Studies on the Synthesis and Application Properties of a Betaine Surfactant with a Benzene Ring Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization
2.2.1. Synthesis of 1-Chloro-3-(4-dodecylphenoxy)propan-2-ol
2.2.2. Synthesis of 2-((3-(4-Dodecylphenoxy)-2-hydroxypropyl)dimethylammonio)acetate
2.2.3. Synthesis of Sodium 3-(Dimethylamino)-2-hydroxypropane-1-sulfonate
2.2.4. Synthesis of 3-((3-(4-Dodecylphenoxy)-2-hydroxypropyl)dimethylammonio)-2-hydroxypropane-1-sulfonate
2.3. Measurements
2.3.1. Thermal Stability Measurements
2.3.2. Surface Tension Measurements
2.3.3. Interfacial Tension (IFT) Measurements
2.3.4. Wetting Ability
2.3.5. Emulsion Stability
3. Results and Discussion
3.1. Thermogravimetric Analysis
3.2. Equilibrium Surface Tension
3.3. Interfacial Tension Measurements (IFT)
3.3.1. Effect of Concentration on IFT
3.3.2. Effect of Temperature on IFT
3.3.3. Effect of NaCl on IFT
3.3.4. Effect of CaCl2/MgCl2 on IFT
3.4. Wetting Ability
3.5. Emulsion Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kelleppan, V.T.; King, J.P.; Butler, C.S.G.; Williams, A.P.; Tuck, K.L.; Tabor, R.F. Heads or tails? The synthesis, self-assembly, properties and uses of betaine and betaine-like surfactants. Adv. Colloid Interface Sci. 2021, 297, 102528. [Google Scholar] [CrossRef]
- Shakil Hussain, S.M.; Kamal, M.S.; Fogang, L.T. Effect of internal olefin on the properties of betaine-type zwitterionic surfactants for enhanced oil recovery. J. Mol. Liq. 2018, 266, 43–50. [Google Scholar] [CrossRef]
- Eastoe, J.; Tabor, R.F. Chapter 6-Surfactants and Nanoscience. In Colloidal Foundations of Nanoscience; Berti, D., Palazzo, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 135–157. [Google Scholar] [CrossRef]
- Singh, K.; Marangoni, D.G. Synergistic interactions in the mixed micelles of cationic gemini with zwitterionic surfactants: The pH and spacer effect. J. Colloid Interface Sci. 2007, 315, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.; Gao, Y.; Zheng, L. Zwitterionic amphiphiles: Their aggregation behavior and applications. Green Chem. 2019, 21, 4290–4312. [Google Scholar] [CrossRef]
- Chen, S.; Liu, H.; Sun, H.; Yan, X.; Wang, G.; Zhou, Y.; Zhang, J. Synthesis and physiochemical performance evaluation of novel sulphobetaine zwitterionic surfactants from lignin for enhanced oil recovery. J. Mol. Liq. 2018, 249, 73–82. [Google Scholar] [CrossRef]
- Uphues, G. Chemistry of amphoteric surfactants. Fett-Lipid 1998, 100, 490–497. [Google Scholar] [CrossRef]
- Demirbas, A.; Alsulami, H.E.; Hassanein, W.S. Utilization of Surfactant Flooding Processes for Enhanced Oil Recovery (EOR). Pet. Sci. Technol. 2015, 33, 1331–1339. [Google Scholar] [CrossRef]
- Hu, X.; Qi, D.; Yan, L.; Cui, Z.; Song, B.; Pei, X.; Jiang, J. Inhibiting hydrophobization of sandstones via adsorption of alkyl carboxyl betaines in SP flooding by using gentle alkali. Colloids Surf. A Physicochem. Eng. Asp. 2017, 535, 75–82. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.-L.; Liu, X.; Cui, Z. Dialkyl Sulfobetaine Surfactants Derived from Guerbet Alcohol Polyoxypropylene–Polyoxyethylene Ethers for SP Flooding of High Temperature and High Salinity Reservoirs. J. Surfactants Deterg. 2021, 24, 421–432. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Liu, B.-J.; Liu, Y.; Wang, H.; Chen, G. Why Does Scale Form in ASP Flood? How to Prevent from It? A Case Study of the Technology and Application of Scaling Mechanism and Inhibition in ASP Flood Pilot Area of N-1DX Block in Daqing. In Proceedings of the 6th International Symposium on Olfield Scale, Aberdeen, UK, 26–27 May 2004. [Google Scholar]
- Guo, H.; Yiqiang, L.; Yanyue, L.; Kong, D.; Li, B.; Wang, F. Lessons Learned from ASP Flooding Tests in China. In Proceedings of the SPE Reservoir Characterisation and Simulation Conference, Abu Dhabi, United Arab Emirates, 8–10 May 2017. [Google Scholar]
- Zhao, Z.; Liu, F.; Qiao, W.; Li, Z.; Cheng, L. Novel alkyl methylnaphthalene sulfonate surfactants: A good candidate for enhanced oil recovery. Fuel 2006, 85, 1815–1820. [Google Scholar] [CrossRef]
- Li, P.; Yang, C.; Cui, Z.; Song, B.; Jiang, J.; Wang, Z. A New Type of Sulfobetaine Surfactant with Double Alkyl Polyoxyethylene Ether Chains for Enhanced Oil Recovery. J. Surfactants Deterg. 2016, 19, 967–977. [Google Scholar] [CrossRef]
- Dong, L.; Cao, X.; Li, Z.; Zhang, L.; Xu, Z.; Zhang, L.; Zhao, S. Dilational rheological properties of novel zwitterionic surfactants containing benzene ring and polyoxyethylene group at water–decane interface. Colloids Surf. A Physicochem. Eng. Asp. 2014, 444, 257–268. [Google Scholar] [CrossRef]
- Zhou, Z.-H.; Zhang, Q.; Liu, Y.; Wang, H.-Z.; Cai, H.-Y.; Zhang, F.; Tian, M.-Z.; Liu, Z.-Y.; Zhang, L.; Zhang, L. Effect of Fatty Acids on Interfacial Tensions of Novel Sulfobetaines Solutions. Energy Fuels 2014, 28, 1020–1027. [Google Scholar] [CrossRef]
- Gao, S.; Song, Z.; Lan, F.; Zhao, J.; Xu, T.; Du, Y.; Jiang, Q. Synthesis and Physicochemical Properties of Novel Phenyl-Containing Sulfobetaine Surfactants. Ind. Eng. Chem. Res. 2019, 58, 15479–15488. [Google Scholar] [CrossRef]
- Gao, S.; Song, Z.; Zhu, D.; Lan, F.; Jiang, Q. Synthesis, surface activities, and aggregation behavior of phenyl-containing carboxybetaine surfactants. RSC Adv. 2018, 8, 33256–33268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Mandal, A. Synthesis and physiochemical characterization of zwitterionic surfactant for application in enhanced oil recovery. J. Mol. Liq. 2017, 243, 61–71. [Google Scholar] [CrossRef]
- Kamal, M.S.; Hussein, I.A.; Sultan, A.S. Review on Surfactant Flooding: Phase Behavior, Retention, IFT, and Field Applications. Energy Fuels 2017, 31, 7701–7720. [Google Scholar] [CrossRef]
- Shen, J.; Bai, Y.; Tai, X.; Wang, W.; Wang, G. Surface Activity, Spreading, and Aggregation Behavior of Ecofriendly Perfluoropolyether Amide Propyl Betaine in Aqueous Solution. ACS Sustain. Chem. Eng. 2018, 6, 6183–6191. [Google Scholar] [CrossRef]
- Sreenu, M.; Prasad, R.B.N.; Sujitha, P.; Kumar, C.G. Synthesis and Surface-Active Properties of Sodium N-Acylphenylalanines and Their Cytotoxicity. Ind. Eng. Chem. Res. 2015, 54, 2090–2098. [Google Scholar] [CrossRef]
- Qiao, M.; Zhao, N.; Zhao, Y.; Wu, W.; Zhang, X.; Li, X.; Dong, Y. Synthesis and effect of double-anion surfactant for oil displacement. Oilfield Chem. 2017, 34, 113–118. [Google Scholar] [CrossRef]
- Hu, S.-S.; Zhang, L.; Xu, Z.-C.; Gong, Q.-T.; Jin, Z.-Q.; Luo, L.; Zhang, L.; Zhao, S. Wettability alteration by novel betaines at polymer–aqueous solution interfaces. Appl. Surf. Sci. 2015, 355, 868–877. [Google Scholar] [CrossRef]
- Gerola, A.P.; Costa, P.F.A.; Nome, F.; Quina, F. Micellization and adsorption of zwitterionic surfactants at the air/water interface. Curr. Opin. Colloid Interface Sci. 2017, 32, 48–56. [Google Scholar] [CrossRef]
- Qiao, W.; Cui, Y.; Zhu, Y.; Cai, H. Dynamic interfacial tension behaviors between Guerbet betaine surfactants solution and Daqing crude oil. Fuel 2012, 102, 746–750. [Google Scholar] [CrossRef]
- Qiao, W.; Li, J.; Zhu, Y.; Cai, H. Interfacial tension behavior of double long-chain 1,3,5-triazine surfactants for enhanced oil recovery. Fuel 2012, 96, 220–225. [Google Scholar] [CrossRef]
- Zhong, Q.-L.; Zhou, Z.-H.; Zhang, Q.; Ma, D.-S.; Luan, H.-X.; Zhang, L.; Ma, G.-Y.; Zhang, L. Studies on Interfacial Tensions of Ionic Surfactant and Alkyl Sulfobetaine Mixed Solutions. Energy Fuels 2018, 32, 8202–8209. [Google Scholar] [CrossRef]
- Aoudia, M.; Al-Shibli, M.N.; Al-Kasimi, L.H.; Al-Maamari, R.; Al-bemani, A. Novel surfactants for ultralow interfacial tension in a wide range of surfactant concentration and temperature. J. Surfactants Deterg. 2006, 9, 287–293. [Google Scholar] [CrossRef]
- Bera, A.; Mandal, A.; Guha, B. Synergistic Effect of Surfactant and Salt Mixture on Interfacial Tension Reduction between Crude Oil and Water in Enhanced Oil Recovery. J. Chem. Eng. Data 2014, 59, 89–96. [Google Scholar] [CrossRef]
- Zhang, Q.-Q.; Cai, B.-X.; Xu, W.-J.; Gang, H.-Z.; Liu, J.-F.; Yang, S.-Z.; Mu, B.-Z. Novel zwitterionic surfactant derived from castor oil and its performance evaluation for oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2015, 483, 87–95. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Cao, X.; Song, X.; Jin, Z.; Zhang, L.; Zhao, S. Effect of Electrolytes on Interfacial Tensions of Alkyl Ether Carboxylate Solutions. Energy Fuels 2013, 27, 3122–3129. [Google Scholar] [CrossRef]
- Kumar, A.; Mandal, A. Characterization of rock-fluid and fluid-fluid interactions in presence of a family of synthesized zwitterionic surfactants for application in enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2018, 549, 1–12. [Google Scholar] [CrossRef]
- Niu, R.; He, J.; Long, B.; Wang, D.; Song, H.; Wang, C.; Qu, G. Adsorption, wetting, foaming, and emulsification properties of mixtures of nonylphenol dodecyl sulfonate based on linear alpha-olefin and heavy alkyl benzene sulfonate. J. Dispers. Sci. Technol. 2017, 39, 1108–1114. [Google Scholar] [CrossRef]
- Zhenggang, C.; Dan, Q.; Binglei, S.; Xiaomei, P.; Xin, H. Inhibiting Hydrophobization of Sandstones via Adsorption of Alkyl Carboxyl Betaines in Surfactant–Polymer Flooding Using Poly Alkylammonium Bromides. Energy Fuels 2016, 30, 2043–2051. [Google Scholar] [CrossRef]
40 °C | 50 °C | 60 °C | 70 °C | |
---|---|---|---|---|
t/min (IFTmin) | 20 | 15 | 10 | 10 |
DCB (IFTmin/mN·m−1) | 4.0 × 10−3 | 2.5 × 10−3 | 4.5 × 10−3 | 4.3 × 10−2 |
DCB (IFTequ/mN·m−1) | 0.1 | 0.13 | 0.4 | 1.3 |
t/min (IFTmin) | 35 | 30 | 20 | 15 |
DSB (IFTmin/mN·m−1) | 3.5 × 10−3 | 2.8 × 10−3 | 2.7 × 10−3 | 1.7 × 10−2 |
DSB (IFTequ/mN·m−1) | 0.075 | 0.19 | 0.3 | 0.51 |
0.05 g/L | 0.1 g/L | 0.15 g/L | 0.2 g/L | 0.25 g/L | 0.3 g/L | ||
---|---|---|---|---|---|---|---|
DCB emulsion stability time/s | 25 °C | 212 | 351 | 364 | 401 | 382 | 375 |
45 °C | 208 | 277 | 319 | 340 | 336 | 301 | |
75 °C | 186 | 224 | 232 | 258 | 245 | 220 | |
DSB emulsion stability time/s | 25 °C | 233 | 37 | 392 | 428 | 428 | 418 |
45 °C | 223 | 341 | 350 | 371 | 365 | 330 | |
75 °C | 201 | 249 | 253 | 269 | 250 | 225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, Q.; Wang, Z.; Li, P.; Yang, L.; Song, Z. Studies on the Synthesis and Application Properties of a Betaine Surfactant with a Benzene Ring Structure. Appl. Sci. 2023, 13, 4378. https://doi.org/10.3390/app13074378
Zuo Q, Wang Z, Li P, Yang L, Song Z. Studies on the Synthesis and Application Properties of a Betaine Surfactant with a Benzene Ring Structure. Applied Sciences. 2023; 13(7):4378. https://doi.org/10.3390/app13074378
Chicago/Turabian StyleZuo, Qi, Zhihui Wang, Peng Li, Luyuan Yang, and Zhaozheng Song. 2023. "Studies on the Synthesis and Application Properties of a Betaine Surfactant with a Benzene Ring Structure" Applied Sciences 13, no. 7: 4378. https://doi.org/10.3390/app13074378
APA StyleZuo, Q., Wang, Z., Li, P., Yang, L., & Song, Z. (2023). Studies on the Synthesis and Application Properties of a Betaine Surfactant with a Benzene Ring Structure. Applied Sciences, 13(7), 4378. https://doi.org/10.3390/app13074378