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Abstract: Advancesin additive manufacturing technology have expanded the development prospect
of structures with complex configurations. Cellular structures have been a hot research topic in
recent years for their superior performance and characteristics, such as being lightweight and having
high specific strength and good permeability. With a high specific surface area, cellular structures
perform noticeably well in heat transfer applications when subjected to a body heat source. In this
paper, a scale-separated multiscale design of theVoronoi graded stochastic cellular structure (Voronoi-
GSCS) that considers the heat transfer problem is proposed. The design method is composed of
three steps: the offline calculation on the microscale, the online optimization on the macroscale, and
geometry reconstruction on the full scale. Numerical examples are given to show the effectiveness
and superiority of the developed method for designing the Voronoi-GSCS. The results obtained
by the solid isotropic material with penalization (SIMP) approach are used for comparison. The
size effect analysis was conducted to research the influence of the size of the microstructure on the
Voronoi-GSCS. It should be stressed that the smallest struts were larger than the minimum print
size of the additive manufacturing so that the Voronoi-GSCS could be conveniently exploited in heat
transfer applications.

Keywords: multiscale design; heat transfer problem; Voronoi graded stochastic cellular structure;
topology optimization; homogenization

1. Introduction

Temperature difference is the cause of heat transfer, which exists widely in daily life.
In buildings, engines, kilns, and other engineering applications, it is of great significance to
realize heat transfer and diffusion. As we know, there are three basic ways of heat transfer:
heat radiation, heat conduction, and heat convection. The heat conduction velocity of solid
material is greater than that of gaseous material. When subjected to the point of the heat
source, heat can be quickly diffused through solid materials around the source. The more
solid material there is around the source, the higher the heat transfer efficiency. As a
result, a traditional single-scale solid structure has high heat transfer efficiency. However,
the opposite is true for a body heat source. Body heat sources are widely distributed in
the design domain, and concentrated solid material distribution is not conducive to heat
diffusion. More efficient forms of structures need to be considered. With a high specific
surface area, the cellular structure has gained great attention. In the heat transfer process
of a cellular structure, the heat transfer path is divided into two: one is heat conduction
through the solid material, the other is heat conduction and heat conduction through the
hole. The porous property increases the heat transfer path of solid materials and speeds
up the heat transfer efficiency. Consequently, the cellular structure provides excellent heat
transfer properties when subjected to a body heat source. With the development of additive
manufacturing, the preparation technology of complex cellular structures is becoming more
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and more mature. Nowadays, cellular structures have become a research hotspot in the
interdisciplinary field of materials and structures [1].

Cellular structures are multiscale structures with two or more scales. The scales are
interrelated and influence each other. A change in the microstructure affects the mechanical
behavior of the macrostructure, and the macrostructure also affects the configuration of
the microstructure. Generally, the scale-separated and scale-related approaches are the
two main approaches for designing multiscale structures. Based on the homogenization
theory [2,3], the scale-separated approach is of high computational efficiency. However,
the size effect and the connectivity between adjacent microstructures should be consid-
ered. On the contrary, the scale-related approach solves the size effect and connectivity
problem, while too many design variables result in poor efficiency. Until now, various
modified approaches were developed based on the above two approaches, such as the
full-scale/reduced-scale methods [4–9], the FE2 methods [10], and the homogenization
methods [11–15].

As a type of structure optimization, topology optimization has more design freedom
and can obtain more design space, which is one of the most promising aspects of struc-
ture optimization. With the vigorous development in recent decades, several mainstream
optimization methods have been gradually formed [16–19]. In most studies, compliance
minimization optimization problems and eigenfrequency maximization optimization prob-
lems [20–23] are the main focuses of structural optimization. The structural stiffness and
characteristic frequency are reported in detail. Topology optimization of cellular structures
has also made some progress in recent years. The good ductility, overall structural stabil-
ity, shock absorption, and other superior characteristics have been incisively and vividly
reflected, while other properties of the cellular structures should be further addressed in
the application field. As we know, efficient heat energy dissipation must be required for
artifacts that suffer high temperatures. The cellular structures with a high specific surface
area are very suitable for heat transfer-related requirements. However, only a limited
number of works concern the heat transfer problem for cellular structures. Liu et al. [24]
developed a data-driven M-VCUT optimization method for the heat transfer problem
of cellular structures with multiple microstructure prototypes. Montemurro et al. [25]
proposed a general approach for the optimization of graded architected cellular structures
to predict their effective heat conductivity. Imediegwu et al. [26] presented a multiscale
framework for the heat and thermostructural optimization of printable structures using
lattice-based microarchitectures. Han et al. [27] developed a novel design method to
eliminate constraints in the common ground structure approached for nonuniform lattice
structures and applied the method to the design of a heat sink with optimum heat dissipa-
tion efficiency. Cheng et al. [28] focused on the heat conductivity of lattice structures with
movable features.

The above works focus on the optimization of cellular structures with nonstochastic
microstructures, such as box-shaped and x-shaped microstructures. These microstructures
are simple in configuration and controlled by fewer parameters. In the optimization
process, design variables are few, which is highly favored. However, the nonstochastic
microstructures are anisotropic, meaning they are sensitive to boundary conditions. When
the loading direction or constraint conditions change, the microstructure configuration will
change greatly, resulting in greater instability. For isotropic microstructures, such problems
are not encountered in service. Consequently, to overcome the problem and improve the
performance of structures, a more isotropic microstructure should be developed [29–33]. In
this paper, a multiscale design method for the Voronoi-GSCS for the heat transfer problem
is proposed. The design method was based on the scale-separated approach. On the
microscale, the offline calculation was conducted to establish the mapping relationship
among the relative density, the average aspect ratio of the struts, and the heat conductivity
matrix. On the macroscale, the optimization formulation for solving the heat transfer
problem was developed by using the density-based method to obtain the relative density
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distribution. On the full scale, the Voronoi-GSCS was reconstructed based on the mapping
relationship and the relative density distribution.

This paper is organized as follows. In Section 2, firstly, the offline calculation is in-
troduced in detail, including the generation and homogenization of the microstructure,
the calculation of the relative density of the microstructure, the establishment of the map-
ping relationship among the relative density, the average aspect ratio of the struts, and the
heat conductivity matrix. Then, a modified density-based method is proposed to deal with
the heat transfer optimization problem. Finally, the reconstruction process of the Voronoi-
GSCS is presented. In Section 3, several examples are given to manifest the effectiveness of
the proposed multiscale method for designing the Voronoi-GSCS. Some conclusions are
drawn in Section 4.

2. Methodology

In this section, the design process of the Voronoi-GSCS is introduced in detail. The flow
chart of the process is shown in Figure 1.

Figure 1. Flow chart of the design process of the Voronoi-GSCS.

2.1. Offline Calculation on the Microscale

The offline calculation on the microscale was conducted for the modeling and analysis
of the stochastic Voronoi microstructure, including the generation and homogenization of
the stochastic Voronoi microstructure, the calculation of the microstructural relative density,
and the establishment of the microstructural mapping relationship.

In the generation process of the microstructure, a mesh generator [34] was used. Its
principle was to regard the nodes and connections within the domain as the truss structure.
When the nodes achieved the mechanical equilibrium, a stochastic and uniform node
distribution formed the triangle microstructure skeleton, as shown in Figure 2a. Based on
the geometrical relationship [35], the Voronoi skeleton was obtained, as shown in Figure 2b.
By using the fast marching method [36], the signed distance function fd(x, y) of the Voronoi
skeleton could be calculated, as shown in Figure 2c. The sign distance function is a level set
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function that gives the distance from a point to a curve. In general, the distance between
a point and the boundary of a region is defined as positive inside the boundary, negative
outside the boundary, and zero on the boundary. Consequently, the stochastic Voronoi
microstructure could be generated by cutting the level set function φm = fd(x, y) + t/2,
as shown in Figure 2d. 

φm > 0 ⇔ solid material

φm = 0 ⇔ material interface

φm < 0 ⇔ void material,

(1)

where t is the width of the strut.

(a) (b)

(c) (d)

Figure 2. Generation of the stochastic Voronoi microstructure: (a) the skeleton in the triangle
diagram; (b) the skeleton in the Voronoi diagram; (c) the signed distance function; (d) the generated
Voronoi microstructure.

After obtaining the Voronoi microstructure, the homogenization approach was used
to calculate the equivalent heat conductivity tensor, dH

ij , of the microstructure [37],

dH
ij =

1
|Ym|

∫
Ym

(T̃i
,p − Ti

,q)µpq(T̃
j
,p − T j

,q)dY, (2)

where |Ym| is the volume of the microstructure, µpq is the heat conductivity tensor of the
material, T̃i

,p represents the prescribed temperature gradient, and T is the generalized
temperature field given by∫

Ym
v,iµijTk

,jdY =
∫

Ym
v,iµijT̃k

,jdY, ∀v ∈ Tm, (3)

where v is a virtual temperature field.
For a two-dimensional problem, the heat conductivity tensor, dH

ij , can be written as a
matrix in the following form:

dH
pre =

[
dxx dxy
dyx dyy

]
, dxy = dyx, (4)
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where dxx and dyy are the heat conductivity matrices in x and y directions, and dxy = dyx is
the coupling term.

In the homogenization process, the heat conductivity of solid material and void
material in the microstructure was assumed to be 4 and 0.004, respectively. As can be seen
in Table 1, the homogenized heat conductivity matrix was anisotropic with the values of
dxx and dyy being very close, and the value of dxy = dyx was much smaller than the value
of dxx and dyy. A large number of numerical results showed that when the number of
struts within the microstructure was large enough, the heat conductivity matrix tended
to be isotropic with dxx = dyy and dxy = dyx = 0. Consequently, the homogenized heat
conductivity matrix was further processed as follows:

dH
post =

[
dxx+dyy

2 0
0 dxx+dyy

2

]
. (5)

Table 1. Results of the homogenized heat conductivity matrix.

Microstructure dH
pre dH

post

[
1.2854 0.003
0.003 1.2735

] [
1.2795 0

0 1.2795

]

As shown in Figure 3, there are three kinds of elements: solid elements, void elements,
and blending elements. A fixed background grid was used to calculate the microstructural
relative density,

ρm =
∫

Ym
H(ϕm)dΩ =

Ne

∑
e=1

ρe
m, (6)

where the subscript ‘m’ denotes the microstructure, H is the Heaviside function, ϕm is the
level set function of the microstructure, Ne is the number of elements, and ρe

m is the relative
density of the element calculated by

ρe
m =

∫
Ye

m

H(ϕe
m)dY =

Ng

∑
p=1

H(ϕe
m(ζ p))|Je(ζ p)|ωp, (7)

where ζ p is the coordinate vector of the Gaussian integration point, Je is the element
Jacobian matrix, ωp is the weight coefficient, and Ng is the number of integration points.

The key to the offline calculation was the establishment of the mapping relationship
among the relative density, ρm, the heat conductivity matrix, dxx = dyy, and the average

aspect ratio of the struts, α =
lavg

t , where lavg is the average length of struts and t is the
width of the struts.

Figure 3. Illustration of the background grid and three types of elements.
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As shown in Figure 4a, a two-term exponential function was used to build the mapping
relationship between the relative density, ρm, and the average aspect ratio of the struts, α.
Verification data were used to check the correctness of the fitting curves.

α = aebρm + cedρm , (8)

where a, b, c, and d are fitted parameters, as shown in Table 2.
It can be seen that the verification data were around the fitting curve, which validated

the correctness of the fitting curves. As shown in Figure 4b, the distribution of equivalent
heat transfer conductivity had good regularity and showed a good linear shape. In this
paper, the relationship between the equivalent heat conductivity and the relative density
was given by interpolation.

(a) (b)

Figure 4. Mapping relationship: (a) the relative density and the average aspect ratio; (b) the relative
density and the postprocessing equivalent heat conductivity.

Table 2. The fitting parameters a, b, c, and d in Equation (8).

a b c d

43.67 −13.42 10.08 −2.11

2.2. Online Optimization on the Macroscale

In this subsection, online optimization was conducted to obtain the relative density
distribution of the design domain. The optimization formulation and sensitivity analysis are
given and calculated for the heat transfer problem. In the optimization process, an element’s
relative density was taken as the design variable:

(P)


min

ρ
Jcom = FTT(ρ)

s.t. KT = F
V(ρ)−V ≤ 0
0 < ρmin ≤ ρ ≤ ρmax ≤ 1,

(9)

where J is the objection function, ρ is the relative density, F is the external heat load vector,
T is the temperature vector, K is the global heat conductivity matrix, V =

∫
Ω ρdΩ is the

current material volume fraction, V̄ is the predefined material volume fraction, and ρmin
and ρmax are the lower and upper limit of the relative density, respectively.
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The OC optimality criteria [38] were employed in this work to solve the heat transfer
problem:

ρnew
e =


max(ρmin, ρe − ∆) if ρeΛζ

e ≤ max(ρmin, ρe − ∆)
min(ρmax, ρe + ∆) if ρeΛζ

e ≥ min(ρmax, ρe − ∆)
ρeΛζ

e otherwise
, (10)

where ∆ is a positive move limit, ζ is a damping coefficient, and Λe is calculated by

Λe =

− ∂J
∂ρe

λ̄
∂V
∂ρe

, (11)

where λ̄ is the Lagrange multiplier.
It is stressed that ρmin should be a positive value in the optimization for numerical

stability. As can be seen in the mapping relationship, when ρmin was close to zero, the cor-
responding average aspect ratio would be relatively large and the elastic constants were
relatively small. As a result, the optimization process would go through oscillation, which
made the reconstruction of the Voronoi-GSCS very difficult. Consequently, in this paper,
ρmin = 0.1 was used.

The finite element method was used to make the design domain discrete and to solve
the heat equilibrium equation. The derivative of the objective function concerning an
element’s relative density is calculated by

∂J
∂ρe

= −TT ∂K
∂ρe

T , (12)

where the derivative of the global heat conductivity matrix concerning an element’s relative
density is calculated by

∂K
∂ρe

=
Ne

∑
e=1

CT
e

(∫
Ye

BT
e

∂dH
post

∂ρe
BedY

)
Ce, (13)

where Ne is the total number of elements, Ce is the expansion matrix, B is the strain matrix,

and
∂dH

post

∂ρe
can be calculated by,

∂dH
post

∂ρe
=


∂(dxx + dyy)

2∂ρe
0

0
∂(dxx + dyy)

2∂ρe

 (14)

where
∂dxx

∂ρe
and

∂dyy

∂ρe
can be obtained by the mapping relationship.

The derivative of the volume constraint concerning the relative density is calculated by

∂V
∂ρe

=
∫

Ye
dY = Ve, (15)

where Ve is the element volume.

2.3. Geometry Reconstruction on the Full-Scale

After obtaining the relative density distribution, the mesh size function f i
h(x, y) could

be reconstructed based on the mapping relationship between the relative density and the
average aspect ratio of the struts. For the relative density distribution, the signed distance
function, f i

g(x, y), corresponding to the contour of the density, ρi, could be calculated easily.
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The mesh size function f i
h(x, y) could be obtained based on the signed distance function,

f i
g(x, y):

f i
h(x, y) = 4h

[
1− H

(
− f i

g(x, y)
)]

+ h1 (16)

where H(x) is the Heaviside function, ∆h = h0 − h1 with h0 and h1 being given as{
h0 = α(ρi−1)t

h1 = α(ρ1)t
, (17)

where t is the width of the strut and α is the average aspect ratio of the struts.
After obtaining a series of signed distance functions, f i

h(x, y), the final mesh size
function, fh(x, y), is calculated by

fh(x, y) = min
(

f 1
h (x, y), f 2

h (x, y), · · · , f
Nρ

h (x, y), f
Nρ+1
h (x, y)

)
, (18)

where f
Nρ+1
h is the mesh size function corresponding to the contour of the relative density,

ρmax.
With the mesh size function, fh(x, y), the skeleton of the design domain can be ob-

tained [34,35]. The signed distance function, fg(x, y), of the Voronoi skeleton can be
calculated by using the fast marching method [36]. The Voronoi cellular structure was
reconstructed by cutting the level set function, φg = fg(x, y) + t/2,

φg > 0 ⇔ solid material

φg = 0 ⇔ material interface

φg < 0 ⇔ void material

, (19)

where t is the width of the strut.

3. Numerical Examples

In this section, three numerical examples are presented to verify the effectiveness of
the proposed multiscale design for the Voronoi-GSCS. All the examples were based on a
square design domain with L = 40, as shown in Figures 5a and 6a,b. In the first benchmark
example, a uniform distributed heating with T = 0.025 was set in the design domain and
T = 0 was imposed in the left middle edge of the domain. A gradient distributed heating,
T = 0.01–0.05, was set in the design domain and T = 0 was imposed in the left middle edge
of the domain in the second example. In the third example, a uniform distributed heating,
T = 0.025, was set in the design domain and T = 0 was imposed in the four corners of
the domain. The predefined material volume limit was 0.4. The lower and upper limit of
the relative density was 0.1 and 0.9, respectively. All the quantities were dimensionless in
the examples.
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(a) (b)

(c) (d) (e)

(f)

Figure 5. Results of the uniform distributed heating (I): (a) the numerical model; (b) the relative
density distribution; (c) the mesh size function; (d) the skeleton of the Voronoi-GSCS; (e) the signed
distance function of the skeleton; (f) the reconstructed Voronoi-GSCS.

(a) (b)

Figure 6. Numerical example model: (a) gradient distributed heating; (b) uniform distributed
heating (II).
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3.1. 2D Benchmark Example

The first benchmark example was used to demonstrate the generation process and
the superiority of the Voronoi-GSCS in the heat transfer problem. The size effect of the
multiscale design method for the cellular structure was also surveyed.

As shown in Figure 5b, the relative density distribution was obtained by the modified
density method in the online optimization. Based on the relative density distribution and
the relationship between the average aspect ratio and the relative density, the average
aspect ratio distribution could be obtained, as shown in Figure 5c. It can be seen that the
region with a high relative density has a smaller corresponding size function. Conversely,
the region with a high relative density has a larger area size function. Then, the Voronoi
skeleton could be generated by the mesh generator [34] and the coupling relationship [35],
as shown in Figure 5d. The cellular structure skeleton corresponding to the region with
a large size function was sparse, and the cellular structure skeleton corresponding to the
region with a large size function was dense. The signed distance function of the Voronoi
skeleton could be calculated by the fast marching method [36], as shown in Figure 5e. The
Voronoi-GSCS was reconstructed by cutting the level set function, as shown in Figure 5f. It
can be seen that the microstructures were connected smoothly in the whole design domain.

For comparison, the optimized results obtained by the SIMP methods are given. The
SIMP method is based on the work of [39]. The penalty coefficient was 3 and the minimum
filter radius was 1.2. The relative density distribution is shown in Figure 7a, which shows
the dendritic distribution. The value of relative density became larger when it was close
to the left edge with T = 0. It can be observed in Figures 5b and 7a that the two relative
densities showed similar distribution trends. The relative density distribution obtained by
the SIMP method had more bifurcation, while the relative density distribution obtained by
the method developed in this paper was more concentrated.

As shown in Figure 7b, the heat compliance of the single-scale structure was 4438.30.
The heat compliance of the cellular structure was 3737.67, which was 15.79% smaller than
the single structure. This indicated that the designed cellular structure had great superiority
in heat transfer.

(a) (b)

Figure 7. Optimization results and convergence history: (a) the relative density distribution obtained
by the SIMP method; (b) iteration history for the SIMP method and the multiscale method.

As we know, the size effect should be considered in the scale-separated-based mul-
tiscale design method for cellular structures. In the present multiscale method, the size
effect was surveyed by adjusting the width of the struts, which determined the aspect
ratio of the struts. As shown in Figure 8, the cellular structures obtained by using different
widths are given. The widths of the struts for the three cellular structures were 0.08, 0.06,
and 0.04, respectively. As can be seen, the three cellular structures were similar to each
other. Additionally, the convergence history and objective function value were nearly the
same for the full-scale reconstruction of the cellular structure, which was based on the
same relative density distribution. The difference was due to the fact that the cellular
structure became denser and the time cost became higher when the width of the struts
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became smaller. In addition, the gradient change in the structure was more obvious with
a smaller width. In conclusion, it manifested that the size effect on the cellular structure
design in the present multiscale method was not significant.

(a)

(b)

(c)

Figure 8. Size effect analysis: (a) the Voronoi-GSCS obtained with a strut width of t = 0.08; (b) the
Voronoi-GSCS obtained with a strut width of t = 0.06; (c) the Voronoi-GSCS obtained with a strut
width of t = 0.04.

3.2. Extensive Numerical Examples

In this subsection, two extensive numerical examples are described to verify the effec-
tiveness of the proposed multiscale design method in complicated heat transfer problems.
The models are shown in Figure 6. The optimized results obtained by the SIMP method
were used for comparison.

As shown in Figure 9, in the gradient-distributed heating example, the relative
density distribution of the single-scale structure was asymmetric and in dendritic form.
The dendritic distribution was clustered toward the position with T = 0. Due to gradient-
distributed heating, the area of relative density distribution in the high temperature was
larger than that in the regions with lower temperatures. The relative density distribution of
the cellular structure was also asymmetric and in dendritic form. The dendritic distribution
was more concentrated towards the position with T = 0 and high-temperature regions.
As can be seen in the obtained Voronoi-GSCS, in the area of low relative density, the distri-
bution of holes was sparse, and in the area of high relative density, the distribution of holes
was dense. The distribution of holes showed a gradient trend.
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As shown in Figure 10, in the uniform distributed heating (II), the relative density
distribution was symmetric along the diagonal line and around the four positions where the
predefined temperature was T = 0. The obtained relative density distributions of the single-
scale structure and cellular structure were nearly the same. The reconstructed Voronoi-
GSCS was dense around the four positions and sparse in other regions. The microstructure
was well-connected without connection mismatch.

(a) (b)

(c)

Figure 9. Results of gradient distributed heating: (a) the relative density distribution obtained by
the SIMP method; (b) the relative density distribution obtained by the proposed multiscale method;
(c) the reconstructed Voronoi-GSCS.

(a) (b)

(c)

Figure 10. Results of uniform distributed heating (II): (a) the relative density distribution obtained by
the SIMP method; (b) the relative density distribution obtained by the proposed multiscale method;
(c) the reconstructed Voronoi-GSCS.
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The heat compliances of the extensive numerical examples are given in Figure 11.
In the gradient-distributed heating example, the heat compliances for the single-scale
structure and cellular structure were 1232.82 and 1028.18, respectively. In the uniform
distributed heating (II), the heat compliances for the single-scale structure and cellular
structure were 2704.11 and 2573.38, respectively. The heat transfer performance improved
by 16.60% and 4.83%, respectively. The advantages of the cellular structure were verified
again by the extensive numerical example.

(a) (b)

Figure 11. Iteration history: (a) compliance convergence history of the SIMP method and the
multiscale method for gradient distributed heating; (b) compliance convergence history of the SIMP
method and the multiscale method for uniform distributed heating (II).

4. Conclusions

In this paper, a scale-separated design of the Voronoi-GSCS for the heat transfer
problem was proposed. On the microscale, the offline calculation proceeded. The stochastic
Voronoi microstructure was generated and homogenized. The relative density of the
microstructure was calculated and the mapping relationship among the relative density,
the average aspect ratio of the struts, and the heat conductivity matrix were established.
On the macroscale, online optimization was carried out to solve the heat transfer problem.
The optimized relative density distribution of the design domain was obtained. On the full
scale, the Voronoi-GSCS was reconstructed based on the mapping relationship built on the
microscale and the relative density distribution obtained on the macroscale. The body heat
source with uniform-distributed heating (I and II) and the gradient-distributed heat transfer
problems were considered to demonstrate the effectiveness of the developed multiscale
method for designing the Voronoi-GSCS. The results showed that the scale-separated
multiscale could ensure good connectivity of the adjacent microstructure. The size effect
was surveyed by changing the width of the struts. It could be seen that the size effect
has little influence on the obtained graded cellular structure. The heat conductivity of
the cellular structure was enhanced considerably compared to the single-scale structure
obtained by the SIMP method, showing that the Voronoi-GSCS has great advantages
in heat transfer. Additionally, the strut size of the Voronoi-GSCS was larger than the
minimum print size of additive manufacturing. Admittedly, much work remains to be
performed: (1) the model with arbitrary boundaries should be developed; (2) the graded
stochastic cellular structure could be produced with the aid of additive manufacturing, and
an experiment could be conducted to verify the properties of the Voronoi-GSCS; (3) the
proposed multiscale method could be extended to 3D optimization problems.
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