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Abstract: Parkinson’s disease (PD) Dysgraphia is a disorder that affects most PD patients and is
characterized by handwriting anomalies caused mostly by motor dysfunctions. Several effective ways
to quantify PD dysgraphia analysis have been used, including online handwriting processing. In
this research, an integrated approach, using a combination of a convolutional neural network (CNN)
and long short-term memory (LSTM) layers along with a Random Forest (RF) classifier, is proposed
for dysgraphia classification. The proposed approach uses uniform and normal distributions to
randomly initialize the weights and biases of the CNN and LSTM layers. The CNN-LSTM model
predictions are paired with the RF classifier to enhance the model’s accuracy and endurance. The
suggested method shows promise in identifying handwriting symbols for those with dysgraphia,
with the CNN-LSTM model’s accuracy being improved by the RF classifier. The suggested strategy
may assist people with dysgraphia in writing duties and enhance their general writing skills. The
experimental results indicate that the suggested approach achieves higher accuracy.

Keywords: handwritten characters recognition; Random Forest; CNN; LSTM

1. Introduction

Dysgraphia is a neurological condition that affects the written representation of words
and symbols. In modern culture, dysgraphia may be a major issue, as we still rely largely on
our capacity to communicate through written language. Moreover, dysgraphia in a school
context might have an impact on a child’s self-esteem, normal development, and academic
results [1,2]. After accurately detecting the source of a learning problem in a child, early
diagnosis allows children to seek assistance and enhance their writing sooner, and it also
helps teachers change their teaching method [3].

Dysgraphia is frequently linked to other conditions such as dyslexia. These illnesses
appear to share comparable brain locations on a neurophysiological basis [4]. Dysgraphia is
also related to developmental coordination issues [5,6], as well as a broader oral and written
language acquisition difficulty [7]. Dysgraphia does not constitute a unified concept [8] and
can be characterized by a variety of handwriting characteristics [9]. Developed dysgraphia
is less prevalent and is generally caused by an accident or illness that affects parts of the
brain [10]. Specific handwriting alternations are common in patients with Alzheimer’s
disease [11], resulting in Parkinson’s disease dysgraphia. Figure 1 shows the handwriting
samples of a normal and dysgraphia patient.
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(a)

(b)

Figure 1. Handwriting samples of a normal and a dysgraphia patient. (a) Normal handwriting.
(b) Dysgraphia patient’s handwriting.

Handwritten character recognition for dysgraphia patients, especially the identifica-
tion of broken text, is a relatively challenging task. The use of machine learning and deep
learning approaches has resulted in a significant rise in the text recognition rate [12–14].
Recent development in digital image processing and machine/deep learning models have
shown good results in various applied domains that can be used in OCR [15–18]. Recurrent
Neural Networks (RNNs) may generate contextual knowledge by translating all preceding
data to each output and constructing a memory using their data sequencing approach.

The Convolution-Neural-Network (CNN) is a deep learning architecture that is physi-
ologically inspired by the human brain’s sensory perception process. Convolution layers
are being used for knowledge selection. CNN layers are classified into three types: convo-
lutional, fully connected, and pooling. The most extensively used deep learning algorithms
are CNN and Long Short-Term Memory (LSTM). Deep learning architectures enable more
sophisticated models to be learned in detail to retrieve hierarchical characteristics from data
than typical machine learning methods, which conduct a linear transformation of nonlinear
feature extraction on a single layer [19].

The proposed approach in this study has considerable implications for people who
have dysgraphia, a neurological condition that affects writing ability. The hand-written
character recognition system can help people with dysgraphia write more quickly and
accurately. The CNN and LSTM layers’ weights and biases are arbitrarily initialized using
uniform and normal distributions, which aids in avoiding local minima and improves the
model’s overall performance. Additionally, the CNN-LSTM model’s final layer’s feature
extraction procedure enables the extraction of significant and instructive features that
can be applied to classification using a Random Forest model. The importance of this
research for people with dysgraphia lies in its ability to enhance their general quality of life.
Dysgraphia can have an effect on several aspects of quality of life, such as social interactions,
employment, and schooling. The suggested method can help people with dysgraphia
become more proficient writers, which can enhance their success in school and at work.
Additionally, this study may have an impact on enhancing the technology’s usability for
people with impairments. Overall, the suggested method may have significant effects on
raising the standard of living for people who have dysgraphia and other writing disabilities.

The rest of the paper is organized as follows: Section 2 discusses the previously re-
ported deep learning algorithms for handwritten character recognition. Section 3 describes
the detailed methodology, as well as data preparation for the proposed model. It also
includes a full discussion of the model implementation. Section 4 describes the CNN-LSTM
model’s performance as well as the experimental data. Section 5 offers a concise description
of the research work.

2. Literature Review

There have been various initiatives to use machine learning to detect dysgraphia.
Different aspects of handwriting may be tested and studied using tablets. The features to
be retrieved, such as writing speed, breaks, and pen lifting, are motivated by cognitive
and neurological studies on dysgraphia [20,21]. Digitized testing offers features that
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could not previously be measured, such as handwriting speed, pressure, in-air movement,
and acceleration, in contrast to conventional clinical testing, which primarily relies on static
features, such as writing density or text shape and the amount of time needed to complete
tasks. Asselborn et al. distinguished between four categories of characteristics, kinematic,
static, tilt, and pressure [9]. Similar characteristics were used by Mekyska et al., as well as
non-linear dynamic and kinematic features [22]. Three machine learning techniques are
most often employed to recognize dysgraphia. Random forests were used instead of the
conventional BHK testing by Asselborn et al. Random forests were used by Mekyska et al.
to identify dysgraphia in 8- to 9-year-olds [22].

Support vector machines (SVMs) were used in another approach by Rosenbloom
and Dror19 to detect dysgraphia in young people [23]. SVM was also used by Kurni-
awan et al. to recognize dysgraphia [24]. Children were required to write in a straight line
on a mobile screen for their study, which differs from the regular writing environment.
Another approach used to identify dysgraphia is neural networks (NNs). Simple NNs with
six hidden neurons were used by Samodro and Sihwi [25]. Deep learning was used by
Kariyawasham et al. to test for dysgraphia [26]. Others experiment with enhanced features
used for analysis; for instance, Zvoncak et al. employed derivative and wavelet transform
features [27,28].

The ability of CNNs to recognize significant properties of an object (a handwritten
character, an image, a face, etc.) automatically without human supervision or involvement
makes them more effective than their counterparts (Multi-layer perceptron (MLP), etc.).
Simard et al. developed a generic convolutional neural network architecture for processing
and eliminating the difficult neural network training procedure for visual documents [29].
Wang et al. introduced a unique strategy for end-to-end text recognition based on multi-
layer CNNs, achieving good results [30].

For semantic segmentation, Badrinarayanan et al. presented a deep convolution
network design. SegNet is a segmentation architecture that comprises an encoder network,
a pixel classification layer, and a decoder network. While decoding, the suggested approach
exploited max pooling parameters of feature space and achieved good results. The strategy
was also studied and compared to existing strategies for interpreting road scenes and inside
environments [31–33]. A unique multi-objective optimization framework is proposed for
selecting the most relevant local areas from a character picture. The work was also assessed
using solitary handwritten English numbers [34].

The performance of CNNs is mostly determined by the selection of hyperparameters
that are typically determined by trial and error [35]. Various hyper-parameters, such as
activation function, number of epochs, learning rate, kernel size, hidden layers, hidden
units, etc. are used to control the method an algorithm is trained on for learning from
data [36]. Hyper-parameters are distinct from model parameters and should be chosen
before training begins. Some common CNN models are GoogleNet, AlexNet, and VGG-16
which feature 150, 78, 57, and 27 hyper-parameters, respectively [37–41].

Several studies have been implemented using uniform and normal distributions to
solve random variable problems for different object sizes [42,43]. The analytical average
was performed and the results are compared with the results obtained from the numerical
average. A comprehensive survey was performed for dysgraphia diagnosis based on
machine learning and non-machine methods [44]. These methods include psychological,
machine learning-based, commercial-based, and automated diagnosis without machine
learning. The primary goal of the research was to examine artificial intelligence-based
solutions for diagnosing dysgraphia in children. This study assesses the data-collecting
strategy, significant handwriting traits, and machine learning methods used in the liter-
ature for dysgraphia diagnosis. This also covers certain non-artificial intelligence-based
automated systems. Furthermore, the shortcomings of existing techniques are discussed,
and a novel paradigm for dysgraphia diagnosis is suggested.
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3. Materials and Methods

The proposed architecture is divided into various sections as shown in Figure 2.
A CNN-LSTM model is developed using uniform and normal distributions to randomly
determine the weights and biases of the CNN and LSTM layers. The model’s weights
and biases are optimized using a collection of classified samples after training on the
preprocessed dataset of handwritten characters. A Random Forest classifier is trained using
the activations of the CNN-LSTM model’s final layer as variables. The features are obtained
for each image in the preprocessed dataset. The extracted features are used to train a
Random Forest classifier, which increases the model’s resilience and accuracy. To increase
accuracy even more, the classifier combines the CNN-LSTM model’s predictions. The model
is also tested on a collection of images produced by people with dysgraphia to determine
its ability to identify handwriting from people with dysgraphia. The performance of
the approach is compared to that of other current methods for hand-written character
identification, such as conventional machine learning and deep learning methods.

Figure 2. Architecture of the proposed model.

3.1. Data Collection

The dataset included in this research has been obtained from 200 individuals (both
dysgraphic and non-dysgraphic) by trained professionals. Their ages varied from eight to
eleven years where 50 of them were left-handed, while the remaining were right-handed.
60% of them were male, whereas 40% were female. For data collection, a digitized tablet
with a wireless pen with a pressure-sensitive tip was used. This digitizer offers the most
delicate pen tablet available, capturing all the temporal, kinematic, and pressure data with
the greatest accuracy while the electronic pen exists on the surface or in the air. When the
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pen is hovering above the surface, this device produces accurate spatial characteristics.
The advantage of employing in-air data is that it records the motions of the student’s wrist
and hand even when the pen is not on the screen. The rotation and movement of the wrist
and hand can offer highly significant information even when the pen is not on the screen.

3.2. Uniform and Normal Distributions

A uniform distribution is a continuous probability distribution in which all numbers
within a particular interval are equally likely to appear. A normal distribution is a continu-
ous probability distribution that illustrates the probability of a random variable occurring
within a certain range of values. Both distributions can be used to set the weights and biases
of the CNN and LSTM layers arbitrarily but within a predetermined range. The random
start breaks the uniformity of the weights and biases, which can help avoid overfitting and
increase convergence during training. The following integral can be used for the uniform
and normal distributions as [43],

< f (x) >=
∫ +∞

−∞
f (x)Px(x)dx (1)

where the probability density function (pdf) for uniformly and normally distributed across
‘x’ is given by,

Px(x) =

{
1

n−m m ≤ x ≤ n
0 x < m or x > n

(2)

Px(x) =
1

σp
√

2π
exp

[
−

(x− µp)2

2σp2

]
(3)

where, mean (µp) and standard deviation (σp
2) for the uniform and normal distributions

are given as,

µp = E(X) =
∫ n

m
f (x) ∗ 1

n−m
dx (4)

σp
2 = E((X− µp)

2) =
∫ n

m
x f (x)dx (5)

3.3. Convolutional Neural Network

CNN is a multi-layered deep neural network (DNN) derived from either the recep-
tive field or a more advanced neural cognitive machine than a standard neural network.
When extra deep layers are included, learning in the DNN model is more profound than
in other shallower neural networks. CNN has a strong distortion tolerance due to its
spatial configuration and weight-sharing method when dealing with image recognition
and classification [35].

During feature extraction, CNN’s essential structures include the combination of a
local receptive field, weight sharing, and subsampling along with dimensionality reduction.
The weight-sharing technique is used to minimize model complexity, improve performance,
and efficiently govern the number of weights. The input image data are mapped to an
output, which means it receives incoming image data, analyses it, and accurately predicts
the class of the image.

CNN handles input data in a two-dimensional vector more effectively. We employed
CNN in the CNN-LSTM model to extract meaningful features from the input. The hand-
written text picture is used as input in this stage and processed to extract its characteristics.

3.4. Long Short-Term Memory

Natural language processing relies heavily on RNNs, particularly LSTM. RNNs, unlike
feedforward networks, include feedback loops and can handle tasks based on a temporal
sequence. Researchers introduced LSTM to overcome the problem of gradient explosion
or vanishing that can occur while training standard RNNs. It typically consists of a cell,
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an input gate, a forget gate, and an output gate. LSTM is used in this study to categorize
the input data into several categories. For an input vector x and the trained weights,
the perceptron output y is calculated by the following Equation [45],

y = f
( N

∑
i=1

Wixi + b
)

(6)

3.5. Feature Extraction

Feature selection and extraction is a crucial concept in machine learning that has a large
impact on model performance. CNN is better used for extracting useful features which is
an interesting task for character recognition. To reduce the number of features and improve
the classification algorithm’s effectiveness, functional features have been taken from the
data. The pooling operation, phase convolution operation, and ReLU (rectified linear unit)
activation function are used in feature extraction, as shown in the equations below:

Oa,b = ∑
a

∑
b

f [l, k]X[a− l, b− k] (7)

F_Ya,b = max(0, F_Oa,b) (8)

The dysgraphia patient’s input data are fed via a convolutional layer, pooling, ReLU,
and dropout layer for extracting meaningful features. The input is a matrix of rank 2 with
MxN (rows/ columns), M and N are indexed as (a, b), where 0 ≤ a ≤ M, 0 ≤ b ≤ N.
The convolutional operation layer yields the final and relevant feature map values, F_Ya,b.
The activation function is employed at each layer to allow the model for solving the
nonlinear problems as illustrated in Equation (8), while the dropout and max pooling
method is used to decrease the computational load.

The extracted features that are used for handwritten character recognition include
the following: stroke-based (number of strokes, the direction and curvature of the strokes,
and the length and width of the strokes), shape-based (height, width, and aspect ratio
of the characters), texture-based (presence of loops, dots, or other patterns), structural
(number and placement of components within the characters), and grid-based (position of
the characters in relation to other characters).

3.6. Classification

Pretrained LSTM is used for character categorization. The pre-trained LSTM is ac-
companied by a batch normalization (BN) layer, fully connected (FC) layers, and SoftMax
function. The proposed algorithm demonstrates that the accuracy is much lower during
the testing phase than the training phase, which is related to overfitting and results in a
complication in the balancing and regularization of hyperparameters. BN is used to im-
prove learning process stability and decrease internal co-variate shifts. During the training
phase, the BN evaluates the variance and mean at each intermediate layer. The normalized
input for each layer is calculated using the determined mean and variance, as indicated in
Equations (4) and (5), where ‘x’ will be replaced with ‘xi’ given by,

x′i =
(xi − µ)√

σ2 + ε
(9)

During model training, the parameters γ and ω of µ and σ along with the other parameters
are learned. Equations (5) to (9) can be represented after BN as,

σ2
f =

N
N(N − 1)

i′

∑
i=1

σ2(i) (10)
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µ f =
∑i

i=1
′
µ(i)

N
(11)

yi f =
ω√

σ2
f + ε

(x) +
(

δ +
ω× µ f√

σ2
f + ε

)
(12)

where i′ is the number of batches with multiple samples. The goal of the model training
is to update the filter weights in a manner such that the predicted and actual classes are
as nearer as feasible. The network is run from the beginning to obtain the expected value.
The loss function is computed to determine the improvement of the suggested model.
The overall loss at the final layer is calculated by comparing the predicted value to the
matching goal value using continuous forward pass running.

3.7. Random Forest

Random forest is a powerful method for ensemble learning that can be used combined
with deep learning models, such as CNN-LSTM for handwritten character identification.
While CNN-LSTM is successful in feature extraction and sequence learning, it may suffer
from overfitting and bias due to the high number of parameters involved. The random
forest can help alleviate these problems by adding an additional layer of learning that can
catch the nonlinear connections and interactions between the extracted features. The ran-
dom forest can learn to categorize the extracted features into various classifications, which
can then be merged with the CNN-LSTM output for more accurate estimations [46].

4. Results and Discussion

The model is completely supervised to minimize the gradient, and loss from the
SoftMax is backpropagated to the CNN layer. The weights and biases are initialized at each
layer using random values.

4.1. Implementation Details

In this research, all models are run on an Intel Corei7-1165G7 CPU with 16GB DDR4
memory, and CY22 Intel i7-1165G7, Integrated Intel Iris Xe graphics utility. With a batch
size of 32, we employ adaptive moment estimation as the optimization for backpropagation.
The learning rate has been set at 0.0001 and will be dropped by half if the test accuracy does
not improve after 20 epochs. The early stop method is used to end training intelligently.
All of the designs presented in this section are tested using 5-fold cross-validation. The
entire data set is separated into five non-intersecting subsets. One of the five parts is used
as the validation set and the rest as the training set each time. The end result is a mean
accuracy of five fold.

4.2. Selection of Hyperparameters

The role of hyperparameters, such as the number of convolution filters, batch size,
learning rate, pooling and kernel size, optimizer type, and epochs, has been observed
in model performance during classification. To maximize the convolution filter number,
the model learns more complicated features, which raises the number of parameters and
generates overfitting problems. As a result, the exact and appropriate filter selection
at each layer is critical. Sixty-four filters are used in the first layer, and to compensate
for downsampling induced by the pooling layer, the number of filters in the second
convolutional layer is doubled.

A filter with reduced size is initially used to learn low-level characteristics; never-
theless, big-size filters work better for specified features and high levels. Layer 1 uses a
large kernel size while the other layers use less kernel size. The filter size is selected first
because it reads generic information in one value and has a greater global influence on the
entire image, but it misses local features. A tiny filter size is used in the following layers to
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learn local and individual characteristics. The kernel lengths of the convolutional layers
are first fixed at 5 and 3. Experiments are then performed with different network widths
(which include LSTM units) to observe how they affect the results. The number of filters
(C) is doubled every time from 16 to 256, whereas the LSTM units (N3) are generally half
or equal to the preceding layer’s kernel width [47]. According to the results, the model
performance is increased with the increase of the LSTM units and the number of filters.
The Adam optimization algorithm is used for weight adjustments, the weights are then
updated accordingly.

4.3. Result Analysis

In this section, results for various performance metrics are discussed. First, the kernel
size is chosen from 3 to 9, and L1 is kept higher than L2. Table 1 shows that the accuracy
fluctuates somewhat when the kernel size changes. Second, it is noticeable that the net-
work’s accuracy does not increase when the network is deeper to higher layers. In short,
while the depth of convolutional layers has an effect on accuracy, it is not decisive. In other
words, increasing the breadth of the convolutional layers is more successful than making
the network deeper for the suggested strategy. We discovered that enhancing the number of
filters in addition to LSTM units (width) provides the most effective strategy to increase the
model’s performance. However, it will result in an increase in the number of parameters.
To balance these two aspects, we select a network with a width of (64-128-128) and a kernel
size of (5-3) for further discussion. The maximum accuracy of the proposed model is 96.1%
and 97.6% for the uniform and normal distributions as mentioned in the last row of Table 1.

Table 1. Comparative analysis of the proposed scheme with different kernel sizes and width for
uniform and normal distributions.

Kernel Size
(L1-L2)

Width
(C-2C-N3) Depth Accuracyuni Accuracynorm Accuracymean

5-3 16-32-16 3 90.3% 90.7% 90.5%
5-3 16-32-32 3 90.6% 91.4% 90.9%
5-3 32-64-32 3 90.9% 91.9% 91.4%
5-3 32-64-64 3 91.4% 92.3% 91.8%
5-3 64-128-64 3 91.7% 92.6% 92.1%
5-3 64-128-128 3 92.3% 92.9% 92.6%
5-3 128-256-128 3 93.3% 94.6% 93.9%
5-3 128-256-256 3 95.1% 96.1% 95.6%
5-3 256-512-256 3 96.1% 97.6% 96.8%

Accuracy =
TP + TN

TP + TN + FP + FN
(13)

Speci f icity =
TN

TN + FP
(14)

Sensitivity =
TP

TP + FN
(15)

Various evaluation metrics, such as accuracy, specificity, and sensitivity given in
Equations (13)–(15) are also used for the performance model evaluation as mentioned
in Tables 2 and 3 for different tasks and features. It is clear that the model accuracy for the
sentence is low as compared to the other tasks, whereas the highest accuracy is for task l for
both the uniform and normal distributions. This is because the sentence has a large number
of alphabets that are difficult to write whereas the ‘l’ task is easy to write by the dysgraphia
patient. It is noteworthy that the accuracies for both the uniform and normal distributions
are almost the same, with the normal distribution having a slightly larger value than the
uniform distribution. The proposed CNN-LSTM model is also compared to the other
models as mentioned in [48,49]. Results in Table 4 suggest that the proposed model is at
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rank 2 with a width of (64-128-128) and kernel size of (5-3). It is worth mentioning that
greater accuracy may be achieved if the width of the network is increased.

Table 2. Accuracy, specificity, and sensitivity for various tasks.

Task Accuracyuni Accuracynorm Accuracymean Specificity Sensitivity

l 96.0 97.0 96.5 96.9 96.2
lmax 94.8 95.2 95.0 94.8 95.1

le 91.9 92.7 92.3 92.8 91.8
lemax 90.7 91.3 91.0 90.2 91.8
Leto 93.0 93.4 93.2 91.8 94.7

Lamoken 93.6 94.8 94.2 94.5 93.8
Hrackarstvo 89.7 90.6 90.1 88.6 91.6

Sentence 88.8 89.6 89.2 88.6 89.8
All 92.3 93.0 92.6 92.2 93.1

Table 3. Accuracy, specificity, and sensitivity for various features.

Task Accuracyuni Accuracynorm Accuracymean Specificity Sensitivity

Stroke 94.3 95.7 95.0 94.9 95.1
Shape 93.8 94.4 94.1 92.1 95.7

Texture 91.6 93.8 92.7 91.4 93.8
Strutural 92.8 93.4 93.1 92.4 93.8

Grid 94.9 96.9 95.9 96.5 95.3

Table 4. Comparative results for various models.

Methods Accurcay Specificity Sensitivity

Adaboost 82.5 78.7 84.7
SVM 80.8 86.4 78.5

RF 78.6 85.3 74.4
LSTM 90.1 91.4 91.3
RPN 88.2 86.5 86.3

Fast RCNN 91.8 91.2 91.1
Faster RCNN 92.1 91.7 91.5

R2CNN 94.2 92.1 91.5
NDR-R2CNN 98.2 96.4 100
CNN-LSTM 92.6 92.2 93.1

Figures 3 and 4 show the comparison results of accuracy, specificity, and sensitivity
for various tasks and features. It has been noticed that the task l has high accuracy due to
the easiness of writing while the accuracy for the sentence is low due to the complexity of
the text. The accuracy for grid-based features is high as it is based on the position of the
characters within a grid or matrix, such as the position of the characters in relation to other
characters or the position of the characters within a specific cell of the grid. The accuracy
of the texture-based feature is low among all the features as these features are based on
the texture of the characters, such as the presence of loops, dots, or other patterns within
the characters. Figure 5 represents comparison results for various methods as mentioned
in [48,49]. It is noteworthy that the proposed method is the second best among all the other
methods.
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Figure 3. Comparison results of accuracy, specificity and sensitivity for various tasks.

Figure 4. Comparison results of accuracy, specificity and sensitivity for various features.

Figure 5. Comparison results of accuracy, specificity and sensitivity for various methods.

There are several challenges to getting results for this work. One possible problem is
obtaining a big and varied collection of handwritten characters from dysgraphia patients
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for training and evaluating the model. Another issue is choosing suitable hyperparameters
for the model, as optimal values differ based on the dataset and problem being addressed.
Furthermore, interpreting the model’s findings can be difficult, as deep learning models are
frequently referred to as “black boxes” because of their complicated internal workings. This
makes determining the precise variables influencing the model’s output and identifying
areas for improvement challenging.

Figures 6 and 7 show the comparison results of the accuracy for various tasks in terms
of uniform and normal distribution. The dashed line represents uniform distribution, and
the solid line represents the normal distribution. It is noteworthy that both the results are
nearer to each other with the normal distribution slightly ahead of the uniform distribution.

Figure 6. Comparison results of accuracy for various tasks in terms of uniform and normal distributions.

Figure 7. Comparison results of accuracy for various features in terms of uniform and normal distributions.

5. Conclusions and Future Work

In this research, a CNN-LSTM model for hand-written character recognition with the
integration of Random Forest classifier, uniform, and normal distributions was performed.
The features were extracted using the penultimate layer of the CNN-LSTM model and a
Random Forest classifier was trained on these features. The uniform and normal distri-
butions were used to randomly initialize the weights and biases of the CNN and LSTM
layers, which helped to avoid local minima during training and improved the overall per-
formance of the model. The suggested method presented encouraging results in correctly
reading handwritten characters, which is crucial for people with dysgraphia who might
have trouble writing clearly. By combining CNN-LSTM and Random Forest, we were able
to take advantage of each model’s advantages and produce a more precise and reliable
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identification performance. Overall, the task’s findings show the potential for combining
deep learning and machine learning methods to recognize handwritten characters. These
results may have significant applications for several uses in the fields of pattern recognition
and computer vision.

The suggested CNN-LSTM model can be improved and optimized in future studies.
One possible approach is to investigate the use of transfer learning methods, which have
been demonstrated to be successful in decreasing training time and increasing accuracy in
a variety of image recognition tasks. Another direction for future research is to look into
using additional features in the feature extraction process, to enhance the model’s ability
to identify dysgraphic handwriting. Furthermore, the proposed model can be tested on
bigger datasets to verify its performance and generalizability.
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