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Featured Application: Adding level set method to V-Net model in order to improve the perfor-
mance of CT image segmentation.

Abstract: Region of interest (ROI) segmentation is a key step in computer-aided diagnosis (CAD).
With the problems of blurred tissue edges and imprecise boundaries of ROI in medical images, it
is hard to extract satisfactory ROIs from medical images. In order to overcome the shortcomings in
segmentation from the V-Net model or the level set method (LSM), we propose in this paper a new
image segmentation method, the VLSM-Net model, combining these two methods. Specifically, we
first use the V-Net model to segment the ROIs, and set the segmentation result as the initial contour. It
is then fed through the hybrid LSM for further fine segmentation. That is, the complete segmentation
of the V-Net model can be obtained by successively combining the V-Net model and the hybrid LSM.
The experimental results conducted in the public datasets LiTS and LUNA show that, compared with
the V-Net model or LSM alone, our VLSM-Net model greatly improves the sensitivity, precision and
dice coefficient values (DCV) in 3D image segmentation, thus validating our model’s effectiveness.

Keywords: CT image; convolutional neural network; V-Net model; level set method; liver segmentation

1. Introduction

Medical image segmentation is a basic and challenging task in CAD, whose goal is to
segment target organs, tissues or diseased regions accurately. Because of the limitations
of imaging technology and imaging devices, medical images always have complex tex-
tures, unlike natural scenes, and have boundaries blurred with noise. In addition, medical
image annotations rely heavily on the knowledge and experience of experts, so the annota-
tion data size available for training is small, including annotation errors. Therefore, the
CAD system which is based on the traditional image segmentation algorithm, can hardly
meet the requirements of medical applications. Nowadays, compared with traditional
image segmentation methods which are based on thresholding, edge, region, or graph
theory, methods based on deep learning have improved segmentation accuracy and have
significant advantages in medical and complex image segmentation.

Image segmentation methods based on deep learning can process various image
datatypes. A deep neural network (DNN) was used to segment biological neuron mem-
branes for electron microscopy (EM) images [1]. An automatic discrimination model based
on a full convolutional network (FCN) and transfer learning was used to segment lung
regions for X-ray images, and the accuracy was more than 80% [2]. An adaptive full-density
neural network was proposed for CT image segmentation by adding horizontal connections
to the U-Net model, which can extract more edge information from the image [3]. Further-
more, even a network-combined CNN and LSM can be applied to segment polarimetric
synthetic aperture radar images [4].
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Specifically, a variety of segmentation tasks in medical images can be processed
effectively by use of deep learning networks. An end-to-end solution for multi-class
semantic segmentation using FCN and transfer learning was proposed to achieve the
automatic segmentation of three targets: corneal, melanoma, and benign lesion [5]. A 3D
medical image segmentation method was proposed, which performed outstandingly on
prostate and heart segmentation [6]. A new U-Net architecture was built by integrating
inception-resnet with CNN, and replacing standard convolutional blocks with inception-
resnet, which can achieve an average Dice score of 0.9857 or higher on lung and brain
tumor segmentation [7]. Super-pixel and CNN networks were combined to segment
cervical cancer cell images, which can reach 94.50% accuracy in core region detection [8].
The RDCTrans U-Net was used for liver tumor segmentation, achieving SOTA results [9]. A
U-Net network was applied for lung nodule segmentation, which can reach 92.11% overlap
with annotation [10]. Then, the results of the lung nodule segmentation kept improving
through the use of Mask R-CNN, NRU, and 3D U-Net successively [11–13].

In this current work, we will mainly focus on the CT image, which comprises a series
of slice images of the human body; and provides valuable information about the internal
structure and composition of organs, tissues, and bones; making it an important diagnostic
tool for diagnosis, treatment, and monitoring of a wide range of medical conditions. CT
images can help doctors to identify tumors and other abnormalities in the body that may
not be visible with other imaging techniques.

Figure 1 shows an example of the three-view drawing of the liver CT. All the slice
images can form a 3D image which can be used for a variety of disease screening. These
segmentation methods, through using 2D cross-section, ignore the correlation between
slices. Furthermore, to minimize the loss of spatial information, more and more 3D net-
works were researched in order to segment images directly. A 3D Faster R-CNN model
was used to generate candidate nodules by designing a deep 3D two-way network [14].
An end-to-end multitasking neural network, based on 3D V-Net, was applied to detect
and segment lung nodules simultaneously [15]. The results show that the 3D detection
methods generally outperform the 2D method, but the segmentation results are not smooth
and fine enough.
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To solve these problems, we added the hybrid LSM into V-Net. The LSM is a seg-
mentation method which combines image information into an energy equation [16]. It 
implements the segmentation of the target region by solving the minimization energy 
equation and driving the initial contour curve evolution. The Mumford-Shah (MS) 

Figure 1. Upper line is the three-view drawing of the liver CT, lower line is the corresponding label.
(A) Top view of the CT. (B) Side view of the CT. (C) Front view of the CT. (D) Top view of the label.
(E) Side view of the label. (F) Front view of the label.

To solve these problems, we added the hybrid LSM into V-Net. The LSM is a seg-
mentation method which combines image information into an energy equation [16]. It
implements the segmentation of the target region by solving the minimization energy equa-
tion and driving the initial contour curve evolution. The Mumford-Shah (MS) proposed to
use not only the edge gradient information of the whole image, but also the global location
information and length information of the ROI to optimize the global energy equation of the
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image [17]. The Chan-Vese (CV) model was proposed by improving the energy equation
to simplify the model-solving process [18]. An LSM without re-initialization was used to
further improve the application in segmenting medical images [19]. Based on this, other
scholars combined the LSM and neural network model together [20–22]. By using a neural
network to extract the deep information of the image, obtaining a priori information on
the image, and using the LSM to segment the target image, a smoother and more accurate
segmentation result can be obtained.

In this paper, we propose the VLSM-Net model by combining the V-Net model and
hybrid LSM in order to solve the problems of ROI segmentation of medical images. In
the training period, a priori V-Net model is trained by using the labeled dataset, and
the outputs of the priori are regarded as preliminary segmentations. Then, we send the
preliminary segmentations to the LSM for curve evolution, and treat the evolved results
as the real label. In the test period, the unlabeled data are first sent to the V-Net model to
obtain the coarse segmentation results, and then the coarse segmentation results are sent to
the LSM for curve evolution to obtain the final fine segmentation results. The next sections
will introduce the VLSM-Net in detail.

2. Methods

Figure 2 shows the architecture of the VLSM-Net model. First, the training data are
fed into the V-Net model to obtain more image information. Next, according to the target
region segmented by the V-Net model, the approximate pixel region of the target can be
obtained, which is then used as the initial contour of the LSM to further evolve the curve
and segment the target region. In the training period, as shown in Figure 2A, the labeled
data are added to train the parameters of the V-Net model, and the corresponding network
obtained at this step is called the priori network. Then, the result of the priori network is
used as the initial contour of the LSM for curve evolution, whose result is then served as
the true label. In the testing period, as shown in Figure 2B, the data are first fed into the
prior network for coarse segmentation, and the segmentation result is then fed into the
LSM for fine segmentation, which gives the final output. The detailed descriptions of each
module can be found in the following subsections.
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Figure 2. The structure of the VLSM-Net model: (A) training period; (B) test period.

2.1. V-Net Model

The V-Net model plays a role in generating accurate initial segmentation results by
using its 3D CNN architecture. The structure of the V-Net model is shown in Figure 3.
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Figure 3. The structure of the V-Net model. The left encoder includes four down-sampling modules,
the right decoder includes four up-sampling modules.

The V-Net model mainly comprises an encoder path and a decoder path [23]. The
encoder path is on the left side; it aims to encode the input and extract the features. The
encoder path includes four stages, and each stage includes 1 to 3 convolutional layers and
down-sampling layers. The role of convolutional layers is to extract characteristics from
the image. On the other hand, the role of the down-sampling layer is to down-sample the
feature map in order to decrease the size of input and increase its receptive field. The model
avoids information loss through the use of a 2 × 2 × 2 convolutional kernel instead of a
max-pooling.

The decoder, on the right side, aims to decode the extracted feature maps and recover
the size of the input. The decoder path has many commonalities with the encoder path.
The decoder section includes four stages which contain 1 to 3 convolutional layers and use
short cut, too. In the up-sampling stage, our purpose is to recover the size of the feature
map by using the deconvolution operation. The encoder path and the decoder path are
connected by 3 convolutional layers.

The V-Net module uses a short cut to connect convolutional layers in different stages,
which can significantly improve the gradient flow. It helps to solve the problem of
network degradation.

In addition, in the last output stage, the classifier contains a convolutional layer
and a SoftMax layer, where the convolutional layer is applied to reduce the number of
feature maps, while the SoftMax layer is applied to obtain probabilistic segmentation of the
foreground and background regions.

In conclusion, the V-Net model is a deep learning network that combines a 3D con-
volutional neural network and U-Net model with short cut connections. This model can
extract detail features from medical images and improve segmentation accuracy. V-Net has
been shown to achieve great performance in many medical image segmentation tasks.

In our paper, dice loss is adopted as the loss function, and Laplace smoothing is added
to avoid the division by zero and overfitting. The loss function is represented as:

Dice loss = 1− 2|X ∩Y|+ 1
|X|+ |Y|+ 1

(1)
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where X is the predicted value, Y is the true value, and |X ∩Y| is the intersection of
predicted and true values. Total dice loss consists of nodules dice loss and non-nodules
dice loss.

2.2. Hybrid Level Set Method

The LSM is a commonly used method for medical image segmentation. The basic
view is to express an active profile implicitly as a zero level set of an embedding function
in a higher dimensional space. In other words, the zero level set curve can be found at
any moment by obtaining its level set embedding function [24]. As shown in Figure 4, the
zero set of the embedding function φ is the active contour C = {X | φ(X) = 0}, in which
the points all obtain positive values inside, while the outside points obtain the opposite.

Furthermore, the outside part is the direction of the curve normal vector
→
N. Thus, LSM

can effectively combine the object’s boundary and region information to achieve better
segmentation results by constructing an effective embedding function φ.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 12 
 

 

where X  is the predicted value, Y  is the true value, and X Y∩  is the intersection of 
predicted and true values. Total dice loss consists of nodules dice loss and non-nodules 
dice loss. 

2.2. Hybrid Level Set Method 
The LSM is a commonly used method for medical image segmentation. The basic 

view is to express an active profile implicitly as a zero level set of an embedding function 
in a higher dimensional space. In other words, the zero level set curve can be found at any 
moment by obtaining its level set embedding function [24]. As shown in Figure 4, the zero 
set of the embedding function φ  is the active contour C = {X | ( ) 0}Xφ = , in which the 
points all obtain positive values inside, while the outside points obtain the opposite. Fur-
thermore, the outside part is the direction of the curve normal vector N


. Thus, LSM can 

effectively combine the object’s boundary and region information to achieve better seg-
mentation results by constructing an effective embedding function φ . 

 
Figure 4. Representation chart of the LSM. 

The LSM, firstly proposed by Zhang et al. [25], defines the minimization function as: 

( ) ( ) ( ) ( )I H d g H dε φ α μ φ β φ
Ω Ω

= − − Ω + ∇ Ω 
 

(2)

where I  represents the input, ( )g g I= ∇  represents the boundary feature map associ-
ated with the image gradient (g is a decreasing function), Ω  is the image region, α  and 
β  is the predefined weights, and ( )H φ  is the Heaviside function [25]. The first integral 
part represents the region term, where μ  is the predefined lower limit of the gray level 
of the object. It is easy to know the first part promotes the contour to surround the region 
with gray level bigger than μ . In other words, the image I  is binary segmented with a 
threshold μ . The second integral part represents the boundary term, which promotes the 
contour to approach the boundary with a high gradient. 

The partial differential equation (PDE) of the minimization functional response is ex-
pressed as: 

( ) , divt I gφ φφ φ α μ β φ β
φ φ

  ∇ ∇= ∇ − + ∇ +   ∇ ∇     
(3)

where div(·) means the divergence. Osher proved that the PDE of Equation (3) describes 

the same curve evolution when tC Nγ=  and tφ γ φ= ∇ . According to Equation (3), the 

specific form of tC  is: 

Figure 4. Representation chart of the LSM.

The LSM, firstly proposed by Zhang et al. [25], defines the minimization function as:

ε(φ) = −α
∫
Ω

(I − µ)H(φ)dΩ + β
∫
Ω

g|∇H(φ)|dΩ (2)

where I represents the input, g = g(|∇I|) represents the boundary feature map associated
with the image gradient (g is a decreasing function), Ω is the image region, α and β is
the predefined weights, and H(φ) is the Heaviside function [25]. The first integral part
represents the region term, where µ is the predefined lower limit of the gray level of the
object. It is easy to know the first part promotes the contour to surround the region with
gray level bigger than µ. In other words, the image I is binary segmented with a threshold
µ. The second integral part represents the boundary term, which promotes the contour to
approach the boundary with a high gradient.

The partial differential equation (PDE) of the minimization functional response is
expressed as:

φt = |∇φ|
[

α(I − µ) + β

〈
∇φ,

∇φ

|∇φ|

〉
+ βgdiv

(
∇φ

|∇φ|

)]
(3)
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where div(·) means the divergence. Osher proved that the PDE of Equation (3) describes
the same curve evolution when Ct = γN and φt = γ|∇φ|. According to Equation (3), the
specific form of Ct is:

Ct = α(I − µ)N − β〈∇g, N〉N + βgκN (4)

where the normal vector
→
N = − ∇φ

|∇φ| , curvature κ = div( ∇φ
|∇φ| ). From Equation (4), it can

be found that the points in the curve all move along the normal direction. The first term
of Equation (4) represents the propagation term of the internal curve expansion motion
and the external curve contraction motion of the object. The second term is caused by the
gradient of the boundary feature map, which is able to promote the curve to the boundary
of the object. The last term represents the curvature flow, which is used to smooth the
boundary.

In the LSM, to describe the same curve transformation, if φ is a signed distance
function, the derivative of the embedding function transformed with time is:

φt = α(I − µ) + βdiv(g∇φ) (5)

Equation (5) shows that this is a stable numerical iteration method to replace the PDE.
Obtain φk and φk+1 represent the embedding functions φ in the k-th and (k + 1)-st iterations,
and the numerical method from φk updating to φk+1 includes the following three steps:

Step 1. Initialization φk. Re-initialize the embedding function φ with the embedding
curve (zero point setting) unchanged. The fast marching method is an effective
method [26].

Step 2. Update φk, then use the predefined time step ∆t and the equation φ
k
= φk + ∆t · α(I − µ)

to get φ
k.

Step 3. Use φ
k and solve the PDE φt = βdiv(g∇φ) to obtain φk+1.

2.3. VLSM-Net Model

In the LSM, the selection of the initial contour has a crucial role in the curve evolution
to reach the correct segmentation boundary, and the initial contour contains information
about the location, size, and shape of the ROIs. If the initial contour is set randomly, it is
possible that it will be set too far from the target; the segmentation result may miss the
target completely. If the initial contour is set close to the target, the result can be more
accurate. Therefore, the VLSM-Net model uses the segmentation results of the V-Net model
as a priori for the LSM, sets accurate initial contours, and uses the LSM to further refine
the segmentation results. A robust and accurate segmentation model of CT images can
be obtained.

3. Experiment Design
3.1. Dataset

To verify the improvement of the VLSM-Net, the data for this experiment are all
obtained from the LUNA16 dataset and the LiTS17 dataset.

The LUNA16 dataset is a subset of the dataset LIDC-IDRI, which is the largest public
lung nodules dataset. After excluding some CT scans that were too thick, there were 888
CT scans and approximately 1,186 nodule states left. Then, preprocessing operations were
performed on the data, including CT value cropping, data resampling, and cutting. After
that, lung nodules labeled with the same dimensions as the CT scans in datasets were
generated according to the annotation. The dataset was randomly assigned as the training
set, validation set and test set in the ratio of 8:1:1.

On the other hand, the LiTS liver dataset contains 131 CT scans. All the data are
acquired from different scanners, with size of 512 × 512 for each CT image, which are
labeled as background, liver, or liver tumor. The same preprocessing operations are
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performed on the LiTS data, including CT value cropping, data resampling, and cutting.
The number of training datasets, validation datasets, and test datasets is 88, 23, and
20, respectively.

3.2. Learning Curve

In order to understand the performance of the proposed method, we analyzed the
learning curve of the model. The learning curve is a plot of the training and validation
error or accuracy as a function of the number of training iterations.

The learning curve helps to evaluate how the model is learning and whether it is
overfitting or underfitting the data. If the training error decreases with the number of
iterations, but the validation error increases, then the model is overfitting the data. On the
other hand, if both training and validation errors decrease with iterations, then the model
is learning well.

In Figure 5, we plot the learning curve of the proposed approach in the training and
validation LiTS datasets. The results show that the training and validation loss decrease,
and dice increase with the epochs, indicating that the model is learning well and not
overfitting the data.
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Figure 5. The learning curves of the VLSM-Net in LiTS: horizontal axes represents epochs. (A) Vertical
axis represents training dice. (B) Vertical axis represents training loss. (C) Vertical axis represents
validation dice. (D) Vertical axis represents validation loss.

3.3. Evaluation Metrics

Several common evaluation metrics are selected to measure the model’s advantages
and disadvantages, which are Sensitivity, Dice similarity coefficient (DSC) and accuracy
(Precision) as the evaluation metrics for segmentation. They are defined as follows:

Sensitivity =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)
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DSC =
2TP

2TP + FP + FN
(8)

where TP is true positive, FP is false positive, FN is false negative.

4. Results and Discussion
4.1. Ablation Experiment

To verify the validity of the model, we make comparisons between the V-Net model,
the LSM and the VLSM-Net in the same publicly available datasets.

The segmentation performance of different network structures is compared in the
LiTS dataset, as shown in Table 1. In this dataset, it can be seen that the VLSM-Net
model can achieve optimal segmentation results in the liver, in which the DSC is 92.73%,
Sensitivity is 94.59% and Precision is 95.13%. Compared to the original LSM and the V-Net
model, it shows that the segmentation results of the improved VLSM-Net model achieve
improvements of 11.5% and 0.57% in DSC, respectively. The reason for this is the LSM
lacks a deep convolutional neural network, thus it cannot utilize the deep information of
the image, and has limitations in image segmentation with blurred edges. On the other
hand, the V-Net model is insufficiently accurate and smooth for image edge prediction.

Table 1. Results of the different algorithm models in LiTS17.

Model DSC/% Sensitivity/% Precision/%

LSM 81.23 83.24 85.24
V-Net 92.16 91.36 91.75

VLSM-Net 92.73 94.59 95.13

Figure 6 shows the predicted images of different segmentation models in the LiTS
dataset from the front view. In Figure 6C, compared with the original input image and the
label, the predicted result of the LSM include several disconnected parts, and its main area
is smaller than that in the label (see Figure 6B). In Figure 6D, the predicted result of the
V-Net model includes fewer disconnected parts, and in which the main area is similar with
the label. The result of the VLSN-Net model is depicted in Figure 6E; there is only one area
recognized, which is identical to the label, although a small part is missing.
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predicted image of the V-Net model. (E) The predicted image of the VLSM-Net.

Figure 7 displays the same predicted images generated from the top view. By com-
paring with the original input image and label in Figure 7B, the predicted result of the
LSM (see Figure 7C) includes only one part, but its segmentation boundary is quite rough.
In Figure 7D, the predicted result of the V-Net model includes a smaller extra part, and
the main area bears a closer resemblance to the label. In Figure 7E, the VLSN-Net model
provides a more precise prediction of the main area without any additional parts.
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Compared with the predicted image of the VLSM-Net model, the predicted image of
the LSM has more disconnected parts and its main area contains lots of extra parts. When
compared with the traditional V-Net model, the predicted image of the VLSM-Net model
is also more accurate, and closer to the real annotation.

From the above results, the predicted image of the VLSM-Net model proposed in this
paper is the most effective of the three methods. Compared with the VLSM-Net model’s
prediction, the predicted image of the LSM has more disconnected parts, and its main area
contains lots of extra parts because the LSM is more sensitive to the problems of gray scale
inhomogeneity and blurred edges in the original CT images. On the other hand, the VLSM-
Net model is also more accurate and similar to the real annotation than the traditional
V-Net model because of the use of the LSM, from which some boundary information is
learned and used in the final prediction.

Therefore, the VLSM-Net model can achieve better performance by combining the
structural features of the V-Net model and the LSM in the LiTS dataset. Next, in order to
demonstrate the validity and universality of the model, we make a further comparative
experiment in a LUNA dataset.

Similarly, in the LUNA dataset, various network structures are compared to assess
their segmentation performance. Table 2 illustrates that the VLSM-Net model outperforms
other models in terms of lung nodules segmentation, with a DSC of 82.27%, Sensitivity of
89.91%, and Precision of 86.12%. Compared to the initial LSM and the V-Net model, the
VLSM-Net model provides more precise segmentation results in the LUNA dataset.

Table 2. Results of the different algorithm models in LUNA16.

Model DSC/% Sensitivity/% Precision/%

LSM 57.53 75.27 72.85
V-Net 79.34 89.11 85.53

VLSM-Net 82.27 89.91 86.12

The above ablation experiments in the LiTS and LUNA datasets show that the VLSM-
Net model proposed in this paper can reduce the number of disconnected parts, and
improve the accuracy of the segmentation. In conclusion, the VLSM-Net model can obvi-
ously achieve better performance and results than LSM and V-Net alone.

4.2. Benchmark

After ablation experiments, to evaluate and improve the performance of the model,
we made comparisons between the VLSM-Net model and other segmentation methods in
the LiTS and LUNA dataset.

As can been seen in Table 3 in LiTS, VLSM-Net achieves better DSC compared to
many other models, such as SegNet, U-Net and Net01 [27–29]. This is due to the change
of structure from 2D to 3D, and the added shortcut to connect different convolutional
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layers. The result in LUNA is similar to the analysis of LiTS. Compared to the U-Net, U-Det,
InceptionV3, and RUNet models, better performance is achieved by our VLSM-Net model.

Table 3. Comparison of models in LiTS17 and LUNA16.

Dataset Model DSC/% Ref. Name

SegNet 90.03 Badrinarayanan, V. et al. [27]
LiTS U-Net 91.24 Ronneberger, O. [28]

Net01 91.4 Wardhana, G. [29]
VLSM-Net 92.73 -

U-Det 75.77 Keetha, N. [30]
U-Net 79.5 Nam, C. [31]

LUNA InceptionV3 80.63 Joshi, K. [32]
RUNet 81.98 Ma, Q. [33]

VLSM-Net 82.27 -

Although VLSM-Net has been shown to obtain good results in previous experiments,
there are many ways to enhance it. First, more effective steps can be taken in the pre-
processing stage, such as the normalization of inputs and clipping of HU values. Then, there
are plenty of ways to modify the structure, by adding more short and long skip connections,
adjusting as weighted cross-entropy loss functions, such as Jaccard distance, and using
some ensemble learning methods which can combine the benefits of multiple models.

However, it is worth stating that our model is a universal structure, which may have
fewer advantages in specific segmentation tasks. In addition, our goal at this stage is to
prove that our model can effectively achieve the segmentation of 3D CT images, and adding
the LSM into the V-Net model can improve its performance. In future research, we will use
more tricks in pre-processing, structure, and training to improve performance and try to
combine more models with LSM.

5. Conclusions

In this work, we propose a medical segmentation model VLSM-Net, which combines
the structural features of the V-Net and the LSM. After our experiment, compared to
the V-Net, the segmentation results of our model are finer. Compared to the LSM, our
model can more accurately segment the ROIs. We not only prove the effectiveness of the
VLSM-Net model in 3D CT image segmentation, but also show that it is feasible to improve
performance by adding the LSM into the V-Net model.

In future work, we will concentrate on the improvement of the DSC, and adding the
LSM into more CNN models to assess their segmentation performances.
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