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Abstract: This study aimed to enhance the stability and security of power plant control network
systems by developing detectable models using artificial intelligence machine learning techniques.
Due to the closed system operation policy of facility manufacturers, it is challenging to detect and
respond to security threats using standard security systems. With the increasing digitization of control
systems, the risk of external malware penetration is also on the rise. To address this, machine learning
techniques were applied to extract patterns from network traffic data produced at an average of
6.5 TB per month, and fingerprinting was used to detect unregistered terminals accessing the control
network. By setting a threshold between transmission amounts and attempts using one month of
data, an anomaly judgment model was learned to define patterns of data communication between
the origin and destination. The hypothesis was tested using machine learning techniques if a new
pattern occurred and no traffic occurred. The study confirmed that this method can be applied to not
only plant control systems but also closed-structured control networks, where availability is critical,
and other industries that use large amounts of traffic data. Experimental results showed that the
proposed model outperformed existing models in terms of detection efficiency and processing time.

Keywords: ICS; unknown protocol; fingerprint; anomaly detection; AI

1. Introduction

The control network used in power generation is an important backbone network
that is physically isolated from outside networks. In case of any abnormality within the
network, it can directly affect the competitiveness of the power plant, making it crucial to
preventing and detecting issues proactively rather than just responding to them after they
have occurred [1,2].

The ICS (Industrial Control System) network configuration comprises two sections:
the controller communication section and the control server/client communication section.
The ICS network uses a one-way data transmission device to transfer data to a business
network. This enables the operation data generated from the control system to be used
offsite while ensuring the data transmission direction remains one-way and cannot be
reversed from the business network to the control network. The one-way data transmission
device is responsible for the secure transmission of data from the control network to the
business network [3,4].

Since the control network is a closed network as shown in Figure 1, the current ICS
network requires a device identification method based on passive methods. Moreover, the
physical risks to the network are not evaluated, and the status of devices on the control
network cannot be determined using any method other than that provided by the control
system manufacturer [5,6].
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The control system in Korean power plants operates as a closed network that is directly
disconnected from external networks, and remote security installation is not possible. In
addition, it is difficult to apply the security system in the field because it is limited to
installing a separate security solution in the control system due to the manufacturer’s
policy. Therefore, there is a lack of real-time identification of assets in the control network
and methods for obtaining network visibility, which makes it impossible to verify the stable
operating state of the control network. When a problem occurs in the control network,
there is no information to identify the cause, making it difficult to analyze the cause and
hindering the establishment of a plan for stable operations [7,8].

Thus, it is necessary to collect network traffic data without affecting the control
system’s availability to detect and record any anomalies in the control system. In order
to solve these problems, this study aimed to use a machine learning-based approach that
extracts communication patterns from network traffic data and a fingerprinting technique
that detects unauthorized terminals attempting to access the control network.

In this study, white fingerprinting is used as the primary method for TCP (Transmis-
sion Control Protocol), which increases the probability of identifying human communica-
tion. On the other hand, UDP (User Datagram Protocol) is primarily used for automated
processing, and pattern extraction can more easily distinguish what is not a pattern. We
propose a technique for detecting anomalous traffic that involves comparing detection rates
by applying machine learning to traffic data accumulated in the control network based on
big data analytics. Machine learning techniques can be classified into supervised learning,
unsupervised learning, and reinforcement learning [9,10].

Our approach can accurately identify new patterns of data communication between the
source and destination by setting a threshold between transmission amounts and attempts
and using one month’s worth of data to learn an anomaly detection model. Our technique
can help protect industrial assets from potential threats caused by changes in the industrial
environment and meet operator requirements for a secure industrial control environment.

In this paper, we propose a detection technique for anomalous traffic that compares
detection rates by applying machine learning to traffic data accumulated in the control
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network based on big data analytics. We present an anomaly detection model that matches
the characteristics of the stable operation of the control network. Our main contributions
are as follows: (1) we use machine learning techniques to automatically pattern and
classify private protocols in the closed control network, providing a basis for securing the
network’s health by checking the types of transmitted traffic data, and (2) we propose a
whitelist (allowlist) that enables control system operators to intuitively recognize abnormal
patterns that may occur in the operation stage and notify the information security officer
for further analysis.

The remainder of this paper is organized as follows. Section 2.1 reviews existing
machine learning and traffic detection methods. Section 2.2 presents our anomaly detection
model. Section 3 presents the test and verification results of the proposed model and the
existing model for the ICS network of the power plant. Section 4 provides a performance
comparison and discussion. Section 5 is the conclusion of this study.

2. Materials and Methods
2.1. Related Work

This section examines existing ML technologies and traffic detection technologies in
the developed ICS network and compares them in terms of availability and safety.

2.1.1. AI Machine Learning

Artificial intelligence technology refers to the ability of machines to perform human
cognitive processes such as perception, information processing, and decision-making. AI
can be divided into general AI and narrow AI. General AI refers to human-level intelligence,
which means performing cognitive activities regardless of the level, type, or content.
However, there is currently no AI technology that satisfies the definition of general AI, and
it is expected to take several decades of further development. Narrow AI, on the other
hand, refers to an algorithm that specifically solves a defined problem, and all currently
used AI technologies are narrow AI [11–14]. As shown in Table 1, the types of machine
learning algorithms can be classified.

Table 1. Machine learning types.

Types Description

Supervised
Learning

Classification

- K-Nearest Neighbors [15] - Support Vector Machine [16]

- Decision Tree [17] - Random Forest [18,19]

Regression

- Linear Regression [20,21] - Logistic Regression [22]

Unsupervised Learning

- Clustering [23] - Visualization [24]

- Dimensionality Reduction [25] - Association Rule Learning [26]

Reinforcement Learning

- DQN (Deep Q-Network) [27]

- A3C (Asynchronous Advantage Actor–Critic) [28]
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The AI algorithm used in this study is determined by categorical prediction targets
based on the number of data cases, and a decision tree is used during classification with the
correct labels. The algorithm selection flow is illustrated in Figures 2 and 3, which show
the steps for selecting the most appropriate algorithm for the dataset.
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In this study, we chose the decision tree as our machine learning algorithm because
it is intuitive and well-suited for analyzing closed networks of private protocols. We
also minimized the data preprocessing process to prevent overfitting and ensure that the
importance of variables is fully understood. By doing so, we aimed to achieve accurate
and reliable anomaly detection results that can help improve the security of industrial
control systems.



Appl. Sci. 2023, 13, 4203 5 of 21

2.1.2. Closed Network Asset Fingerprinting

Asset fingerprinting involves gathering information such as MAC (Media Access
Control) and IP (Internet Protocol) addresses, host names (Client Identifier option), manu-
facturer information (Vendor class identifier), and the parameter request list option from
network packets. These details can be used as a type of fingerprint, and asset fingerprinting
is a technique that aims to find these fingerprints. The technique is implemented passively
by observing captured network data and can be used to identify network IT assets to
determine if any unauthorized IT asset is attempting to access the network. This can be
completed by checking a specially crafted packet that uses an unusual set of options [30–33].

2.1.3. Closed Network Manual Whitelisting

Manual whitelisting is a technique that only allows explicitly white-listed network
communications, which offers the advantage of protecting a network from a range of
known and unknown malicious events and behaviors [34]. While high accuracy increases
the chances of blocking known and unknown attacks, it comes with the disadvantage of
requiring an expensive configuration to achieve high accuracy and efficiency [35–37].

2.1.4. Anomaly Detection in an Industrial Control System

Recently, research has been conducted to assess the performance of anomaly detec-
tion models using techniques such as preprocessing, filtering, and feature extraction of
data, which leverages machine learning and deep learning algorithms [38,39]. Moreover,
methods for detecting anomalies on control systems are being studied to enhance the
performance of anomaly detection models for network traffic. However, directly imple-
menting anomaly detection solutions on control systems may not be feasible for systems
that prioritize availability.

For modern industrial control systems, the configuration system changes frequently.
Therefore, deep learning neural network techniques are being utilized to detect and monitor
rapid asset changes. However, industrial facilities, such as power plants, undergo minimal
changes [40]. Generally, autoencoder neural networks individually reconstruct predicted
data by learning from normal data. However, methods that simultaneously perform
prediction and reconstruction on input data, utilizing a single-mode approach, are also
being studied to achieve more effective attack detection [41].

In the case of industrial control systems connected to the internet, research is also
being conducted to enhance the detection rate of abnormal symptoms by identifying data
imbalance to address undefined attacks on the network [42].

2.2. Proposal

This study presents a monitoring technique to prevent intrusion accidents in a closed
control network environment by detecting anomalous traffic. Anomalous traffic in a closed
control network can broadly be defined into two patterns. The first pattern is a case where it
is necessary to verify whether a normal operation is performed, as the expected traffic does
not occur. The second pattern is when random traffic that should not occur is generated.

Pattern 1 results from mechanical errors in hardware and software and is mainly due
to equipment loss, errors, and malfunctions. Pattern 2 is referred to as human error and is
caused by intentional actions or mistakes.

For comparison and verification of the detection technique for anomalous traffic,
supervised learning is applied to the previous patterns, and the false-positive rate is
analyzed by generating random anomalous traffic to verify the learning performance and
consistency of the detection model.

2.2.1. Anomaly Detection Model Patterns

To diagnose anomalies, traffic that meets the reference point K (over 400 traffic at-
tempts) should be targeted for the number of communications. In natural traffic, defining
a specific communication pattern is difficult because traffic with only packet headers (64 KB
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(Kilobyte)) includes attempted traffic with payloads of various sizes. Limited kinds of sizes
are generated because they are generated by “patterned communication”.

H0: General Model O = K× (T ≥ 9).

In the null hypothesis, general model O, the number of packet sizes T of the traffic
that satisfies all the reference points K is 9 or more.

H1: Detection Model P is P = K× (T < 9).

The alternative hypothesis, detection model P, can be defined as “patterned commu-
nication” when the number of packet sizes T is 8 or less through an intended attempt
for the traffic that satisfies all reference points K. The alternative hypothesis posits that
pattern communication is performed in the control network of the private protocol. Pat-
tern communication is defined as a control network communication with a P pattern that
satisfies both K, the number of packet sizes generated from SRC (Source)_PORT to DST
(Destination)_PORT, and T, the frequency of occurrence for each packet size.

The AI decision tree algorithm is used to find the condition factors K and T for deriving
the factor P of the hypothesis. K should derive the type of packet size to find an optimal
factor, and T should derive a boundary value that exceeds the minimum frequency of
occurrence for each K. If both conditions are satisfied, P is defined as a control network
communication having a pattern, and if it deviates from the pattern, it can be determined
as an abnormal symptom.

The network traffic generated within the control network has the following basic
structure: the number of bytes per IP, SRC_PORT, and DST_PORT. Figure 4 shows the
system configuration used in this study. The traffic generated from the control network
was collected in the collection area through a collection agent, and the collected data were
transmitted to the analysis system and used for analysis.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 23 
 

 

 

Figure 4. Network configuration for pattern detection. 

In the case where the traffic generated from SRC_PORT to DST_PORT exceeds a spe-

cific threshold (initially set value T learned from data), it is identified as an abnormal 

symptom. Examples of patterns registered between operations are configured to maintain 

detection patterns by applying set values accumulated through supervised learning. 

Traffic data within the control network is separated by the TCP and UDP protocols 

and preprocessed by composing XML (Extensible Markup Language) files. Figure 5 

shows the TCP protocol metadata schema, and Figure 6 shows the UDP protocol metadata 

schema structure. 

Figure 4. Network configuration for pattern detection.



Appl. Sci. 2023, 13, 4203 7 of 21

In the case where the traffic generated from SRC_PORT to DST_PORT exceeds a specific
threshold (initially set value T learned from data), it is identified as an abnormal symptom.
Examples of patterns registered between operations are configured to maintain detection
patterns by applying set values accumulated through supervised learning.

Traffic data within the control network is separated by the TCP and UDP proto-
cols and preprocessed by composing XML (Extensible Markup Language) files. Figure 5
shows the TCP protocol metadata schema, and Figure 6 shows the UDP protocol metadata
schema structure.
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The XML schema is a user-defined type with a flexible structure that can immediately
reflect changes in control network items. The schema structure consists of the ID (Identifier),
SRC_PORT, DST_PORT, input packets, input bytes, output packets, output bytes, protocol
types (TCP:6 and UDP:17, etc.), and VLAN (Virtual Local Network) ID, which are indexes.
The data type is defined as a number.

To extract an anomaly pattern, the first step is pattern extraction, the second step is
pattern communication count, and the third step is extraction of the anomaly time point.

2.2.2. Anomaly Pattern Extraction Relation Algebra

The three-step process mentioned above is aimed at detecting and deriving anomaly points
using real traffic data. The following describes the process for verifying the anomaly pattern.

Step 1 relational algebra—pattern extraction relational algebra

πGS,GD,P,FCOUNT(T),FSUM(FCOUNT(S))(σS>SB(σFCOUNT(T))<TB(FR)))
G: Group F: Function S: SOURCE_PORT
D: DESTINATION_PORT P: IP_PROTOCOL T: IN_BYTES/IN_PKTS (Packets)
FR: FLOW_RAW_DATA SB: COUNT(SRC_PORT) TB: COUNT(IN_BYTES/IN_PKTS)

In Step 1, the types of patterns and traffic figures for each protocol (mainly TCP and
UDP) are obtained from SRC_PORT to DST_PORT. Cases where the number of occurrences
is T or more and the pattern type is K or less are sorted in order of occurrence frequency
and then checked.

Step 2 relational algebra—pattern communication count relational algebra

πGS,GD,P,GT,FCOUNT(S)((σS≥ST∧S≤ST∧D≥DT∧D≤DT)(σFCOUNT(S))>SB (FR))))
G: Group F: Function S: SOURCE_PORT
D: DESTINATION_PORT P: IP_PROTOCOL T: IN_BYTES/IN_PKTS
FR: FLOW_RAW_DATA SB: COUNT(SRC_PORT) ST: SRC_PORT
DT: DST_PORT

Based on the SRC_PORT and DST_PORT of the highest frequency detected in Step
1, the flow pattern and the number of times communicated through the corresponding
port are derived as the pattern type. SRC_PORT and DST_PORT are initially selected
by assigning a range, and then, as learning proceeds, the range is narrowed by directly
selecting the target.

Step 3 step relational algebra—anomaly extraction relational algebra

πW,A,R,S,D,P,B,K,T((σS≥ST∧S≤ST∧D≥DT∧D≤DT∧~T(G))(FR)))
G: Group F: Function W: FIRST_SWITCHED
A: SOURCE_ADDRESS R: DESTINATION_ADDRESS S: SOURCE_PORT
D: DESTINATION_PORT P: IP_PROTOCOL B: IN_BYTES
K: IN_PACKETS T: IN_BYTES/IN_PACKETS FR: FLOW_RAW_DATA

ST: SRC_PORT DT: DST_PORT
G:
ROUND((IN_BYTES/IN_PKTS),
2)

The time of occurrence, protocol, packet, and bytes of traffic which is not the pattern
derived in Step 2 are derived in Step 3. The source port and destination port and pattern
are inputted; the record that did not communicate with the entered pattern among the
communication through the corresponding port is determined, and it is read as an abnormal
time point to be observed.

2.2.3. Anomaly Pattern Data Extraction Process

Due to the nature of the control network, it is difficult to reproduce the failure process
arbitrarily. As shown in Figures 7 and 8, the model is verified by composing the extraction
and verification process of the anomaly pattern.
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2.2.4. Abnormal Sign Judgement Rate

After the actual traffic within the power plant is learned, the learning results are
compared and analyzed in preparation for the actual situation. The false-positive rate is
used as an index for the detection rate as a basic measurement standard, and the false-
positive rate method used in the national defense network, which is a closed network of
a similar type, is applied to confirm whether the false-positive rate applies to the control
network [43].

For anomalies, the confusion matrix in Table 2 is applied. A confusion matrix (error
matrix) is a matrix for comparing the predicted values and actual values to measure the
prediction performance through learning (describing the performance of a classification
model). The evaluation criteria are determined according to the criteria in Figure 7 [44,45].
The components of the confusion matrix are the same as the evaluation criteria in Table 3.

Table 2. Confusion matrix.

Normal
(Actual Negative)

Abnormal
(Actual Positive)

Normal
(Predicted Negative) True Negative (TN) False Negative (FN)

Abnormal
(Predicted Positive) False Positive (FP) True Positive (TP)

Table 3. Evaluation criteria.

Criteria Equation Description

Accuracy TP+TN
TP+TN+FP+FN

Ratio of correct predictions (both true positives
and true negatives) among all predictions

Precision TP
TP+FP

Ratio of true positives (anomalies properly
detected) among all samples predicted as positive

Sensitivity TP
TP+FN

Ratio of actual positives, which are actually
anomalies, predicted as positives

Fall-out FP
TN+FP

Ratio of negative samples (non-anomalies) that are
incorrectly classified as positive

F1 Score 2TP
2TP+FP+FN

As an index combining precision and sensitivity, it
is a value for how accurately the normal is

identified and has a relatively high value when it
is not biased to either side

The components of the confusion matrix are the same as those of the evaluation criteria
in Table 3.

2.2.5. Comparison of the Proposed Models

Table 4 shows the results of the comparative analysis of the proposed model system
with a comparable solution, Darktrace.
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Table 4. Detection model comparison.

Item Name Proposed Model Darktrace

Data Collection Unit Bytes, Sessions Sessions

Detection Technique Network anomaly detection, illegal asset detection Rule-based anomaly detection

Traffic Analysis Detailed analysis using packet and session data Session data only

Asset Detection Unregistered, new, changed assets New assets only

Asset Management Asset registration/modification/change Automatic registration only

Abnormal traffic analysis
Identification of anomalies using traffic thresholds

for each asset and analysis of abnormal traffic using
ML techniques for collected traffic

Specific rule-based detection of collected
traffic using ML (unsupervised) method

3. Results

To apply the proposed ML supervised learning (decision tree) technique and configure
the generated data similar to the demonstration environment, control traffic data from the
power plant were collected, and the technology was verified.

Based on the proposed anomaly pattern extraction model, in the first step, the abnor-
mal symptom detection model was trained by extracting whether anomalies were detected
from the 6.5 TB of traffic generated in January 2021.

For the two-step verification, the model was verified through a traffic simulator, and
100 random anomaly datasets were generated as 26 TB of data from January 2021 to April
2021, and the detection rate was analyzed and verified over the time series.

To verify the proposed model, the results of the verification were compared with
commercial solutions such as Darktrace and improved Darktrace.

3.1. Test Environment Configuration

The test environment for this study was carefully configured to accurately reproduce
the actual environment of a power plant. The specifications for the test environment are
shown in Table 5, and the configuration is shown in Figure 9. Past operational data were
also implemented in the test environment to ensure accurate testing.

Table 5. Software configuration of the test environment.

Classification Version

OS (Operation System) Ubuntu 16.04 LTS
DB MariaDB 10.3.14

WAS (Web Application Server) Tomcat 8.0.32
JDK Java 1.8.211
WEB Apache 2.4.39

C Compiler GCC 5.4.0
Development Tool Spring Framework 4.3

The hardware configuration of the test environment is shown in Table 6.

Table 6. Hardware configuration of the test environment.

Type Requirements

CPU (Central Processing Unit) 2.2 GHZ (Gigahertz)
Core 10core

Memory 64 GB (Gigabyte)
NIC (Network Interface Card) 1 Giga NIC × 4port

SSD (Solid State Drive) 512 GB
HDD (Hard Disk Drive) 10 TB
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The network configuration of the test environment is shown in Table 7.

Table 7. Network configuration of the test environment.

Port Default Description Direction

Console TCP 8443 Web UI (User Interface)
access port

Inbound
browser→ server

FTP Client TCP 22 SFTP
(Secure File Transfer Protocol) Inbound/Outbound

Console TCP 80
SSL (Secure Socket Layer)

encrypted communication uses
port 443

Inbound

Agent
Download TCP 88

Agent downloads support port
for compatibility with IE

(Internet Explorer) 8

Inbound
Browser→ Server

Syslog UDP 514 Syslog Outbound

SNMP 162
SNMP

(Simple Network Management
Protocol)

Outbound

The server communication settings of the test environment are shown in Table 8.

Table 8. Server communication settings.

Function URL (Uniform Resource Locator)

Web console access
HTTPS (Hyper Text Transfer Protocol over

Secure Socket Layer)://<<server name or IP
address>>:8443

Figure 10 shows the system configuration for the proposed test environment. It
includes a closed structure control network with a functional structure for registering and
investigating abnormal symptoms that occur in the actual operating environment.

The test was run using 26 terabytes of control network traffic data collected for
4 months, and random traffic was generated in the existing training data to test the anomaly
detection model.
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3.2. Test Verification

The test verification in this study had two stages.
The first stage involved the verification of the generator engine, which included the

extraction of fingerprinting confirmation, metadata generation, metadata storage perfor-
mance, and metadata search performance. This was completed using the collected control
network data.

The second stage involved verifying the traffic data of 100 randomly selected points
based on the actual data. This stage aimed to test the detection rate of the proposed model
for anomalies.

3.2.1. Generator Engine Performance Verification

The test environment was verified through several performance tests, including fin-
gerprinting confirmation, metadata generation, metadata storage speed measurement, and
metadata search speed measurement, as shown in Table 9 [40].

Table 9. Test items.

Seq Test Item Test Goal

1 Fingerprinting success rate Measurement of OS information extraction success
rate (%) from the fingerprinting of the packets

2 Metadata creation success rate Measurement of the metadata creation success rate (%)

3 Metadata storage speed
Check the speed of saving the PCAP (Packet Capture)

file with the metadata stored as a JSON (JavaScript
Object Notation) file

4 Metadata retrieval speed Check the metadata retrieval speed

Test verification was confirmed with a four-step procedure as follows.
The verification process involved several steps, such as comparing the results of

Wireshark by fingerprinting the traffic generated by Tcpreplay, measuring the rate of traffic
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and metadata generation, and checking the communication metadata fast storage test
command and search query execution.

The Telecommunications Technology Association (TTA) of the Republic of Korea
certified the results of each of the five tests performed, achieving a 100% extraction success
rate and 100% metadata creation success rate. For the PCAP (Packet Capture) file, the
metadata creation speed was 21596.603 flows per second, and the metadata search speed
was 0.0005492 ms.

In the first experimental result, the accuracy of fingerprinting extraction was measured
by comparing the number of SYN packets and SYN + ACK packets and confirming their
consistency.

As shown in Table 10, it was confirmed that the sum of TCP packets and SYN + ACK
TCP packets was the same as the result of the fingerprinted packets, validating the accuracy
of the fingerprinting extraction.

Table 10. Test results for the fingerprinting extraction success rate.

Item 1 2 3 4 5

Processed
Packets 1,004,099 1,004,105 1,004,097 1,004,099 1,004,100

Processed TCP
Packets 964,819 964,819 964,819 964,819 964,819

Captured SYN
TCP Packets 27,761 27,761 27,761 27,761 27,761

Duped
packets 2030 2030 2030 2030 2030

Normal
Packets 27,761 27,761 27,761 27,761 27,761

Processed SYB
TCP Packets 27,761 27,761 27,761 27,761 27,761

Processed SYN_ACK
TCP Packets 25,844 25,844 25,844 25,844 25,844

Fingerprinted
Packets 53,605 53,605 53,605 53,605 53,605

Processed UDP
Packets 35,571 35,571 35,571 35,571 35,571

Elapsed
Time 15.641558 22.225767 12.28054 15.896778 16.937732

Packet Process Speed
(packets/s) 64,194.30698 45,177.51839 81,763.26262 63,163.67994 59,281.84575

Fingerprinting Speed
(packets/s) 3427.088191 2411.840269 4365.03641 3372.066961 3164.827548

In the second experimental result, metadata generation accuracy was verified by
comparing and confirming the number of metadata flows, as shown in Table 11. The
simulator was also verified by checking that the 636 flows generated by the source terminal
were correct.

The third experimental result measured the speed of metadata storage, and the result
is shown in Table 12. The generated flows per second were divided by the evaluation time
to verify the metadata storage speed.
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Table 11. Experiment results for the metadata creation success rate.

Item 1 2 3 4 5

Processed
Packets 100,4094 1,004,094 1,004,093 1,004,093 1,004,096

Processed
TCP Packets 964,819 964,819 964,819 964,819 964,819

Captured syn
TCP Packets 27,761 27,761 27,761 27,761 27,761

Duped
Packets 2030 2030 2030 2030 2030

Normal
Packets 27,761 27,761 27,761 27,761 27,761

Processed SYN
TCP Packets 27,761 27,761 27,761 27,761 27,761

Processed SYN_
ACK TCP Packets 25,844 25,844 25,844 25,844 25,844

Fingerprinted
Packets 53,605 53,605 53,605 53,605 53,605

Processed UDP
Packets 35,571 35,571 35,571 35,571 35,571

Generated
Flows 636 636 636 636 636

Elapsed
Time 10.316506 11.188549 10.172895 9.555932 12.131023

Packet Process Speed
(packets/s) 97,328.88441 89,743.00147 98,702.78314 105,075.3616 82,770.92337

Flow Generating
Speed (flows/c) 61.64878 56.84383 62.519079 66.555518 52.427564

Fingerprinting Speed
(packets/s) 5196.042252 4791.058998 8269.395056 5609.604647 4418.835796

The fourth experimental result measured the speed of metadata search, and the results
are shown in Table 13.

As a result of the operational test for the test environment, the extraction check of the
experimental data showed that it was normally extracted at the time point.

3.2.2. Analysis of the Feature Verification Results

To verify the proposed method, the operational data of a power plant was simulated
for 4 months in a real environment, and the performance aspect of detecting anomalous
traffic was evaluated. The verification process consisted of two stages: stage 1 involved
verifying the method with a simulator, and stage 2 involved deriving the values of K and T
to test the hypothesis.

To determine the type of traffic size per packet generated in the control network, the
frequency of occurrence according to the type of traffic size generated from SRC_PORT
to DST_PORT in the experimental data was measured and shown in Figure 11. The
results showed that the traffic size per packet was classified into eight cases, and the
communication pattern was defined as the analysis target.
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Table 12. Test results for the metadata storage speed.

Item 1 2 3 4 5

Processed
Packets 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000

Processed
TCP Packets 121,248 121,248 121,248 121,248 121,248

Captured SYN
TCP Packets 4576 4576 4576 4576 4576

Duped
Packets 562 562 562 562 562

Lost
Packets 0 0 0 0 0

Normal
Packets 4576 4576 4576 4576 4576

Processed SYN
TCP Packets 4576 4576 4576 4576 4576

Processed SYN _
ACK TCP Packets 2693 2693 2693 2693 2693

Fingerprinted
Packets 7269 7269 7269 7269 7269

Processed UDP
Packets 842,217 842,217 842,217 842,217 842,217

Generated
Flows 30,670 30,670 30,670 30,670 30,670

Elapsed
Time 1.428743 1.422007 1.403228 1.425827 1.421129

Packet Process Speed
(packets/s) 699,916.043 703,231.3445 712,642.3966 701,347.1469 703,665.6886

Flow Generating
Speed (flows/s) 21,466.42504 21,568.10534 21,856.7423 21,510.317 21,581.42667

Fingerprinting Speed
(packets/s) 5087.689716 5111.788643 5180.197571 5098.092411 5114.945891

Appl. Sci. 2023, 13, x FOR PEER REVIEW 18 of 23 
 

 

 

Figure 11. Packet size count of the proposed model. 

The threshold for the occurrence frequency of type K of traffic size per packet, which 

is the basis for pattern selection, was measured and is shown in Figure 12. It was found 

that when traffic occurs from SRC_PORT to DST_PORT more than 400 times, it can be 

defined as having a pattern and set as a boundary value. Therefore, the threshold value T 

was set to 400 as the reference value for traffic detection. 

 

Figure 12. Occurrence frequency of the proposed model. 

Based on the real data, the thresholds for K and T were derived as 8 and 400, respec-

tively, through the verification process. 

To diagnose anomalies, it is necessary to identify a pattern in the traffic that exceeds 

a certain communication frequency threshold K. Based on the results of the analysis, it 

was found that the majority of communications meeting this threshold had a packet size 

of 8 or less, which supports the alternative hypothesis H1 proposed by DMP (Detection 

Model P) and rejects the null hypothesis H0. 

3.2.3. Analysis of the Verification Results of the Proposed Model 

The proposed model, DMP, was compared and verified with the solutions from pre-

vious experiments, DT and i-DT. Verification was performed using traffic data extracted 

from 100 points in an arbitrary section of the 4-month collection of operational data. The 

verification was performed five times on a total of 26 TB collected to determine whether 

abnormal symptoms were detected. Table 14 presents the results of comparing the reading 

Figure 11. Packet size count of the proposed model.



Appl. Sci. 2023, 13, 4203 17 of 21

Table 13. Test results for the metadata search speed.

Item 1 2 3 4 5

Source IP 172.15.100.12 172.15.100.12 172.15.100.12 172.15.100.12 172.15.100.12
Source Port 2916 2916 2916 2916 2916

Bytes 11,541,934 11,541,934 11,541,934 11,541,934 11,541,934
Data Count 100 100 100 100 100
Query ID 1 1 1 1 1
Duration 0.00224869 0.00011751 0.00014457 0.00011805 0.00011718

The threshold for the occurrence frequency of type K of traffic size per packet, which
is the basis for pattern selection, was measured and is shown in Figure 12. It was found that
when traffic occurs from SRC_PORT to DST_PORT more than 400 times, it can be defined
as having a pattern and set as a boundary value. Therefore, the threshold value T was set
to 400 as the reference value for traffic detection.
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Based on the real data, the thresholds for K and T were derived as 8 and 400, respec-
tively, through the verification process.

To diagnose anomalies, it is necessary to identify a pattern in the traffic that exceeds
a certain communication frequency threshold K. Based on the results of the analysis, it was
found that the majority of communications meeting this threshold had a packet size of 8 or
less, which supports the alternative hypothesis H1 proposed by DMP (Detection Model P)
and rejects the null hypothesis H0.

3.2.3. Analysis of the Verification Results of the Proposed Model

The proposed model, DMP, was compared and verified with the solutions from
previous experiments, DT and i-DT. Verification was performed using traffic data extracted
from 100 points in an arbitrary section of the 4-month collection of operational data. The
verification was performed five times on a total of 26 TB collected to determine whether
abnormal symptoms were detected. Table 14 presents the results of comparing the reading
rates of DT, i-DT, and the proposed model. The results show that the proposed model’s
detection efficiency is superior to that of the other solutions.

It is worth noting that DT is a solution for traffic detection on an open network, while
i-DT is an improvement of the method of detecting only the session count. i-DT could
improve the function to detect even the byte unit to optimize it for a closed network
environment.
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The proposed model in this study showed significant improvements compared to
the existing method. As indicated in Figure 13, the spy rate, which distinguishes normal
and anomalous traffic, was 89.2%, which was 1,064% and 84% better than the existing
method, respectively. Additionally, the false-positive rate for problematic abnormal signs
was 8.4%, representing an improvement of 961% and 419% compared to the existing model,
respectively. In addition, precision, sensitivity, and F1 score were all improved compared
to those of the traditional methods. The detection processing time was also faster than that
of the existing model.
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It is important to note that DT, which is optimized for detecting anomalies in a general
network, detected almost no anomalies in the private control network protocol. However,
for a fair comparison, the proposed model’s reading rate of anomalies was found to be
higher than that of i-DT, which was tuned for a closed network environment. This shows
the effectiveness of the proposed model in detecting anomalies in a closed network with
a private protocol.
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Table 14. Results of the traffic generation experiment.

Traffic Flows Techniques Accuracy Precision Sensitivity F1 Score Fall-out Duration

1 21,596
1.DT 0.08 0.088 0.193 0.121 0.94 1.15 s

2.i-DT 0.482 0.46 0.764 0.574 0.45 0.81 s
Proposed 0.9 0.895 0.979 0.935 0.08 0.47 s

2 21,592
1.DT 0.073 0.057 0.181 0.086 0.87 1.45 s

2.i-DT 0.482 0.466 0.787 0.586 0.46 1.05 s
Proposed 0.89 0.885 0.978 0.929 0.09 0.25 s

3 21,594
1.DT 0.074 0.05 0.157 0.076 0.85 1.03 s

2.i-DT 0.486 0.467 0.8 0.589 0.44 0.85 s
Proposed 0.91 0.908 0.983 0.944 0.08 0.58 s

4 21,592
1.DT 0.077 0.057 0.178 0.087 0.86 1.15 s

2.i-DT 0.487 0.461 0.814 0.589 0.41 0.58 s
Proposed 0.89 0.885 0.975 0.928 0.09 0.27 s

5 21,593
1.DT 0.079 0.085 0.221 0.123 0.94 1.35 s

2.i-DT 0.477 0.45 0.803 0.576 0.42 0.48 s
Proposed 0.87 0.856 0.976 0.915 0.08 0.15 s

4. Discussion

In Section 2.2, we present a decision tree-based model for anomaly detection in the
control network of a power plant. We could have provided more details on how decision
trees work and how we applied them in our study. Specifically, decision trees are a type of
supervised learning algorithm that recursively partition data based on the most significant
features to make a series of binary decisions that lead to a prediction or classification. In
our study, we used decision trees to classify traffic as normal or abnormal based on a set of
features, such as packet size, port number, and protocol type. We trained the decision tree
using a labeled dataset and tested it on unseen data to evaluate its performance.

Our experimental results showed that the decision tree-based model achieved superior
detection efficiency, a lower false-positive rate, and a faster detection processing time
compared to those of existing solutions. This suggests that applying machine learning to
the control network of power plants is crucial for ensuring system stability in unpredictable
environments. The proposed method also allows for the early detection of anomalies,
which can prevent human error and the normalization of abnormalities.

We acknowledge that in a real-world operating environment, additional indicators
and verification factors need to be applied to improve anomaly detection. However, the
proposed method enables the separate collection and analysis of control system network
data without affecting the control system’s operation, facilitating the control of abnormal
symptoms.

5. Conclusions

In conclusion, this paper presents a decision tree-based model for detecting illegal as-
sets and abnormal traffic in the control network of a power plant. Our results demonstrated
the effectiveness of the proposed model in detecting anomalies in the control network of
power plants. We also highlighted the importance of applying machine learning to ensure
system stability in unpredictable environments.

Future research should focus on comparing various artificial intelligence algorithms
for extracting traffic generation reference points and determining packet sizes to determine
communication patterns. Additionally, it is necessary to investigate the possibility of using
digital forensic techniques to check for data forgery or falsification using deep learning
algorithms to increase the accuracy and detection performance of anomaly detection.
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