulm. Pharmacol. Ther. 2015, 31, 42–48. [Google Scholar] [CrossRef]
- Lemanske, R.F., Jr.; Mauger, D.T.; Sorkness, C.A.; Jackson, D.J.; Boehmer, S.J.; Martinez, F.D.; Strunk, R.C.; Szefler, S.J.; Zeiger, R.S.; Bacharier, L.B.; et al. Childhood Asthma Research and Education (CARE) Network of the National Heart, Lung, and Blood Institute. Step-up therapy for children with uncontrolled asthma receiving inhaled corticosteroids. N. Engl. J. Med. 2010, 362, 975–985. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, B.F.; Ben Salah, R.; Ducharme, F.M. Addition of anti-leukotriene agents to inhaled corticosteroids in children with persistent asthma. Cochrane Database Syst. Rev. 2013, 10, CD009585. [Google Scholar] [CrossRef] [Green Version]
- Massingham, K.; Fox, S.; Smaldone, A. Asthma therapy in pediatric patients: A systematic review of treatment with montelukast versus inhaled corticosteroids. J. Pediatr. Health Care 2014, 28, 51–62. [Google Scholar] [CrossRef]
- Wei, H.; Li, W.; Jiang, Z.; Xi, X.; Qi, G. Clinical efficacy of montelukast sodium combined with budesonide or combined with loratadine in treating children with cough variant asthma and influence on inflammatory factors in the serum. Exp. Ther. Med. 2019, 18, 411–417. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Liu, H.Y. Montelukast and Budesonide for Childhood Cough Variant Asthma. J. Coll. Physicians Surg. Pak. 2019, 29, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Huang, M.; Xie, N. The effect of montelukast sodium plus budesonide on the clinical efficacy, inflammation, and pulmonary function in children with cough variant asthma. Am. J. Transl. Res. 2021, 13, 6807–6816. [Google Scholar] [PubMed]
- Wang, X.P.; Yang, L.D.; Zhou, J.F. Montelukast and budesonide combination for children with chronic cough-variant asthma. Medicine 2018, 97, e11557. [Google Scholar] [CrossRef]
- Zhou, X.J.; Qin, Z.; Lu, J.; Hong, J.G. Efficacy and safety of salmeterol/fluticasone compared with montelukast alone (or add-on therapy to fluticasone) in the treatment of bronchial asthma in children and adolescents: A systematic review and meta-analysis. Chin. Med. J. 2021, 134, 2954–2961. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, S.; Shin, Y.H.; Ha, E.K.; Lee, S.W.; Kim, M.A.; Yoon, J.W.; Baek, H.S.; Choi, S.H.; Han, M.Y. Airway mechanics after withdrawal of a leukotriene receptor antagonist in children with mild persistent asthma: Double-blind, randomized, cross-over study. Pediatr. Pulmonol. 2020, 55, 3279–3286. [Google Scholar] [CrossRef]
- Dixon, E.G.; King, C.; Lilley, A.; Sinha, I.P.; Hawcutt, D.B. Deprescribing montelukast in children with asthma: A systematic review. BMJ Open 2022, 12, e053112. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Chen, Y.; Yin, C. Effect of montelukast on the expression of CD4+CD25+ regulatory T cells in children with acute bronchial asthma. Exp. Ther. Med. 2018, 16, 2381–2386. [Google Scholar] [CrossRef] [Green Version]
- Ramsay, C.F.; Sullivan, P.; Gizycki, M.; Wang, D.; Swern, A.S.; Barnes, N.C.; Reiss, T.F.; Jeffery, P.K. Montelukast and bronchial inflammation in asthma: A randomised, double-blind placebo-controlled trial. Respir. Med. 2009, 103, 995–1003. [Google Scholar] [CrossRef] [Green Version]
- Bush, A. Montelukast in paediatric asthma: Where we are now and what still needs to be done? Paediatr. Respir. Rev. 2015, 16, 97–100. [Google Scholar] [CrossRef]
- Farzan, S.; Khan, S.; Elera, C.; Tsang, J.; Akerman, M.; DeVoti, J. Effectiveness of montelukast in overweight and obese atopic asthmatics. Ann. Allergy Asthma Immunol. 2017, 119, 189–190. [Google Scholar] [CrossRef] [PubMed]
- Lugogo, N.L.; Kraft, M.; Dixon, A.E. Does obesity produce a distinct asthma phenotype? J. Appl. Physiol. 2010, 108, 729–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giouleka, P.; Papatheodorou, G.; Lyberopoulos, P.; Karakatsani, A.; Alchanatis, M.; Roussos, C.; Papiris, S.; Loukides, S. Body mass index is associated with leukotriene inflammation in asthmatics. Eur. J. Clin. Investig. 2011, 41, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Ciółkowski, J.; Mazurek, H.; Hydzik, P.; Stasiowska, B. Inflammatory markers as exacerbation risk factors after asthma therapy switch from inhaled steroids to montelukast. Pulm. Pharmacol. Ther. 2016, 39, 7–13. [Google Scholar] [CrossRef]
- Maroteau, C.; Espuela-Ortiz, A.; Herrera-Luis, E.; Srinivasan, S.; Carr, F.; Tavendale, R.; Wilson, K.; Hernandez-Pacheco, N.; Chalmers, J.D.; Turner, S.; et al. PiCA Consortium. LTA4H rs2660845 association with montelukast response in early and late-onset asthma. PLoS ONE 2021, 16, e0257396. [Google Scholar] [CrossRef]
- Dragicevic, S.; Milosevic, K.; Nestorovic, B.; Nikolic, A. Influence of the Polymorphism C-509T in the TGFB1 Gene Promoter on the Response to Montelukast. Pediatr. Allergy Immunol. Pulmonol. 2017, 30, 239–245. [Google Scholar] [CrossRef]
- Yang, Y.C.; Zhang, N.; Van Crombruggen, K.; Hu, G.H.; Hong, S.L.; Bachert, C. Transforming growth factor-beta1 in inflammatory airway disease: A key for understanding inflammation and remodeling. Allergy 2012, 67, 1193–1202. [Google Scholar] [CrossRef]
- Wang, K.; Tian, P.; Fan, Y.; Wang, Y.; Liu, C. Assessment of second-line treatments for patients with uncontrolled moderate asthma. Int. J. Clin. Exp. Med. 2015, 8, 19476–19480. [Google Scholar]
- Rajanandh, M.G.; Nageswari, A.D.; Ilango, K. Assessment of montelukast, doxofylline, and tiotropium with budesonide for the treatment of asthma: Which is the best among the second-line treatment? A randomized trial. Clin. Ther. 2015, 37, 418–426. [Google Scholar] [CrossRef]
- Rajanandh, M.G.; Nageswari, A.D.; Ilango, K. Assessment of various second-line medications in addition to inhaled corticosteroid in asthma patients: A randomized controlled trial. Clin. Exp. Pharmacol. Physiol. 2014, 41, 509–513. [Google Scholar] [CrossRef]
- Rajanandh, M.G.; Nageswari, A.D.; Ilango, K. Pulmonary function assessment in mild to moderate persistent asthma patients receiving montelukast, doxofylline, and tiotropium with budesonide: A randomized controlled study. Clin. Ther. 2014, 36, 526–533. [Google Scholar] [CrossRef] [PubMed]
Study | Age (years) | No. of Patients | Comparison | Main Findings |
---|---|---|---|---|
Szefler, 2013 [46] | 2–4 | 105 vs. 97 | BUD vs. MK | No difference in time to first additional medication over 52 weeks. BUD associated with lower % of patients requiring oral steroids, lower rate of additional medications, or oral steroids |
Jehan, 2014 [77] | 0.5–5 | 2400 | ICSs vs. MK | MK associated with more frequent need for step-up treatment |
Nwokoro, 2014 [79] | 0.8–5 | 669 vs. 677 | Intermittent MK vs. placebo (at the onset of each viral cold) | No difference in no. of children who had unscheduled medical attendances and in the no. or duration of wheeze episodes. Increased time to first hospital admission in the MK group |
Fitzpatrick, 2016 [81] | 1–5 | 300 | Daily FLUT vs. daily MK vs. as-needed FLUT plus albuterol | Daily FLUT associated with more asthma control days, fewer rescue albuterol inhalations, and fewer exacerbations |
Nagao, 2018 [84] | 1–5 | 47 vs. 46 | MK vs. no controller | Fewer exacerbations and lower cumulative incidence of step-up treatment in the MK group |
Krawiec, 2015 [85] | 0.5–3 | 23 vs. 23 vs. 24 | Low-dose FLUT vs. MK vs. no controller | No difference between groups in wheezing episodes over 1 year |
Ding, 2019 [86] | 2.5 ± 0.8 | 82 vs. 80 vs. 77 | FLUT vs. MK vs. BUD | Lower costs of FLUT, higher adherence with MK |
Study | Age (years) | No. of Patients | Comparison | Main Findings |
---|---|---|---|---|
Chen, 2021 [94] | 2–14 | 153 vs. 240 | BUD vs. MK | Lower% of children with symptoms or need for reliever medications more than twice a week in the MK group |
Shin, 2019 [95] | 2–17 | 1145 vs. 1145 | BUD vs. MK | Higher adherence with MK, BUD patients more likely to have visits requiring asthma control medications |
Shah, 2013 [96] | 2–18 | 60 vs. 60 | BUD vs. MK | More significant improvement in FEV1/FVC and daytime symptoms in the BUD group |
Bérubé, 2014 [97] | 2–14 | 76 vs. 252 | MK vs. MK + ICSs | Significant improvement in asthma control in both groups |
Jin, 2022 [98] | 3–12 | 40 vs. 46 | Routine therapy + BUD vs. Routine therapy + BUD + MK | Higher expiratory flow rate and lower levels of inflammatory markers in the BUD + MK group |
Zhang, 2019 [99] | 7.4 ± 2.5 | 45 vs. 45 vs. 45 | MK vs. BUD vs. BUD + MK | Improved lung function, decreased inflammatory markers, shorter symptoms disappearance time in the BUD + MK group |
Stelmach, 2015 [100] | 6–14 | 39 vs. 37 | ICSs + MK vs. ICS + placebo | Lower frequency of exacerbations, lower frequency of positive exercise challenge test in the MK group |
Lemanske, 2010 [101] | 6–17 | 165 | High dose FLUT vs. FLUT + LABA vs. FLUT + MK | LABA step-up most likely to provide the best response (exacerbations, asthma control days, FEV1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maglione, M.; Giannattasio, A.; Pascarella, A.; Tipo, V. Pediatric Asthma: Where Has Montelukast Gone? Appl. Sci. 2023, 13, 4146. https://doi.org/10.3390/app13074146
Maglione M, Giannattasio A, Pascarella A, Tipo V. Pediatric Asthma: Where Has Montelukast Gone? Applied Sciences. 2023; 13(7):4146. https://doi.org/10.3390/app13074146
Chicago/Turabian StyleMaglione, Marco, Antonietta Giannattasio, Antonia Pascarella, and Vincenzo Tipo. 2023. "Pediatric Asthma: Where Has Montelukast Gone?" Applied Sciences 13, no. 7: 4146. https://doi.org/10.3390/app13074146
APA StyleMaglione, M., Giannattasio, A., Pascarella, A., & Tipo, V. (2023). Pediatric Asthma: Where Has Montelukast Gone? Applied Sciences, 13(7), 4146. https://doi.org/10.3390/app13074146