Nitrate-Polluted Waterbodies Remediation: Global Insights into Treatments for Compliance
Abstract
:Featured Application
Abstract
1. Introduction
2. The Biological Nitrogen Cycle
3. Processes Responsible for Nitrate Pollution in Water
4. Nitrate Removal Technologies in Waterbodies
4.1. Separation-Based Technologies
4.1.1. Ion Exchange
4.1.2. Reverse Osmosis
4.1.3. Electrodialysis
4.1.4. Electrocoagulation
4.1.5. Capacitive Deionization
4.1.6. Adsorption
4.2. Transformation-Based Technologies
4.2.1. Biological Denitrification
4.2.2. Chemical Nitrate Reduction
- Removal of nitrate by zero-valent iron (ZVI)
- Catalytic reduction of nitrate over bimetallic catalysts with H2
4.2.3. Electrochemical Denitrification
4.2.4. Photocatalytic Denitrification
5. Alternative Strategies
6. Final Remarks
7. Recommendations and Future Scope
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moss, B. Water pollution by agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 659–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachs, J.D. From millennium development goals to sustainable development goals. Lancet 2012, 379, 2206–2211. [Google Scholar] [CrossRef] [PubMed]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Policy: Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, A.; Sillanpää, M. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 2011, 168, 493–504. [Google Scholar] [CrossRef]
- Stevens, C.J.; Quinton, J.N. Diffuse pollution swapping in arable agricultural systems. Crit. Rev. Environ. Sci. Technol. 2009, 39, 478–520. [Google Scholar] [CrossRef] [Green Version]
- Dunn, S.M.; Brown, I.; Sample, J.; Post, H. Relationships between climate, water resources, land use and diffuse pollution and the significance of uncertainty in climate change. J. Hydrol. 2012, 434–435, 19–35. [Google Scholar] [CrossRef]
- Voulvoulis, N.; Arpon, K.D.; Giakoumis, T. The EU Water Framework Directive: From great expectations to problems with implementation. Sci. Total Environ. 2017, 575, 358–366. [Google Scholar] [CrossRef] [Green Version]
- Harrison, S.; McAree, C.; Mulville, W.; Sullivan, T. The problem of agricultural diffuse pollution: Getting to the point. Sci. Total Environ. 2019, 677, 700–717. [Google Scholar] [CrossRef]
- Debaere, P.; Richter, B.D.; Davis, K.F.; Duvall, M.S.; Gephart, J.A.; O’Bannon, C.E.; Pelnik, C.; Powell, E.M.; Smith, T.W. Water markets as a response to scarcity. Water Policy 2014, 16, 625–649. [Google Scholar] [CrossRef] [Green Version]
- Bieroza, M.Z.; Bol, R.; Glendell, M. What is the deal with the Green Deal: Will the new strategy help to improve European freshwater quality beyond the Water Framework Directive? Sci. Total Environ. 2021, 791, 148080. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [Green Version]
- Orellana-Macías, J.; Roselló, M.P.; Causapé, J. A methodology for assessing groundwater pollution hazard by nitrates from agricultural sources: Application to the Gallocanta groundwater basin (Spain). Sustainability 2021, 13, 6321. [Google Scholar] [CrossRef]
- Withers, P.J.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and eutrophication: Where do we go from here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef] [Green Version]
- Spiertz, J.H.J. Nitrogen, sustainable agriculture and food security. A review. Agron. Sustain. Dev. 2010, 30, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Howarth, R.; Chan, F.; Conley, D.J.; Garnier, J.; Doney, S.C.; Marino, R.; Billen, G. Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front. Ecol. Environ. 2011, 9, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Echaniz, J.; Benito-Fernández, J.; Mintegui-Raso, S. Methemoglobinemia and consumption of vegetables in infants. Pediatrics 2001, 107, 1024–1028. [Google Scholar] [CrossRef] [Green Version]
- Greer, F.R.; Shannon, M. Infant methemoglobinemia: The role of dietary nitrate in food and water. Pediatrics 2005, 116, 784–786. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Palko, J.W.; Oyarzun, D.I.; Ha, B.; Stadermann, M.; Santiago, J.G. Nitrate removal from water using electrostatic regeneration of functionalized adsorbent. Chem. Eng. J. 2018, 334, 1289–1296. [Google Scholar] [CrossRef] [Green Version]
- Richa, A.; Touil, S.; Fizir, M. Recent advances in the source identification and remediation techniques of nitrate contaminated groundwater: A review. J. Environ. Manag. 2022, 316, 115265. [Google Scholar] [CrossRef]
- Misstear, B.; Banks, D.; Clark, L. Appendix 5. FAO irrigation water quality guidelines. In Water Wells and Boreholes; Wiley Blackwell; John Wiley & Sons Ltd.: Oxford, UK, 2017; pp. 473–474. [Google Scholar] [CrossRef]
- Lintern, A.; McPhillips, L.; Winfrey, B.; Duncan, J.; Grady, C. Best management practices for diffuse nutrient pollution: Wicked problems across urban and agricultural watersheds. Environ. Sci. Technol. 2020, 54, 9159–9174. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Zhang, M.; Tsang, D.C.W.; Geng, N.; Lu, D.; Zhu, L.; Igalavithana, A.D.; Dissanayake, P.D.; Rinklebe, J.; Yang, X. Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural runoff: Current practices and future prospects. Appl. Biol. Chem. 2020, 63, 8. [Google Scholar] [CrossRef]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The microbial nitrogen-cycling network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Thamdrup, B. New pathways and processes in the global nitrogen cycle. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 407–428. [Google Scholar] [CrossRef]
- Bernhard, A. The nitrogen cycle: Processes, players, and human impact. Nat. Ed. 2010, 3, 25. [Google Scholar]
- Vitousek, P.M.; Cassman, K.; Cleveland, C.; Crews, T.I.; Field, C.B.; Grimm, N.; Howarth, R.; Marino, R.; Martinelli, L.; Rastetter, E.; et al. Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 2002, 57, 1–45. [Google Scholar] [CrossRef]
- Martínez-Espinosa, R.M.; Cole, J.A.; Richardson, D.J.; Watmough, N.J. Enzymology and ecology of the nitrogen cycle. Biochem. Soc. Trans. 2011, 39, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Udvardi, M.; Poole, P.S. Transport and metabolism in legume-rhizobia symbioses. Annu. Rev. Plant Biol. 2013, 64, 781–805. [Google Scholar] [CrossRef] [Green Version]
- Kuenen, J.G. Anammox and beyond. Environ. Microbiol. 2020, 22, 525–536. [Google Scholar] [CrossRef] [Green Version]
- Moloantoa, K.M.; Khetsha, Z.P.; van Heerden, E.; Castillo, J.C.; Cason, E.D. Nitrate water contamination from industrial activities and complete denitrification as a remediation option. Water 2022, 14, 799. [Google Scholar] [CrossRef]
- Van der Hoek, J.P.; Duijff, R.; Reinstra, O. Nitrogen recovery from wastewater: Possibilities, competition with other resources, and adaptation pathways. Sustainability 2018, 10, 4605. [Google Scholar] [CrossRef] [Green Version]
- Abascal, E.; Gómez-Coma, L.; Ortiz, I.; Ortiz, A. Global diagnosis of nitrate pollution in groundwater and review of removal technologies. Sci. Total Environ. 2022, 810, 152233. [Google Scholar] [CrossRef]
- Singh, S.; Anil, A.G.; Kumar, V.; Kapoor, D.; Subramanian, S.; Singh, J.; Ramamurthy, P.C. Nitrates in the environment: A critical review of their distribution, sensing techniques, ecological effects and remediation. Chemosphere 2022, 287, 131996. [Google Scholar] [CrossRef]
- Selck, B.J.; Carling, G.T.; Kirby, S.M.; Hansen, N.C.; Bickmore, B.R.; Tingey, D.G.; Rey, K.; Wallace, J.; Jordan, J.L. Investigating anthropogenic and geogenic sources of groundwater contamination in a semi-arid alluvial basin, Goshen Valley, UT, USA. Water Air Soil Pollut. 2018, 229, 186. [Google Scholar] [CrossRef]
- Ayub, R.; Messier, K.P.; Serre, M.L.; Mahinthakumar, K. Non-point source evaluation of groundwater nitrate contamination from agriculture under geologic uncertainty. Stoch. Environ. Res. Risk Assess. 2019, 33, 939–956. [Google Scholar] [CrossRef]
- Shukla, S.; Saxena, A. Sources and leaching of nitrate contamination in groundwater. Curr. Sci. 2020, 118, 883–891. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Biagioni, R.N.; Alarcón-Herrera, M.T.; Rivas-Lucero, B.A. An overview of nitrate sources and operating processes in arid and semiarid aquifer systems. Sci. Total Environ. 2018, 624, 1513–1522. [Google Scholar] [CrossRef]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Khan, M.N.; Mobin, M.; Abbas, Z.K.; Alamri, S.A. Fertilizers and their contaminants in soils, surface and groundwater. Encycl. Anthrop. 2018, 5, 225–240. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, P.K.; Kim, K.; Powell, M.A. Managing groundwater nitrate contamination from livestock farms: Implication for nitrate management guidelines. Curr. Pollut. Rep. 2016, 2, 178–187. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, M.; Muduli, M.; Ray, S. A comprehensive review on nitrate pollution and its remediation: Conventional and recent approaches. Sustain. Water Resour. Manag. 2022, 8, 113. [Google Scholar] [CrossRef]
- Seo, Y.G.; Jung, S.Y. Separation technologies for the removal of nitrate-nitrogen from aqueous solution. Clean Technol. 2017, 23, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef] [Green Version]
- Hekmatzadeh, A.A.; Karimi-Jashani, A.; Talebbeydokhti, N.; Kløve, B. Modeling of nitrate removal for ion exchange resin in batch and fixed bed experiments. Desalination 2012, 284, 22–31. [Google Scholar] [CrossRef]
- Milmile, S.N.; Pande, J.V.; Karmakar, S.; Bansiwal, A.; Chakrabarti, T.; Biniwale, R.B. Equilibrium isotherm and kinetic modeling of the adsorption of nitrates by anion exchange Indion NSSR resin. Desalination 2011, 276, 38–44. [Google Scholar] [CrossRef]
- Samatya, S.; Kabay, N.; Yüksel, Ü.; Arda, M.; Yüksel, M. Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React. Funct. Polym. 2006, 66, 1206–1214. [Google Scholar] [CrossRef]
- Norhayati, A.; Muhammad, R.; Kassim, A.A. Pre-evaluation of strong base anion exchange, Amberlite IRA 958-Cl resin for nitrate removal. Mater. Today Proc. 2019, 17, 679–685. [Google Scholar] [CrossRef]
- Wang, B.; Song, H.; Wang, C.; Shuang, C.; Li, Q.; Li, A. Evaluation of nitrate removal properties of magnetic anion-exchange resins in water. J. Chem. Technol. Biotechnol. 2016, 91, 1306–1313. [Google Scholar] [CrossRef]
- Matei, A.; Racoviteanu, G. Review of the technologies for nitrates removal from water intended for human consumption. IOP Conf. Ser. Earth Environ. Sci. 2021, 664, 012024. [Google Scholar] [CrossRef]
- Missimer, T.M.; Maliva, R.G. Environmental issues in seawater reverse osmosis desalination: Intakes and outfalls. Desalination 2018, 434, 198–215. [Google Scholar] [CrossRef]
- Mengesha, A.; Sahu, O. Sustainability of membrane separation technology on groundwater reverse osmosis process. Clean. Eng. Technol. 2022, 7, 100457. [Google Scholar] [CrossRef]
- Jiang, S.-X.; Li, Y.-N.; Ladewig, B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017, 595, 567–583. [Google Scholar] [CrossRef]
- Epsztein, R.; Nir, O.; Lahav, O.; Green, M. Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme. Chem. Eng. J. 2015, 279, 372–378. [Google Scholar] [CrossRef]
- Ahmad, N.N.R.; Ang, W.L.; Leo, C.P.; Mohammad, A.W.; Hilal, N. Current advances in membrane technologies for saline wastewater treatment: A comprehensive review. Desalination 2021, 517, 115170. [Google Scholar] [CrossRef]
- Wan, C.F.; Yang, T.; Lipscomb, G.G.; Stookey, D.J.; Chung, T.-S. Design and fabrication of hollow fiber membrane modules. J. Membr. Sci. 2017, 538, 96–107. [Google Scholar] [CrossRef]
- Atlaskin, A.A.; Trubyanov, M.M.; Yanbikov, N.R.; Vorotyntsev, A.V.; Drozdov, P.N.; Vorotyntsev, V.M.; Vorotyntsev, I.V. Comprehensive experimental study of membrane cascades type of “continuous membrane column” for gases high-purification. J. Membr. Sci. 2019, 572, 92–101. [Google Scholar] [CrossRef]
- Elazhar, F.; Elazhar, M.; El-Ghzizel, S.; Tahaikt, M.; Zait, M.; Dhiba, D.; Elmidaoui, A.; Taky, M. Nanofiltration-reverse osmosis hybrid process for hardness removal in brackish water with higher recovery rate and minimization of brine discharges. Process. Saf. Environ. Prot. 2021, 153, 376–383. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019, 17, 145–155. [Google Scholar] [CrossRef]
- Malaeb, L.; Ayoub, G.M. Reverse osmosis technology for water treatment: State of the art review. Desalination 2011, 267, 1–8. [Google Scholar] [CrossRef]
- Henthorne, L.; Boysen, B. State-of-the-art of reverse osmosis desalination pretreatment. Desalination 2015, 356, 129–139. [Google Scholar] [CrossRef]
- Baker, J.M.; Griffis, T.J. Feasibility of recycling excess agricultural nitrate with electrodialysis. J. Environ. Qual. 2017, 46, 1528–1534. [Google Scholar] [CrossRef] [PubMed]
- Aliaskari, M.; Schäfer, A.I. Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater. Water Res. 2021, 190, 116683. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhou, Y.; Liu, Z.; Zhang, J.; Tang, B.; Yang, S.; Sun, C. Efficient nitrate removal using micro-electrolysis with zero valent iron/activated carbon nanocomposite. J. Chem. Technol. Biotechnol. 2016, 91, 2942–2949. [Google Scholar] [CrossRef]
- Xu, T.; Huang, C. Electrodialysis-based separation technologies: A critical review. AIChE J. 2008, 54, 3147–3159. [Google Scholar] [CrossRef]
- Gurreri, L.; Tamburini, A.; Cipollina, A.; Micale, G. Electrodialysis applications in wastewater treatment for environmental protection and resources recovery: A systematic review on progress and perspectives. Membranes 2020, 10, 146. [Google Scholar] [CrossRef]
- Bi, J.; Peng, C.; Xu, H.; Ahmed, A.-S. Removal of nitrate from groundwater using the technology of electrodialysis and electrodeionization. Desalin. Water Treat. 2011, 34, 394–401. [Google Scholar] [CrossRef]
- Park, K.Y.; Cha, H.Y.; Chantrasakdakul, P.; Lee, K.; Kweon, J.H.; Bae, S. Removal of nitrate by electrodialysis: Effect of operation parameters. Membr. Water Treat. 2017, 8, 201–210. [Google Scholar] [CrossRef]
- El Midaoui, A.; Elhannouni, F.; Taky, M.; Chay, L.; Sahli, M.A.M.; Echihabi, L.; Hafsi, M. Optimization of nitrate removal operation from ground water by electrodialysis. Sep. Purif. Technol. 2002, 29, 235–244. [Google Scholar] [CrossRef]
- Abou-Shady, A.; Peng, C.; Almeria, O.J.; Xu, H. Effect of pH on separation of Pb (II) and NO3− from aqueous solutions using electrodialysis. Desalination 2012, 285, 46–53. [Google Scholar] [CrossRef]
- Lakshmi, J.; Sozhan, G.; Vasudevan, S. Recovery of hydrogen and removal of nitrate from water by electrocoagulation process. Environ. Sci. Pollut. Res. 2013, 20, 2184–2192. [Google Scholar] [CrossRef]
- Al-Marri, S.; AlQuzweeni, S.S.; Hashim, K.S.; AlKhaddar, R.; Kot, P.; AlKizwini, R.S.; Zubaidi, S.L.; Al-Khafaji, Z.S. Ultrasonic-Electrocoagulation method for nitrate removal from water. IOP Conf. Ser. Mater Sci. Eng. 2020, 888, 012073. [Google Scholar] [CrossRef]
- Yasri, N.; Hu, J.; Kibria, M.G.; Roberts, E.P. Electrocoagulation separation processes. In Multidisciplinary Advances in Efficient Separation Processes; American Chemical Society: Washington, DC, USA, 2020; pp. 167–203. [Google Scholar] [CrossRef]
- Lacasa, E.; Cañizares, P.; Saez, C.; Fernández, E.L.; Rodrigo, M.A. Removal of nitrates from groundwater by electrocoagulation. Chem. Eng. J. 2011, 171, 1012–1017. [Google Scholar] [CrossRef]
- Duan, J.; Gregory, J. Coagulation by hydrolysing metal salts. Adv. Colloid Interface Sci. 2003, 100–102, 475–502. [Google Scholar] [CrossRef]
- Mollah, M.Y.; Morkovsky, P.; Gomes, J.A.; Kesmez, M.; Parga, J.; Cocke, D.L. Fundamentals, present and future perspectives of electrocoagulation. J. Hazard. Mater. 2004, 114, 199–210. [Google Scholar] [CrossRef]
- Vasudevan, S.; Epron, F.; Lakshmi, J.; Ravichandran, S.; Mohan, S.; Sozhan, G. Removal of NO3− from drinking water by electrocoagulation—an alternate approach. Clean Soil Air Water 2010, 38, 225–229. [Google Scholar] [CrossRef]
- Bener, S.; Bulca, Ö.; Palas, B.; Tekin, G.; Atalay, S.; Ersöz, G. Electrocoagulation process for the treatment of real textile wastewater: Effect of operative conditions on the organic carbon removal and kinetic study. Process. Saf. Environ. Prot. 2019, 129, 47–54. [Google Scholar] [CrossRef]
- Murthy, Z.V.P.; Nancy, C.; Kant, A. Separation of pollutants from restaurant wastewater by electrocoagulation. Sep. Sci. Technol. 2007, 42, 819–833. [Google Scholar] [CrossRef]
- Amarine, M.; Lekhlif, B.; Sinan, M.; El Rharras, A.; Echaabi, J. Treatment of nitrate-rich groundwater using electrocoagulation with aluminum anodes. Groundw. Sustain. Dev. 2020, 11, 100371. [Google Scholar] [CrossRef]
- Porada, S.; Zhao, R.; Van Der Wal, A.; Presser, V.; Biesheuvel, P.M. Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 2013, 58, 1388–1442. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.; Dorji, P.; Shon, H.K.; Hong, S. Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency. Desalination 2019, 449, 118–130. [Google Scholar] [CrossRef]
- Pastushok, O.; Zhao, F.; Ramasamy, D.L.; Sillanpää, M. Nitrate removal and recovery by capacitive deionization (CDI). Chem. Eng. J. 2019, 375, 121943. [Google Scholar] [CrossRef]
- Alvarez-Gonzalez, F.J.; Martin-Ramos, J.A.; Diaz, J.; Martinez, J.A.; Pernia, A.M. Energy-recovery optimization of an experimental CDI desalination system. IEEE Trans. Ind. Electron. 2015, 63, 1586–1597. [Google Scholar] [CrossRef]
- Marcus, Y. Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. J. Chem. Soc. Farad. Transact. 1991, 87, 2995–2999. [Google Scholar] [CrossRef]
- Eliad, L.; Salitra, G.; Soffer, A.; Aurbach, D. Ion sieving effects in the electrical double layer of porous carbon electrodes: Estimating effective ion size in electrolytic solutions. J. Phys. Chem. B 2001, 105, 6880–6887. [Google Scholar] [CrossRef]
- Kalluri, R.K.; Biener, M.M.; Suss, M.E.; Merrill, M.D.; Stadermann, M.; Santiago, J.G.; Baumann, T.F.; Biener, J.; Striolo, A. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes. Phys. Chem. Chem. Phys. 2013, 15, 2309–2320. [Google Scholar] [CrossRef]
- Tang, W.; Kovalsky, P.; He, D.; Waite, T.D. Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water Res. 2015, 84, 342–349. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, H.; Xiong, G.; Wang, X.; Tan, S.; Shaojie, J.; Hongwu, W.; Guanquan, X.; Xinlei, W.; Siying, T. Removal of nitrate using activated carbon-based electrodes for capacitive deionization. Water Supply 2018, 18, 2028–2034. [Google Scholar] [CrossRef]
- Oyarzun, D.I.; Hemmatifar, A.; Palko, J.W.; Stadermann, M.; Santiago, J.G. Adsorption and capacitive regeneration of nitrate using inverted capacitive deionization with surfactant functionalized carbon electrodes. Sep. Purif. Technol. 2018, 194, 410–415. [Google Scholar] [CrossRef]
- McNair, R.; Szekely, G.; Dryfe, R.A.W. Ion-exchange materials for membrane capacitive deionization. ACS ES&T Water 2020, 1, 217–239. [Google Scholar] [CrossRef]
- Hassanvand, A.; Wei, K.; Talebi, S.; Chen, G.Q.; Kentish, S.E. The role of ion exchange membranes in membrane capacitive deionisation. Membranes 2017, 7, 54. [Google Scholar] [CrossRef] [Green Version]
- Uzun, H.I.; Debik, E. Economical approach to nitrate removal via membrane capacitive deionization. Sep. Purif. Technol. 2019, 209, 776–781. [Google Scholar] [CrossRef]
- Rogers, T.K.; Guo, S.; Arrazolo, L.; Garcia-Segura, S.; Wong, M.S.; Verduzco, R. Catalytic capacitive deionization for adsorption and reduction of aqueous nitrate. ACS ES&T Water 2021, 1, 2233–2241. [Google Scholar] [CrossRef]
- Hasseler, T.D.; Ramachandran, A.; Tarpeh, W.A.; Stadermann, M.; Santiago, J.G. Process design tools and techno-economic analysis for capacitive deionization. Water Res. 2020, 183, 116034. [Google Scholar] [CrossRef]
- Rosique, M.; Angosto, J.M.; Guibal, E.; Roca, M.J.; Fernández-López, J.A. Factorial design methodological approach for enhanced cadmium ions bioremoval by Opuntia biomass. Clean Soil Air Water 2016, 44, 959–966. [Google Scholar] [CrossRef]
- Tan, M.X.; Zhang, Y.; Ying, J.Y. Mesoporous poly (melamine–formaldehyde) solid sorbent for carbon dioxide capture. ChemSusChem 2013, 6, 1186–1190. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Wang, J. A critical review of various adsorbents for selective removal of nitrate from water: Structure, performance and mechanism. Chemosphere 2022, 291, 132728. [Google Scholar] [CrossRef]
- Banu, H.T.; Karthikeyan, P.; Meenakshi, S. Zr4+ ions embedded chitosan-soya bean husk activated bio-char composite beads for the recovery of nitrate and phosphate ions from aqueous solution. Int. J. Biol. Macromol. 2019, 130, 573–583. [Google Scholar] [CrossRef]
- Mehrabi, N.; Soleimani, M.; Yeganeh, M.M.; Sharififard, H. Parameter optimization for nitrate removal from water using activated carbon and composite of activated carbon and Fe2O3 nanoparticles. RSC Adv. 2015, 5, 51470–51482. [Google Scholar] [CrossRef]
- Schick, J.; Caullet, P.; Paillaud, J.-L.; Patarin, J.; Mangold-Callarec, C. Batch-wise nitrate removal from water on a surfactant-modified zeolite. Microporous Mesoporous Mater. 2010, 132, 395–400. [Google Scholar] [CrossRef]
- Öztürk, N.; Bektaş, T.E. Nitrate removal from aqueous solution by adsorption onto various materials. J. Hazard. Mat. 2004, 112, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Patel, R. Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency. Desalination 2010, 256, 120–128. [Google Scholar] [CrossRef]
- Helard, D.; Indah, S.; Sari, C.M.; Mariesta, H. The adsorption and regeneration of natural pumice as low-cost adsorbent for nitrate removal from water. J. Geosci. Eng. Environ. Technol. 2018, 3, 86–93. [Google Scholar] [CrossRef]
- Jóźwiak, T.; Filipkowska, U.; Szymczyk, P.; Mielcarek, A. Application of cross-linked chitosan for nitrate nitrogen (V) removal from aqueous solutions. Prog. Chem. Appl. Chitin Deriv. 2014, 19, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Pathan, S.M.; Aylmore, L.A.G.; Colmer, T.D. Reduced leaching of nitrate, ammonium, and phosphorus in a sandy soil by fly ash amendment. Austral. J. Soil Res. 2002, 40, 1201–1211. [Google Scholar] [CrossRef]
- Singh, S.; Mishra, P. Use of different bioadsorbents for the nitrate removal from water. Int. J. Res. Appl. Sci. Eng. Technol. 2018, 6, 2781–2789. [Google Scholar] [CrossRef]
- Zhang, M.; Song, G.; Gelardi, D.L.; Huang, L.; Khan, E.; Mašek, O.; Parikh, S.J.; Ok, Y.S. Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Res. 2020, 186, 116303. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Miñarro, M.D.; Angosto, J.M.; Fernández-Lledó, J.; Obón, J.M. Adsorptive and surface characterization of mediterranean agrifood processing wastes: Prospection for pesticide removal. Agronomy 2021, 11, 561. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, B.-Y.; Yue, W.-W.; Yue, Q.-Y. Preparation and utilization of wheat straw anionic sorbent for the removal of nitrate from aqueous solution. J. Environ. Sci. 2007, 19, 1305–1310. [Google Scholar] [CrossRef]
- Mishra, P.C.; Patel, R.K. Use of agricultural waste for the removal of nitrate-nitrogen from aqueous medium. J. Environ. Manag. 2009, 90, 519–522. [Google Scholar] [CrossRef]
- Demiral, H.; Gündüzoğlu, G. Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresour. Technol. 2010, 101, 1675–1680. [Google Scholar] [CrossRef]
- Ueda, T.; Shinogi, Y.; Yamaoka, M. Biological nitrate removal using sugar-industry wastes. Paddy Water Environ. 2006, 4, 139–144. [Google Scholar] [CrossRef]
- Mautner, A.; Maples, H.A.; Sehaqui, H.; Zimmermann, T.; de Larraya, U.P.; Mathew, A.P.; Lai, C.Y.; Li, K.; Bismarck, A. Nitrate removal from water using a nanopaper ion-exchanger. Environ. Sci. Water Res. Technol. 2016, 2, 117–124. [Google Scholar] [CrossRef]
- Khataee, A.; Azamat, J.; Bayat, G. Separation of nitrate ion from water using silicon carbide nanotubes as a membrane: Insights from molecular dynamics simulation. Comput. Mater. Sci. 2016, 119, 74–81. [Google Scholar] [CrossRef]
- Tyagi, S.; Rawtani, D.; Khatri, N.; Tharmavaram, M. Strategies for nitrate removal from aqueous environment using nanotechnology: A review. J. Water Process. Eng. 2018, 21, 84–95. [Google Scholar] [CrossRef]
- Fotsing, P.N.; Woumfo, E.D.; Mezghich, S.; Mignot, M.; Mofaddel, N.; Le Derf, F.; Vieillard, J. Surface modification of biomaterials based on cocoa shell with improved nitrate and Cr (VI) removal. RSC Adv. 2020, 10, 20009–20019. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, H.; Zhao, D.; Qiu, S.; Li, M.; Liang, J.; Han, W.; Bo, L.; Zhang, Q.; Wang, F. Preparation and mechanism of modified quaternary amine straw for efficient nitrate removal from aqueous solution. Biomass Convers. Biorefinery 2022, 1–14. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Ji, M.; Choi, Y.; Jung, W.; Lee, S.; Kim, S.; Lee, G.; Suk, H.; Kim, H.; Min, B.; et al. Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon. Sep. Sci. Technol. 2008, 43, 886–907. [Google Scholar] [CrossRef]
- El Hanache, L.; Lebeau, B.; Nouali, H.; Toufaily, J.; Hamieh, T.; Daou, T.J. Performance of surfactant-modified *BEA-type zeolite nanosponges for the removal of nitrate in contaminated water: Effect of the external surface. J. Hazard. Mater. 2019, 364, 206–217. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J. Enhanced removal of nitrate from water using surface modification of adsorbents–A review. J. Environ. Manag. 2013, 131, 363–374. [Google Scholar] [CrossRef]
- Katal, R.; Baei, M.S.; Rahmati, H.T.; Esfandian, H. Kinetic, isotherm and thermodynamic study of nitrate adsorption from aqueous solution using modified rice husk. J. Ind. Eng. Chem. 2012, 18, 295–302. [Google Scholar] [CrossRef]
- Sehaqui, H.; Mautner, A.; de Larraya, U.P.; Pfenninger, N.; Tingaut, P.; Zimmermann, T. Cationic cellulose nanofibers from waste pulp residues and their nitrate, fluoride, sulphate and phosphate adsorption properties. Carbohydr. Polym. 2016, 135, 334–340. [Google Scholar] [CrossRef]
- Gouran-Orimi, R.; Mirzayi, B.; Nematollahzadeh, A.; Tardast, A. Competitive adsorption of nitrate in fixed-bed column packed with bio-inspired polydopamine coated zeolite. J. Environ. Chem. Eng. 2018, 6, 2232–2240. [Google Scholar] [CrossRef]
- El-Nahas, S.; Salman, H.M.; Seleeme, W.A. Aluminum building scrap wire, take-out food container, potato peels and bagasse as valueless waste materials for nitrate removal from water supplies. Chem. Afr. 2019, 2, 143–162. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, T.; Khan, A.U.; Dandamudi, K.P.R.; Deng, S.; Helal, M.H.; Ali, H.M.; Ahmad, Z. Oil tea shell synthesized biochar adsorptive utilization for the nitrate removal from aqueous media. Chemosphere 2022, 307, 136045. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, M.; Xu, P.; Zhao, X.; Bai, H.; Li, H. Characteristics of nitrate removal from aqueous solution by modified steel slag. Water 2017, 9, 757. [Google Scholar] [CrossRef] [Green Version]
- Tezuka, S.; Chitrakar, R.; Sonoda, A.; Ooi, K.; Tomida, T. Studies on selective adsorbents for oxo-anions. NO3− adsorptive properties of Ni-Fe layered double hydroxide in seawater. Adsorption 2005, 11, 751–755. [Google Scholar] [CrossRef]
- Manhooei, L.; Mehdinejadiani, B.; Amininasab, S.M. Cellulose nanocrystal modified with 3-chloro propyl trimethoxysilane: A new bio-adsorbent for nitrate removal from water. Water Environ. J. 2020, 34, 50–60. [Google Scholar] [CrossRef]
- Zhou, H.; Tan, Y.; Gao, W.; Zhang, Y.; Yang, Y. Selective nitrate removal from aqueous solutions by a hydrotalcite-like absorbent FeMgMn-LDH. Sci. Rep. 2020, 10, 16126. [Google Scholar] [CrossRef]
- Chatterjee, S.; Woo, S.H. The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater. 2009, 164, 1012–1018. [Google Scholar] [CrossRef]
- Ren, Z.; Xu, X.; Wang, X.; Gao, B.; Yue, Q.; Song, W.; Zhang, L.; Wang, H. FTIR, Raman, and XPS analysis during phosphate, nitrate and Cr (VI) removal by amine cross-linking biosorbent. J. Colloid Interface Sci. 2016, 468, 313–323. [Google Scholar] [CrossRef]
- Qiao, H.; Mei, L.; Chen, G.; Liu, H.; Peng, C.; Ke, F.; Hou, R.; Wan, X.; Cai, H. Adsorption of nitrate and phosphate from aqueous solution using amine cross-linked tea wastes. Appl. Surf. Sci. 2019, 483, 114–122. [Google Scholar] [CrossRef]
- Tofighy, M.A.; Mohammadi, T. Nitrate removal from water using functionalized carbon nanotube sheets. Chem. Eng. Res. Des. 2012, 90, 1815–1822. [Google Scholar] [CrossRef]
- Keränen, A.; Leiviskä, T.; Hormi, O.; Tanskanen, J. Removal of nitrate by modified pine sawdust: Effects of temperature and co-existing anions. J. Environ. Manag. 2015, 147, 46–54. [Google Scholar] [CrossRef]
- Ghadiri, S.K.; Nasseri, S.; Nabizadeh, R.; Khoobi, M.; Nazmara, S.; Mahvi, A.H. Adsorption of nitrate onto anionic bio-graphene nanosheet from aqueous solutions: Isotherm and kinetic study. J. Mol. Liq. 2017, 242, 1111–1117. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Rauf, T.A. Adsorption performance of amine functionalized cellulose grafted epichlorohydrin for the removal of nitrate from aqueous solutions. J. Ind. Eng. Chem. 2013, 19, 1659–1667. [Google Scholar] [CrossRef]
- Seitzinger, S.; Harrison, J.A.; Böhlke, J.K.; Bouwman, A.F.; Lowrance, R.; Peterson, B.; Tobias, C.; Van Drecht, G. Denitrification across landscapes and waterscapes: A synthesis. Ecol. Appl. 2006, 16, 2064–2090. [Google Scholar] [CrossRef] [Green Version]
- Rocca, C.D.; Belgiorno, V.; Meriç, S. Overview of in-situ applicable nitrate removal processes. Desalination 2007, 204, 46–62. [Google Scholar] [CrossRef]
- Lee, K.-C.; Rittmann, B.E. Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Res. 2002, 36, 2040–2052. [Google Scholar] [CrossRef]
- Jensen, V.B.; Darby, J.L.; Seidel, C.; Gorman, C. Nitrate in potable water supplies: Alternative management strategies. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2203–2286. [Google Scholar] [CrossRef]
- Gayle, B.P.; Boardman, G.D.; Sherrard, J.H.; Benoit, R.E. Biological denitrification of water. J. Environ. Eng. 1989, 115, 930–943. [Google Scholar] [CrossRef]
- Mohseni-Bandpi, A.; Elliott, D.J.; Zazouli, M.A. Biological nitrate removal processes from drinking water supply-a review. J. Environ. Health Sci. Eng. 2013, 11, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moraes, B.S.; Souza, T.S.O.; Foresti, E. Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors. Process Biochem. 2012, 47, 1395–1401. [Google Scholar] [CrossRef]
- Lee, H.W.; Park, Y.K.; Choi, E.S.; Lee, J.W. Bacterial community and biological nitrate removal: Comparisons of autotrophic and heterotrophic reactors for denitrification with raw sewage. J. Microbiol. Biotechnol. 2008, 18, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, C.; Mosquera-Corral, A.; Campos, J.; Méndez, R. Autotrophic denitrification with sulphide in a sequencing batch reactor. J. Environ. Manag. 2012, 113, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.-E.; Kim, K.-S.; Choi, H.-C.; Cho, J.; Kim, I. Kinetics and physiological characteristics of autotrophic denitrification by denitrifying sulfur bacteria. Water Sci. Technol. 2000, 42, 59–68. [Google Scholar] [CrossRef]
- Campos, J.L.; Carvalho, S.; Portela, R.; Mosquera-Corral, A.; Méndez, R. Kinetics of denitrification using sulphfur compounds: Effects of S/N ratio, endogenous and exogenous compounds. Bioresour. Technol. 2008, 99, 1293–1299. [Google Scholar] [CrossRef]
- Yang, T.; Xin, Y.; Zhang, L.; Gu, Z.; Li, Y.; Ding, Z.; Shi, G. Characterization on the aerobic denitrification process of Bacillus strains. Biomass Bioenergy 2020, 140, 105677. [Google Scholar] [CrossRef]
- Shi, Z.; Zhang, Y.; Zhou, J.; Chen, M.; Wang, X. Biological removal of nitrate and ammonium under aerobic atmosphere by Paracoccus versutus LYM. Bioresour. Technol. 2013, 148, 144–148. [Google Scholar] [CrossRef]
- Zhao, B.; Cheng, D.Y.; Tan, P.; An, Q.; Guo, J.S.J. Characterization of an aerobic denitrifier Pseudomonas stutzeri strain XL-2 to achieve efficient nitrate removal. Bioresour. Technol. 2018, 250, 564–573. [Google Scholar] [CrossRef]
- Snyder, S.W.; Bazylinski, D.A.; Hollocher, T.C. Loss of N2O reductase activity as an explanation for poor growth of Pseudomonas aeruginosa on N2O. Appl. Environ. Microbiol. 1987, 53, 2045–2049. [Google Scholar] [CrossRef] [Green Version]
- Di Capua, F.; Pirozzi, F.; Lens, P.N.; Esposito, G. Electron donors for autotrophic denitrification. Chem. Eng. J. 2019, 362, 922–937. [Google Scholar] [CrossRef]
- Rezvani, F.; Sarrafzadeh, M.-H.; Ebrahimi, S.; Oh, H.-M. Nitrate removal from drinking water with a focus on biological methods: A review. Environ. Sci. Pollut. Res. 2019, 26, 1124–1141. [Google Scholar] [CrossRef]
- Khin, T.; Annachhatre, A.P. Novel microbial nitrogen removal processes. Biotechnol. Adv. 2004, 22, 519–532. [Google Scholar] [CrossRef]
- Cherchi, C.; Onnis-Hayden, A.; El-Shawabkeh, I.; Gu, A.Z. Implication of using different carbon sources for denitrification in wastewater treatments. Water Environ. Res. 2009, 81, 788–799. [Google Scholar] [CrossRef]
- Huno, S.K.M.; Rene, E.R.; van Hullebusch, E.D.; Annachhatre, A.P. Nitrate removal from groundwater: A review of natural and engineered processes. J. Water Supply Res. Technol. Aqua 2018, 67, 885–902. [Google Scholar] [CrossRef] [Green Version]
- Díaz-García, C.; Martínez-Sánchez, J.J.; Maxwell, B.M.; Franco, J.A.; Álvarez-Rogel, J. Woodchip bioreactors provide sustained denitrification of brine from groundwater desalination plants. J. Environ. Manag. 2021, 289, 112521. [Google Scholar] [CrossRef]
- Shen, Z.; Yin, Y.; Wang, J. Biological denitrification using poly (butanediol succinate) as electron donor. Appl. Microbiol. Biotechnol. 2016, 100, 6047–6053. [Google Scholar] [CrossRef]
- Abu-Ghararah, Z.H. Biological denitrification of high nitrate water: Influence of type of carbon source and nitrate loading. J. Environ. Sci. Health A 1996, 31, 651–1668. [Google Scholar] [CrossRef]
- Soares, M.I.M. Biological denitrification of groundwater. J. Environ. Sci. Health Part A Environ. Sci. Eng. Toxicol. 2000, 123, 183–193. [Google Scholar] [CrossRef]
- Karanasios, K.A.; Vasiliadou, I.A.; Pavlou, S.; Vayenas, D.V. Hydrogenotrophic denitrification of potable water: A review. J. Hazard. Mater. 2010, 180, 20–37. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, Z.; Ontiveros-Valencia, A.; Long, M.; Lai, C.-Y.; Zhao, H.-P.; Xia, S.; Rittmann, B.E. Coupling of Pd nanoparticles and denitrifying biofilm promotes H2-based nitrate removal with greater selectivity towards N2. Appl. Catal. B Environ. 2017, 206, 461–470. [Google Scholar] [CrossRef]
- Centi, G.; Perathoner, S. Remediation of water contamination using catalytic technologies. Appl. Catal. B Environ. 2003, 41, 15–29. [Google Scholar] [CrossRef]
- Suzuki, T.; Moribe, M.; Oyama, Y.; Niinae, M. Mechanism of nitrate reduction by zero-valent iron: Equilibrium and kinetics studies. Chem. Eng. J. 2012, 183, 271–277. [Google Scholar] [CrossRef]
- Curcio, G.M.; Limonti, C.; Siciliano, A.; Kabdaşlı, I. Nitrate removal by zero-valent metals: A comprehensive review. Sustainability 2022, 14, 4500. [Google Scholar] [CrossRef]
- Huang, Y.H.; Zhang, T.C. Effects of dissolved oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe2+. Water Res. 2005, 39, 1751–1760. [Google Scholar] [CrossRef]
- Hamid, S.; Kumar, M.A.; Han, J.-I.; Kim, H.; Lee, W. Nitrate reduction on the surface of bimetallic catalysts supported by nano-crystalline beta-zeolite (NBeta). Green Chem. 2017, 19, 853–866. [Google Scholar] [CrossRef]
- Sakamoto, Y.; Kamiya, Y.; Okuhara, T. Selective hydrogenation of nitrate to nitrite in water over Cu-Pd bimetallic clusters supported on active carbon. J. Mol. Catal. A Chem. 2006, 250, 80–86. [Google Scholar] [CrossRef]
- Hamid, S.; Bae, S.; Lee, W.; Amin, M.T.; Alazba, A.A. Catalytic nitrate removal in continuous bimetallic Cu-Pd/nanoscale zerovalent iron system. Ind. Eng. Chem. Res. 2015, 54, 6247–6257. [Google Scholar] [CrossRef]
- Jung, J.; Bae, S.; Lee, W. Nitrate reduction by maghemite supported Cu-Pd bimetallic catalyst. Appl. Catal. B Environ. 2012, 127, 148–158. [Google Scholar] [CrossRef]
- Hao, Z.-W.; Xu, X.-H.; Wang, D.-H. Reductive denitrification of nitrate by scrap iron filings. J. Zhejiang Univ. Sci. B 2005, 6, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Liou, Y.H.; Lo, S.-L.; Lin, C.-J.; Kuan, W.H.; Weng, S.C. Effects of iron surface pretreatment on kinetics of aqueous nitrate reduction. J. Hazard. Mater. 2005, 126, 189–194. [Google Scholar] [CrossRef]
- Villen-Guzman, M.; Paz-Garcia, J.M.; Arhoun, B.; Cerrillo-Gonzalez, M.D.M.; Rodriguez-Maroto, J.M.; Vereda-Alonso, C.; Gomez-Lahoz, C. Chemical reduction of nitrate by zero-valent iron: Shrinking-core versus surface kinetics models. Int. J. Environ. Res. Public Health 2020, 17, 1241. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Yun, Y.; Kim, D.-G. Nitrate reduction by micro-scale zero-valent iron particles under oxic condition. KSCE J. Civ. Eng. 2017, 21, 2119–2127. [Google Scholar] [CrossRef]
- Lien, H.-L.; Zhang, W.-X. Transformation of chlorinated methanes by nanoscale iron particles. J. Environ. Eng. 1999, 125, 1042–1047. [Google Scholar] [CrossRef]
- Wang, W.; Jin, Z.-H.; Li, T.-L.; Zhang, H.; Gao, S. Preparation of spherical iron nanoclusters in ethanol–water solution for nitrate removal. Chemosphere 2006, 65, 1396–1404. [Google Scholar] [CrossRef]
- Li, T.; Li, S.; Wang, S.; An, Y.; Jin, Z. Preparation of nanoiron by water-in-oil (W/O) microemulsion for reduction of nitrate in groundwater. J. Water Resour. Prot. 2009, 1, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Deng, Z.; Feng, T.; Fan, J.; Zhang, W.-X. Nanoscale zero-valent iron (nZVI) encapsulated within tubular nitride carbon for highly selective and stable electrocatalytic denitrification. Chem. Eng. J. 2021, 417, 129160. [Google Scholar] [CrossRef]
- Zeng, Y.; Walker, H.; Zhu, Q. Reduction of nitrate by NaY zeolite supported Fe, Cu/Fe and Mn/Fe nanoparticles. J. Hazard. Mater. 2017, 324, 605–616. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Zhang, Y.; Chen, G.H. Appropriate conditions or maximizing catalytic reduction efficiency of nitrate into nitrogen gas in groundwater. Water Res. 2003, 37, 2489–2495. [Google Scholar] [CrossRef]
- Hamid, S.; Bae, S.; Lee, W. Novel bimetallic catalyst supported by red mud for enhanced nitrate reduction. Chem. Eng. J. 2018, 348, 877–887. [Google Scholar] [CrossRef]
- Soares, O.S.G.; Órfão, J.J.; Pereira, M.F.R. Bimetallic catalysts supported on activated carbon for the nitrate reduction in water: Optimization of catalysts composition. Appl. Catal. B Environ. 2009, 91, 441–448. [Google Scholar] [CrossRef]
- Tokazhanov, G.; Ramazanova, E.; Hamid, S.; Bae, S.; Lee, W. Advances in the catalytic reduction of nitrate by metallic catalysts for high efficiency and N2 selectivity: A review. Chem. Eng. J. 2020, 384, 123252. [Google Scholar] [CrossRef]
- Sanchis, I.; Diaz, E.; Pizarro, A.H.; Rodriguez, J.J.; Mohedano, A.F. Nitrate reduction with bimetallic catalysts. A stability-addressed overview. Sep. Purif. Technol. 2022, 290, 120750. [Google Scholar] [CrossRef]
- Yun, Y.; Li, Z.; Chen, Y.-H.; Saino, M.; Cheng, S.; Zheng, L. Catalytic reduction of nitrate in secondary effluent of wastewater treatment plants by Fe0 and Pd-Cu/γ-Al2O3. Water Sci. Technol. 2016, 73, 2697–2703. [Google Scholar] [CrossRef] [PubMed]
- Wehbe, N.; Guilhaume, N.; Fiaty, K.; Miachon, S.; Dalmon, J.-A. Hydrogenation of nitrates in water using mesoporous membranes operated in a flow-through catalytic contactor. Catal. Today 2010, 156, 208–215. [Google Scholar] [CrossRef]
- Chaplin, B.P. The prospect of electrochemical technologies advancing worldwide water treatment. Acc. Chem. Res. 2019, 52, 596–604. [Google Scholar] [CrossRef]
- Lan, H.; Liu, X.; Liu, H.; Liu, R.; Hu, C.; Qu, J. Efficient nitrate reduction in a fluidized electrochemical reactor promoted by Pd-Sn/AC particles. Catal. Lett. 2016, 146, 91–99. [Google Scholar] [CrossRef]
- Pérez, O.G.; Bisang, J.M. Removal of nitrate using an activated rotating cylinder electrode. Electrochim. Acta 2016, 194, 448–453. [Google Scholar] [CrossRef]
- Lacasa, E.; Llanos, J.; Cañizares, P.; Rodrigo, M.A. Electrochemical denitrificacion with chlorides using DSA and BDD anodes. Chem. Eng. J. 2012, 184, 66–71. [Google Scholar] [CrossRef]
- Szpyrkowicz, L.; Daniele, S.; Radaelli, M.; Specchia, S. Removal of NO3− from water by electrochemical reduction in different reactor configurations. Appl. Catal. B Environ. 2006, 66, 40–50. [Google Scholar] [CrossRef]
- Li, M.; Feng, C.; Zhang, Z.; Sugiura, N. Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2-Pt anode and different cathodes. Electrochim. Acta 2009, 54, 4600–4606. [Google Scholar] [CrossRef]
- Katsounaros, I.; Kyriacou, G. Influence of the concentration and the nature of the supporting electrolyte on the electrochemical reduction of nitrate on tin cathode. Electrochim. Acta 2007, 52, 6412–6420. [Google Scholar] [CrossRef]
- Pérez, G.; Ibañez, R.; Urtiaga, A.M.; Ortiz, I. Kinetic study of the simultaneous electrochemical removal of aqueous nitrogen compounds using BDD electrodes. Chem. Eng. J. 2012, 197, 475–482. [Google Scholar] [CrossRef]
- Ding, J.; Li, W.; Zhao, Q.-L.; Wang, K.; Zheng, Z.; Gao, Y.-Z. Electroreduction of nitrate in water: Role of cathode and cell configuration. Chem Eng. J. 2015, 271, 252–259. [Google Scholar] [CrossRef]
- Haque, I.U.; Tariq, M. Electrochemical reduction of nitrate: A review. J. Chem. Soc. Pak. 2010, 32, 396–418. [Google Scholar]
- Zhang, Y.; Zhao, Y.; Chen, Z.; Wang, L.; Wu, P.; Wang, F. Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: High efficiency and N2 selectivity. Electrochim. Acta 2018, 291, 151–160. [Google Scholar] [CrossRef]
- Su, L.; Li, K.; Zhang, H.; Fan, M.; Ying, D.; Sun, T.; Wang, Y.; Jia, J. Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode. Water Res. 2017, 120, 1–11. [Google Scholar] [CrossRef]
- Hasnat, M.A.; Ishibashi, I.; Sato, K.; Agui, R.; Yamaguchi, T.; Ikeue, K.; Machida, M. Electrocatalytic reduction of nitrate using Cu–Pd and Cu–Pt cathodes/H+-conducting solid polymer electrolyte membrane assemblies. Bull. Chem. Soc. Jpn. 2008, 81, 1675–1680. [Google Scholar] [CrossRef]
- Reyter, D.; Bélanger, D.; Roué, L. Elaboration of Cu-Pd films by coelectrodeposition: Application to nitrate electroreduction. J. Phys. Chem. C 2009, 113, 290–297. [Google Scholar] [CrossRef]
- Birdja, Y.Y.; Yang, J.; Koper, M.T.M. Electrocatalytic reduction of nitrate on tin-modified palladium electrodes. Electrochim. Acta 2014, 140, 518–524. [Google Scholar] [CrossRef]
- Bouzek, K.; Paidar, M.; Sadílková, A.; Bergmann, H. Electrochemical reduction of nitrate in weakly alkaline solutions. J. Appl. Electrochem. 2001, 31, 1185–1193. [Google Scholar] [CrossRef]
- Li, M.; Feng, C.; Zhang, Z.; Shen, Z.; Sugiura, N. Electrochemical reduction of nitrate using various anodes and a Cu/Zn cathode. Electrochem. Commun. 2009, 11, 1853–1856. [Google Scholar] [CrossRef]
- Fan, N.; Li, Z.; Zhao, L.; Wu, N.; Zhou, T. Electrochemical denitrification and kinetics study using Ti/IrO2-TiO2-RuO2 as the anode and Cu/Zn as the cathode. Chem. Eng. J. 2013, 214, 83–90. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, W.; Wang, W.; Xu, Y.; Bao, X.; Zhang, R.; Zhang, B.; Guo, Y.; Cui, F. Interfacial electronic effects of palladium nanocatalysts on the by-product ammonia selectivity during nitrite catalytic reduction. Environ. Sci. Nano 2018, 5, 338–349. [Google Scholar] [CrossRef]
- Beltrame, T.F.; Coelho, V.; Marder, L.; Ferreira, J.Z.; Marchesini, F.A.; Bernardes, A.M. Effect of operational parameters and Pd/In catalyst in the reduction of nitrate using copper electrode. Environ. Technol. 2017, 39, 2835–2847. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, S.; Krishnan, S.; Karim, A.V.; Shriwastav, A. Photocatalytic denitrification of water using polystyrene immobilized TiO2 as floating catalyst. J. Environ. Chem. Eng. 2020, 8, 104471. [Google Scholar] [CrossRef]
- Tugaoen, H.O.N.; Garcia-Segura, S.; Hristovski, K.; Westerhoff, P. Challenges in photocatalytic reduction of nitrate as a water treatment technology. Sci. Total Environ. 2017, 599–600, 1524–1551. [Google Scholar] [CrossRef]
- Li, Y.; Wasgestian, F. Photocatalytic reduction of nitrate ions on TiO2 by oxalic acid. J. Photochem. Photobiol. A Chem. 1998, 112, 255–259. [Google Scholar] [CrossRef]
- Ren, H.-T.; Jia, S.-Y.; Zou, J.-J.; Wu, S.-H.; Han, X. A facile preparation of Ag2O/P25 photocatalyst for selective reduction of nitrate. Appl. Catal. B: Environ. 2015, 176–177, 53–61. [Google Scholar] [CrossRef]
- Liu, G.; You, S.; Ma, M.; Huang, H.; Ren, N. Removal of nitrate by photocatalytic denitrification using nonlinear optical material. Environ. Sci. Technol. 2016, 50, 11218–11225. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, A.; Meenakshi, S. Photocatalytic reduction of nitrate over Ag–TiO2 in the presence of oxalic acid. J. Water Process. Eng. 2015, 8, e23–e30. [Google Scholar] [CrossRef]
- Anderson, J.A. Simultaneous photocatalytic degradation of nitrate and oxalic acid over gold promoted titania. Catal. Today 2012, 181, 171–176. [Google Scholar] [CrossRef]
- Soliman, A.M.; Alshamsi, D.; Murad, A.A.; Aldahan, A.; Ali, I.M.; Ayesh, A.I.; Elhaty, I.A. Photocatalytic removal of nitrate from water using activated carbon-loaded with bimetallic Pd-Ag nanoparticles under natural solar radiation. J. Photochem. Photobiol. A Chem. 2022, 433, 114175. [Google Scholar] [CrossRef]
- Suriyaraj, S.P.; Selvakumar, R. Advances in nanomaterial based approaches for enhanced fluoride and nitrate removal from contaminated water. RSC Adv. 2016, 6, 10565–10583. [Google Scholar] [CrossRef]
- Siedlecka, E.M. Application of bismuth-based photocatalysts in environmental protection. In Nanophotocatalysis and Environmental Applications; Inamuddin, A.A., Lichtfouse, E., Eds.; Springer: Berlin, Germany, 2020; Volume 30, pp. 87–118. [Google Scholar] [CrossRef]
- Dwivedi, U.N.; Mishra, S.; Singh, P.; Tripathi, R.D. Nitrate pollution and its remediation. In Environmental Remediation Technologies; Singh, S.N., Tripathi, R.D., Eds.; Springer: Berlin, Germany, 2007; pp. 353–389. [Google Scholar]
- Grzegórska, A.; Rybarczyk, P.; Rogala, A.; Zabrocki, D. Phytoremediation—From environment cleaning to energy generation—Current status and future perspectives. Energies 2020, 13, 2905. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Jing, S.-R.; Wang, T.-W.; Lee, D.-Y. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environ. Pollut. 2002, 119, 413–420. [Google Scholar] [CrossRef]
- Shelef, O.; Gross, A.; Rachmilevitch, S. Role of plants in a constructed wetland: Current and new perspectives. Water 2013, 5, 405–419. [Google Scholar] [CrossRef]
- Baker, L.A. Design considerations and applications for wetland treatment of high-nitrate waters. Water Sci. Technol. 1998, 38, 389–395. [Google Scholar] [CrossRef]
- Daneshvar, E.; Santhosh, C.; Antikainen, E.; Bhatnagar, A. Microalgal growth and nitrate removal efficiency in different cultivation conditions: Effect of macro and micronutrients and salinity. J. Environ. Chem. Eng. 2018, 6, 1848–1854. [Google Scholar] [CrossRef]
- Su, Y.; Mennerich, A.; Urban, B. Comparison of nutrient removal capacity and biomass settleability of four high-potential microalgal species. Bioresour. Technol. 2012, 124, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Xin, L.; Hong-Ying, H.; Ke, G.; Ying-Xue, S. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 2010, 101, 5494–5500. [Google Scholar] [CrossRef]
- Rezvani, F.; Sarrafzadeh, M.-H.; Oh, H.-M. Hydrogen producer microalgae in interaction with hydrogen consumer denitrifiers as a novel strategy for nitrate removal from groundwater and biomass production. Algal Res. 2020, 45, 101747. [Google Scholar] [CrossRef]
- Amini, M.; Khoei, Z.A.; Erfanifar, E. Nitrate (NO3−) and phosphate (PO43−) removal from aqueous solutions by microalgae Dunaliella salina. Biocatal. Agric. Biotechnol. 2019, 19, 101097. [Google Scholar] [CrossRef]
- Rezvani, F.; Sarrafzadeh, M.-H.; Seo, S.-H.; Oh, H.-M. Optimal strategies for bioremediation of nitrate-contaminated groundwater and microalgae biomass production. Environ. Sci. Pollut. Res. 2018, 25, 27471–27482. [Google Scholar] [CrossRef]
- Cardoso, L.G.; Duarte, J.H.; Costa, J.A.V.; de Jesus Assis, D.; Lemos, P.V.F.; Druzian, J.I.; de Souza, C.O.; Nunes, I.L.; Chinalia, F.A. Spirulina sp. as a bioremediation agent for aquaculture wastewater: Production of high added value compounds and estimation of theoretical biodiesel. BioEnergy Res. 2021, 14, 254–264. [Google Scholar] [CrossRef]
Process | Chemical Reaction |
---|---|
| N2 + 8 H+ + 8 e− → 2 NH3 + H2 |
| NH3 + H2O → NH4+ + OH− |
| NH4+ + 3/2 O2 → NO2− + H2O + 2 H+ |
| NO2− + 1/2 O2 → NO3− |
| NH4+ + 2 O2 → NO3− + H2O + 2 H+ |
| 2 NO3− + 10 e− + 12 H+ → N2 + 6 H2O |
| NO2− + NH4+ → N2 + 2 H2O |
Technology | Main Strengths | Main Weaknesses |
---|---|---|
Ionic exchange | Ion selective resins | Generation of reject brine |
Insensitivity to temperature changes | ||
Automatic control | ||
Reverse osmosis | Stability over a wide pH range Multiple contaminant removal | Pre-treatment requirement Generation of reject brine |
High pressure is needed | ||
Electrodialysis | Selectivity Low demand for chemicals | Pre-treatment requirement Generation of reject brine |
Electrocoagulation | Operation at atmospheric pressure and ambient temperature | Anode passivation Sludge production |
Capacitive deionization | Energy storage is produced | pH dependence |
Generation of waste concentrate Regeneration of electrodes Low selectivity Co-ion effects | ||
Adsorption | Simple technology | Adsorbent regeneration costs |
Multiple adsorbents | Activation requirement | |
Biological denitrification | Adaptable to multiple configurations | Temperature dependence Post-treatment requirement |
Odour problems | ||
Chemical reduction | Flexible plants | Undesirable by-products |
Elimination of multiple pollutants | Precipitation problems | |
Potential for incomplete denitrification | ||
Post-treatment requirement | ||
Deactivation of catalysts | ||
Electrochemical reduction | Treatment of drinking water | pH dependence |
Elimination of multiple pollutants | Electrode passivation | |
Photocatalytic reduction | Green technology | Poor N2 selectivity |
Inefficient photocatalysts for visible radiation Regeneration of photocatalysts |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-López, J.A.; Alacid, M.; Obón, J.M.; Martínez-Vives, R.; Angosto, J.M. Nitrate-Polluted Waterbodies Remediation: Global Insights into Treatments for Compliance. Appl. Sci. 2023, 13, 4154. https://doi.org/10.3390/app13074154
Fernández-López JA, Alacid M, Obón JM, Martínez-Vives R, Angosto JM. Nitrate-Polluted Waterbodies Remediation: Global Insights into Treatments for Compliance. Applied Sciences. 2023; 13(7):4154. https://doi.org/10.3390/app13074154
Chicago/Turabian StyleFernández-López, José A., Mercedes Alacid, José M. Obón, Ricardo Martínez-Vives, and José M. Angosto. 2023. "Nitrate-Polluted Waterbodies Remediation: Global Insights into Treatments for Compliance" Applied Sciences 13, no. 7: 4154. https://doi.org/10.3390/app13074154
APA StyleFernández-López, J. A., Alacid, M., Obón, J. M., Martínez-Vives, R., & Angosto, J. M. (2023). Nitrate-Polluted Waterbodies Remediation: Global Insights into Treatments for Compliance. Applied Sciences, 13(7), 4154. https://doi.org/10.3390/app13074154