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Abstract: With the rise in smart devices, the Internet of Things (IoT) has been established as one of
the preferred emerging platforms to fulfil their need for simple interconnections. The use of specific
protocols such as constrained application protocol (CoAP) has demonstrated improvements in the
performance of the networks. However, power-, bandwidth-, and memory-constrained sensing
devices constitute a weakness in the security of the system. One way to mitigate these security
problems is through anomaly-based intrusion detection systems, which aim to estimate the behaviour
of the systems based on their “normal” nature. Thus, to develop anomaly-based intrusion detection
systems, it is necessary to have a suitable dataset that allows for their analysis. Due to the lack of
a public dataset in the CoAP-IoT environment, this work aims to present a complete and labelled
CoAP-IoT anomaly detection dataset (CIDAD) based on real-world traffic, with a sufficient trace
size and diverse anomalous scenarios. The modelled data were implemented in a virtual sensor
environment, including three types of anomalies in the CoAP data. The validation of the dataset was
carried out using five shallow machine learning techniques: logistic regression, naive Bayes, random
forest, AdaBoost, and support vector machine. Detailed analyses of the dataset, data conditioning,
feature engineering, and hyperparameter tuning are presented. The evaluation metrics used in
the performance comparison are accuracy, precision, recall, F1 score, and kappa score. The system
achieved 99.9% accuracy for decision tree models. Random forest established itself as the best model,
obtaining a 99.9% precision and F1 score, 100% recall, and a Cohen’s kappa statistic of 0.99.

Keywords: IoT; CoAP; sensors; dataset validation; machine learning; intrusion detection systems;
analysis; metric; algorithm design

1. Introduction

The construction of Internet of Things (IoT) networks has advanced significantly in the
last couple of years, adding a new dimension to the world of information and communica-
tion technologies. The versatility in the use of sensors in Internet of Things (IoT) networks
and the reduced cost through improved process efficiency, asset utilisation, and produc-
tivity have endorsed this network for new development opportunities in environments
such as smart home management, intelligent transport system, smart energy management,
and e-health.

The IoT consists of a large amount of nodes, and every node that connects with a server
maintains a persistent connection. Besides, each node in the network connects with many
other nodes, generating large loads on limited IoT devices. Congestion results in packet
retransmissions, increasing energy consumption, latency, and packet loss, while reducing
throughput and the packet delivery ratio (PDR) [1]. The use of specialised, lightweight IoT
mechanisms can ease the computational load on the system, free up resources, and improve
security. Thus, an alternative way to deal with the challenges of the IoT is the use of
specially designed standards and communication protocols. At the transport layer, the main
protocols are the transmission control protocol (TCP) and user datagram protocol (UDP).
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However, the requirements for the distribution of messages may vary according to the
specifications of the IoT application. Diverse and popular IoT protocols at the application
layer available today are geared towards the machine to machine (M2M) communication,
where one of the predominant protocols is constrained application protocol (CoAP). This
protocol is a customised and compressed version of the hypertext transfer protocol (HTTP),
and shares the same methods and principles, light weight, and low energy consumption [2].

Despite CoAP having difficulties managing congestion because of low bandwidth
and higher network traffic, security is a hot topic as it does not have reliable standards for
secure architectures [3]. Furthermore, the extensive implementation of sensor monitoring
technologies, low-cost solutions, and high impacting diverse application domains generate
an enormous amount of data while monitoring physical spaces and objects. The huge data
streams collected can suffer from unhealthy behaviours or anomalies that can be normal in
one scenario, while abnormal in another. Therefire, to reduce functional risks, avoid unseen
problems, and prevent downtime of systems, analysis is required [4].

Depending on the type of analysis performed, security problems can be handled
through intrusion detection systems (IDSs), which are intended to strengthen the security
of information and communication systems. Intrusion dd=etection systems are classi-
fied as either signature-based or anomaly-based. Machine learning (ML) anomaly-based
techniques have proven to be a reliable approach for the detection of network anomalies,
including for IoT networks. These techniques take a decision based on the learning of
anomalous/normal network behaviour. The machine learning approach is categorised into
various learning paradigms: supervised, unsupervised, semisupervised, reinforcement,
and active learning. Labelled data are required to train supervised learning approaches and,
as a result, the output is optimised compared to other models. Depending on the enhance-
ment in various applications, various learning methodologies and algorithmic models have
to be tested and evaluated [5]. Therefore, to develop supervised ML anomaly-based IDS, it
is necessary to collect a dataset of traffic with correct labelling, both normal and abnormal.
The inclusion of various types of anomalies can allow a validation and evaluation of system
effectiveness, considering the real trends in security vulnerabilities [6].

1.1. Motivation

Modern monitoring technology has evolved significantly, as optimised systems allow
data to be collected at multiple measurement points, obtaining a large quantity of data that,
when processed with artificial intelligence, have obtained deep and meaningful research
results [7]. The lack of dedicated IoT datasets with specific protocols and conditions limits
the emergence of novel mechanisms to recognise abnormal network behaviour. The de-
tection of traffic anomalies can be improved by the proposal of new datasets representing
real systems with wireless sensor networks and light communication, where IoT protocols
are modified.

The implementation of models that recognise abnormal circumstances is possible due
to the representative knowledge of the environment. These facts are motivated the presenta-
tion of CIDAD (available at https://github.com/dad-repository/cidad.git), URL (accessed
on 30 October 2022)) a complete and labelled CoAP-IoT dataset based on the reproduction
of certain traffic with a sufficient number of samples, specific feature extraction, and mixed
anomalous scenarios.

An incident that happened at the Centre for Information and Communications Tech-
nology Research (CITIC) [8] served as the inspiration for the scenario design in this article.
The temperature sensors initially failed to deliver accurate data to the cooling system
due to a software issue that resulted from an erroneous sensor configuration in the data
centre. The system failed due to a hardware breakdown brought on by changes in the
device temperatures.

In addition, to validate CIDAD for traffic anomaly detection on CoAP-IoT networks,
five shallow machine learning models were applied. Indeed, ML cannot work with raw
data in suitable conditions; thus, as a preliminary stage, it was necessary to extract and
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analyse the representative features and remove redundant information. Consequently,
the data had to be pre-processed to be perfectly interpreted by the ML algorithms.

1.2. Contributions of the Work

The main objective of this work is to present a new CoAP-IoT dataset, perfectly
labelled, easy to follow and manipulate, and designed for traffic anomaly detection in IoT
environments, and present its validation through the application of supervised learning
algorithms. The main contributions of this research are:

• An exhaustive overview of existing IoT datasets and their validation using machine
learning algorithms for anomaly detection.

• Design and implementation of a semi-synthetic IoT environment to program request
and respond COAP messages, introducing alterations of the default behaviour of the
CoAP packets to produce anomalies in the traffic.

• An annotated, versatile, easy to follow, and manipulated CoAP-IoT dataset that
facilitates tests with supervised learning algorithms.

• Analysis and feature extraction of IoT dataset wireless sensor networks.
• Implementation and data optimisation for binning, handling unbalanced data, feature

extraction, and hyperparameter tuning in real environments.
• Application of diverse machine learning techniques and their evaluation using differ-

ent traditional metrics to validate the selected dataset.

1.3. Paper Organisation

This work is structured as follows: Section 2 presents the most relevant IoT datasets
and how they have been used in detecting traffic anomalies using machine learning tech-
niques. Section 3 identifies the architectures used for both the physical and virtual settings.
The structures implemented for the exchange of messages are presented in Section 4.
An overview of the CIDAD is detailed in Section 5. Section 6 exposes the machine learning
techniques used. Section 7 presents the preprocessing of data as well as the feature engi-
neering, to make the data perfectly understood by classifiers. For model implementation,
CIDAD was divided into training and test sets. The results of the training split are discussed
in Section 8. The assessment of the test set is detailed in Section 9. Finally, a discussion and
future research directions are presented in Section 10.

2. Related Work

The emerging use of IoT networks and their relative novelty, along with their security
threats, has led to the recent endeavour of building specialised IoT datasets.

This section presents some of the most relevant published public datasets, which
were developed specifically in IoT sensor networks with sufficient traces and are perfectly
labelled, designed for IDSs using supervised machine learning. As well as this, examples
of their implemention for traffic anomaly detection using machine learning are shown.

• N-BaIoT [9]: This dataset is composed of captured traffic from two networks, the first
one corresponding to a video surveillance network with internet protocol (IP) cameras
with eight different types of attacks that interrupt the availability and integrity of the
video links. The second one comes from an IoT network with three computers and
nine IoT nodes, one of which is affected with the Mirai botnet malware. This dataset
was employed to detect botnet attacks in the IoT by extracting snapshots of network
behaviour and using deep autoencoders. In addition, using the mentioned dataset,
Kitsune [10] devised a system for network intrusion detection, which learns how to
detect online attacks on local networks without supervision using autoencoders. Fur-
thermore, Abbasi [11] exploited the dataset for classification using logistic regression
(LR) and artificial neural networks (ANN).

• CCD-INID-V1: Liu et al. [12] created a new dataset to identify traffic anomalies in
IoT networks. In addition, they developed a hybrid intrusion detection method that
incorporated an embedded model for feature selection and a convolutional neural
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network (CNN) for attack classification. The considered method has two models:
RCNN, where random forest is combined with a CNN, and XCNN, where extreme
gradient boosting (XGBoost) is combined with a CNN. They compared the accuracy
of their method with classical ML techniques, such as support vector machine (SVM),
K-nearest neighbours (KNN), LR, and naive Bayes (NB). To validate their experiments,
they also compared their proposed dataset with the N_BaIoT dataset [9] and the
DoH20 dataset [13] to investigate the performance of these learning-based security
models and compare their method against conventional ML techniques.

• Doshi et al.: They developed some classifiers to automatically identify attacks in IoT
traffic. They demonstrated that considering IoT traffic information in the feature
selection process can lead to a high accuracy distributed denial of service (DDoS)
detection [14]. A pipeline was assembled to operate on network middleboxes and
corresponding devices that may be part of an ongoing botnet. Different classifiers for
attack detection were implemented, such as KNN, support vector machine with linear
kernel (LSVM), decision tree (DT), random forest (RF) and neural networks (NN).

• All eyes on you: Pahl et al. [15] developed an IoT microservice anomaly detection,
where they created and published two separate datasets. The datasets monitored
connections between seven different virtual state layer (VSL) service types of light
controllers, movement sensors, thermostats, solar batteries, washing machines, door
locks, and user smartphones. Additionally, employing this dataset, Hasan et al. [16]
proposed an ML system using LR, SVM, DT, RF, and ANN. The proposed models
based on ML could recognise and conserve the system when it is in an abnormal state.
In training and test stages, the best accuracy results were obtained with RF and ANN..

• Anthi et al.: They presented a dataset based on eight commercially popular IoT nodes
as an example of a smart home [17]. They collected benign data for three weeks
and malicious data for two weeks from the IoT testbed in five scenarios with six IoT
attack categories. They also proposed a three-layer IDS considering NB, Bayesian
networks, J48, Zero R, OneR, simple logistic, SVM, multi-layer perceptron (MLP),
and RF, generating potential intrusion detection systems.

• SCADA IIoT: For an industrial IoT (IIoT) environment, Lemay et al. presented a
synthetic labelled dataset for supervisory control and data acquisition (SCADA) net-
works [18]. The dataset includes both malicious and non-malicious Modbus traffic
packet captures, introducing five types of malicious activities. The exact number
of master terminal units (MTUs) and remote terminal units (RTUs) was varied to
illustrate the impact of different implementations on real traffic. Detection of traffic
anomalies was carried out by Duque et al. in [19], where four different ML algorithms
were applied to detect anomalies, e.g., k-means clustering, KNN, SVM, RF, and KNN,
achieving the best performance with the SVM model.

• IIoT MODBUS: Another approach in IIoT was developed by Frazao et al. [20], who
employed a small automation testbed using MODBUS/TCP. Using both the MOD-
BUS and TCP protocols, the testbed emulates a cyber-physical system process that is
managed by a SCADA system. They analysed several attacks in the testbed: ”ping
flooding”, ”TCP SYN flooding”, and ”MODBUS query flooding -read holding reg-
isters”, which target the programmable logic controller (PLC). In order to validate
the dataset, four classifiers were implemented, kNN, SVM, DT, and RF, with the DT
classifier achieving the best results.

• UNSW: A group of researchers at the University of New South Wales, Sydney (UNSW) [21],
analysed the network traffic of IoT devices to learn their behaviour, implementing the
internet engineering task force manufacturer usage description framework (MUD).
They presented a labelled dataset with a range of volumetric attacks, such as denial of
service (DoS), reflective TCP/UDP/internet control message protocol (ICMP) flooding,
and address resolution protocol (ARP) spoofing to IoT devices. They also developed
a machine learning system employing two outlier detection techniques, boundary
detection and Markov Chain, to determine whether an IoT device is involved in a
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volumetric attack or not and the flow that participates in the attack. IoT monitoring
was performed via a combination of coarse-grained (per device) and fine-grained (per
flow) software-defined networking (SDN) telemetry for each IoT device. The process
was executed for various time scales, identifying deviations from expected traffic
patterns in device flows defined by the device MUD profile.

• BoT-IoT: [22] designed by the Cyber Range Lab of the Australian Center for Cyber
Security (ACCS), is a dataset that generates a mix of normal and botnet traffic through
a simulated IoT sensor test bench. The dataset comprises a simulated network of
IoT services, which contains some temperature, pressure, and humidity IoT sensors
that are connected to the public IoT centre through MQ telemetry transport (MQTT)
messages. The dataset contains operating system (OS) and services analyses, DoS,
DDoS, data exfiltration, and keylogging attacks. Based on the protocol used, the DDoS
and DoS attacks are further organised. To develop their work, the authors applied
three ML algorithms, SVM, a recurrent neural network (RNN), and long-short term
memory recurrent neural network (LSTM-RNN). Additionally, other authors have
exploited the BoT-IoT to develop their experiments, for example, Susilo et al. [23]
built an anomaly detection system applying RF, SVM, MLP, and CNN, while Alsamir-
imi et al. [24] implemented NB, RF, MLP, iterative dichotomiser 3 (ID3), adaptative
boosting (AdaBoost), quadratic discriminant analysis (QDA), and KNN.

• IoT-NID: The IoT Network Intrusion Dataset [25] was developed by The Hacking and
Countermeasure Research Lab. They created various types of network attacks on the
Internet of Things environment including Mirai, man in the middle (MITM), DoS,
and scanning, among others, which were connected to the same wireless network.
The dataset consists of 42 raw network packet files at different time points, using
typical smart home devices and combining some laptops and smartphones.

• IoT-23: The Aposemat IoT-23 dataset [26] published by Stratosphere Laboratory, AIC
group, FEL, and CTU University, offers a large record consisting of 23 captures of
different IoT network traffic: twenty from infected IoT devices and three from real
IoT device network traffic, over HTTP, domain name system (DNS), dynamic host
configuration protocol (DHCP), Telnet, secure sockets layer (SSL), and internet relay
chat (IRC) protocols. Malicious traffic captures were performed for long periods,
including various attack scenarios, such as Torii, Mirai, and Gafgyt. To detect traffic
anomalies, this dataset was also employed by Thamaraiselvi et al. [27], applying RF,
NB, SVM, and DT.
Furthermore, Aversano et al. [28] evaluated abnormal IoT traffic with a deep learning
technique that can distinguish between legitimate and illegitimate IoT traffic as well
as diverse forms of anomalies. They integrated five different datasets, including
the BoT-IoT [22] presented by Sivanathan et al. [29] for normal traffic coming from
various devices; the IoT network intrusion dataset [25], a part of the IoT-23 [26], which
mainly involves malicious traffic; and a small automation testbed [20] for industrial
control systems.

• ToN-IoT: Moustafa at the Cyber Range Labs of UNSW Canberra [30] created an MQTT
dataset, named ToN-IoT, that comprised heterogeneous data sources collected from a
realistic and large-scale network, where more than ten IoT and IIoT sensors, including
weather and industrial control sensors, were employed to capture telemetry data,
presenting both regular and abnormal events. The IoT nodes (for instance, green gas
IoT and industrial IoT actuators) communicate using MQTT, and they publish and
subscribe to different topics, namely temperature and humidity. Sarhan et al. [31]
intended to standardise the techniques to apply them to any dataset. Six ML models,
deep feed forward (DFF), CNN, recurrent neural network (RNN), DT, LR, and NB,
and three feature extraction algorithms, principal component analysis (PCA), linear
discriminant analysis (LDA), and automatic encoder, were applied on three reference
datasets, and among them was the ToN-IoT [30].
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• MedBIoT: This is another semi-synthetic dataset related to IoT botnet, focused on the
detection of botnet attacks such as Mirai, BashLite, and Torii [32]. Developed in the
Department of Software Science at Tallinn University of Technology, this dataset was
obtained from a network with more than 80 devices, including normal and malicious
traffic. The scale extension enables capturing malware spreading patterns that cannot
be seen in small-sized networks, thus providing a more realistic environment. KNN,
SVM, DT, and RF classification models were implemented, verifying the applicability
of the proposed dataset.

• DAD [33]: This is a labelled IoT dataset containing a reproduction of certain real-world
behaviours seen from the network and used for the detection of traffic anomalies in IoT
sensor networks. The scenario involves four InRows, with four temperature sensors
each, connected to a broker that establishes connections through MQTT messages.
The dataset presents three types of anomalies, duplication, interception, and modifi-
cation, on the MQTT protocol payload spread over 5 days. Later, this was validated
in [34] applying LR, RF, NB, AdaBoost, and SVM, demonstrating its applications in
anomaly detection, where the best classification results were obtained for RF and
Adaboost models.

• MQTTset: Vaccari et al. presented MQTTset [35], a dataset which was constructed
from capturing traffic from a diverse IoT network that simulated a smart home/office/
building environment. The testbed employed the MQTT protocol at the applica-
tion layer, introducing denial-of-service attacks, flood attacks, MQTT publish floods,
SlowITe, malformed data, and brute force authentication. Intrusion detection systems
using ML were implemented using DT, RF, MLP, NN, and Gaussian NB on balanced
and unbalanced data. The authors demonstrated the ability of intrusion detection
systems in IoT-MQTT environments to identify malicious behaviour.

• IoT-RPL: Dhifallah et al. at Laboratoire Hatem Bettaher (IRESCOMATH) [36] proposed
a new IoT-RPL dataset. They built a real-time IoT network infrastructure, following a
simulation/emulation approach where IoT nodes were simulated with Cooja. The IoT-
RPL dataset presents significant data link (6LoWPAN and IEEE 802.15.4), network
(IPv6 and ICMPv6), transport (UDP), and application (CoAP) protocols. Four parasite
signal distribution nodes (hello food attack, blackhole attack, decreased rank attack,
and version number attack) were included in the dataset. For intrusion detection, five
machine learning models (SVM, DT, RF, KNN, and MLP) were compared, achieving
accuracy rates of 99% in most cases.

• IoT-Flock: Ghazanfar et al. [37] built a real-time IoT smart home system dataset using
an IoT traffic generator tool that could produce normal and abnormal IoT traffic
over a real-time network by means of just a physical machine. The given dataset
contains four types of environmental monitoring sensors (temperature, humidity,
light, and motion) and communicates using MQTT protocol through a wireless local
area network (WLAN). In order to show the utility of the dataset for creating an IoT
security solution, it was used with three common ML models (NB, RF, and KNN),
achieving high detection rates.

• SDN-IoT: Bhayo et al. [38] developed a secure IoT framework based on a software-
defined network. This framework is capable of detecting vulnerabilities in IoT devices
and abnormal traffic created by IoT devices taking into account the number of IP
sessions and analysing IP payloads. In this way, it can easily detect DDoS attacks
in the network by studying different parameters. The authors presented IoT nodes
in different scenarios. A large amount of traffic is generated from an exposed node,
and abnormal traffic is detected and notified by the SDN controller. Given the results
reported, the proposed framework detection accuracy for DDoS attacks is high, from
98% to 100%. These results were obtained in the early stage of the attacks and have a
low false-positive rate. Despite that, due to the novelty of the proposed framework, it
has not been tested for ML IDS.
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• IoTID20 [39]: The testbed for the IoTID20 dataset is a combination of IoT devices
and interconnecting structures. The attacks are carried out on two devices that act as
victims. The dataset contains eight types of attacks, belonging to DoS, Mirai, MITM,
and scan. The ML models used for anomaly detection are SVM, GaussianNB, LDA,
LR, DT, RF, and ensemble classifiers. The best detection rates achieved were with RF
and ensemble classifiers.

• MedBIoT [32]: Developed at the Department of Software Sciences at Tallinn University
of Technology, this is another semi-synthetic IoT dataset obtained from a network
with eighty emulated devices and three physical devices. The malicious behaviour
of the dataset is generated by the deployment of three prominent botnet malware
within the controlled environment: Mirai, BashLite, and Torii. In order to verify the
suitability of the IoT behavioural dataset, kNN, SVM, DT, and RF classification models
were implemented.

• X-IIoTID [40]: This dataset is implemented using the Brown-IIoTbed [41] testbed
developed at the University of New South Wales (UNSW). It consists of a variety of
M2M, machine to human (M2H), and human to machine (H2M) connectivity proto-
cols, sensors, actuators, various mobile and IT devices, means of access, application
programming interfaces (API), and states that are implemented at the three levels of
an IIoT system. It contains a wide variety of attacks on different layers of the system.
The data include normal and abnormal traffic, captured at various hours of the day for
four non-continuous months. For dataset validation, DT, NB, kNN, SVM, LR, DNN,
and GRU algorithms were used. The best results were achieved with DT in all cases,
achieving an accuracy of 99.54% for binary classification.

• CIC IoT Dataset 2022 [42]: Simulating smart home activity, this dataset was created
from 60 devices in an isolated IoT sensor network at a laboratory in the Canadian
Institute for Cybersecurity (CIC). The IoT network includes WiFi, ZigBee, and Z-Wave
devices. In the experiments, six different scenarios were investigated, containing
two different types of attacks: flood denial-of-service attack and real time streaming
protocol (RTSP) brute-force attack. The IDSs were developed using 12 different
Gaussian classifiers, NB, DT, LDA, AdaBoost, Ridge, Perceptron, passive-agressive,
XGBoost, kNN, RF, LSVC, and SGD, obtaining the best results with XGBoost (98.6%
accuracy) and the tree-based classifiers, DT and RF (98.5% accuracy), but with a lower
prediction time on the tested dataset. They finally decided on an RF classifier because
it is computationally efficient, does not overfit, and the performance can be improved
with data and feature selection.

To summarise, Table 1 outlines the mentioned datasets, emphasising the type of IoT
network used, the anomalies they contain, and some works that validate their use in
detecting anomalies using ML. Most of the described IoT datasets are based on smart
home environments or video surveillance cameras in non-specific environments. Three
datasets handle environments or traces on IIoT platforms, and only a few of them use
dedicated protocols. Some of them introduce networks of wireless sensors, such as systems
for measuring temperature, humidity, movement, etc., but none of the aforementioned
datasets provide networks of lightweight temperature sensors in a data centre with an
acceptable amount of traces in the IoT, with a mixture of anomalies, based on a CoAP
protocol. Consequently, we found the need to generate a dataset that would adjust to
the requirements of the described environment. Thereby, the design, implementation,
and application of ML for anomaly detection to a dataset under the described conditions is
presented in this article.
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Table 1. IoT dataset review summary considering applications in ML-IDS.

Dataset IoT Network Anomaly ML Validation

N-BaIoT [9] IP cameras, PCs, and IoT
devices

Mirai botnet and BASHLITE
malware

Deep autoencoders [9].
Encoders [10]. LR and

ANN [11]. RCNN, XCNN [12].

CCD-INID-V1 [12] Smart sensors in an IoT network
ARP poisoning, ARP DoS, UDP
Flood, Hydra Bruteforce with
Asterisk protocol, SlowLoris

RCNN, XCNN, KNN, NB, LR,
SVM [12].

Doshi et al. [14] Smartphones and laptops DDoS, Mirai KNN, LVSM, DT, RF, NN [14]

All eyes on you [15] Smart home and user
smartphones Anomalous timestamps, DoS grid-based, k-mean [15]. LR,

SVM, DT, RF, ANN [16]

Anthi [17] Smart home DoS
NB, Bayesian Network, J48,

Zero R, OneR, Simple Logistic,
SVM, MLP, RF [17].

SCADA IIoT [18] Modbus traffic packet captures Metasploit, fingerprinting,
unauthorised packets SVM, RF, KNN, k-means [19].

IIoT MODBUS [20], Small automation testbed using
MODBUS/TCP

Ping flooding, TCP SYN
flooding, and MODBUS Query

flooding.

KNN, SVM, DT, RF [20].
Autoencoder [28]

UNSW [21] Smart home
DoS, reflective

TCP/UDP/ICMP flooding,
and ARP spoofing

Boundary detection and
Markov Chain [21].

BoT-IoT [22] Smart Home (MQTT) DoS, DDoS, data exfiltration,
keylogging

SVM, RNN and
LSTM-RNN [22].

Autoencoder [28]. RF, SVM,
MLP, CNN [23]. NB, RF, MLP,

ID3, AdaBoost, QDA,
KNN [24].

IoT-NID [25] Smart home, laptops, and
smartphones Mirai, MITM, DoS, scanning, etc Autoencoder [28]

IoT-23 [26] Smart home (real IoT devices) Mirai, Torii, and Gafgyt RF, NB, SVM, DT [27],
autoencoder [28]

ToN-IoT [30] Weather and industrial control
sensors (MQTT)

Several normal and cyber attack
events from IoT networks

DFF, CNN, RNN, DT, LR,
NB [30]. Autoencoder [31]

MedBIoT [32] IoT network (i.e., fans, locks,
light bulbs and switches). Mirai, BashLite, Torii KNN, SVM, DT, RF [32].

DAD [33] Temperature IoT sensors
(MQTT)

Duplication, interception,
and modification of packets.

LR, RF, NB, AdaBoost,
SVM [33].

MQTTset [35] Temperature, humidity, motion
sensors (MQTT)

Flooding DoS, MQTT Publish
flood, SlowITe, malformed data,
and brute force authentication

DT, RF, MLP, NN, and Gaussian
NB [35].

IoT-RPL dataset [36] Simulated nodes
Hello food, blackhole,

decreased rank, and version
number

SVM, DT, RF, KNN, and
MLP [36]

IoT-Flock [37] Smart home (MQTT/CoAP)

MQTT Packet Crafting Attack,
MQTT Publish Flood, CoAP

Memory Leak and Attack CoAP
Segmentation Fault Attack

NB, RF, and KNN [37]

SDN-IoT framework [38] Simulated network nodes DDoS Still not implemented

IoTID20 [39] smart home Flood Syn, HTTP and UDP,
ARP Spoofing, brute force

SVM, Gaussian NB, LDA, LR,
DT, RF, and ensemble clasifiers
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Table 1. Cont.

Dataset IoT Network Anomaly ML Validation

MedBIoT [32] IoT devices Mirai, BashLite, Torii KNN, SVM, DT, and RF.

X-IIoTID [40] IIoT

Weaponisation, exploitation,
lateral movement, exfiltration,

tampering, crypto-ransomware,
ransom denial of service

DT, NB, KNN, SVM, LR, DNN,
and GRU

CIC IoT Dataset 2022 [42] WSN Flooding and brute force RTSP

NB, DT, LDA, AdaBoost, Ridge,
Perceptron, Passive-Agressive,

XGBoost, KNN, RF, LSVC,
and SGD

3. Scenario

In order to obtain a dataset that can be used to detect traffic anomalies, a virtual
scenario based on a real data centre temperature sensor network has been designed and
implemented. First, this section presents the structure and actual operation of the sensor
network from the real data centre. This includes the interaction, distribution, and locali-
sation of the sensor devices. Secondly, the implementation of the virtual scenario and the
elements required for the construction of an IoT sensor network are described.

3.1. Physical Architecture

To build a real environmental dataset, data were obtained by modelling observations
from authentic temperature sensors in the Centre for Information and Communications
Technology Research (CITIC) Data Center [8]. The data centre structure consists of three
elements with sensors: the racks, the power strips (PDU), and the refrigeration machines
(InRow). In the proposed scenario, only the sensors of the InRows will be considered.
The other sensors in the data centre maintain static temperature values; therefore, they are
not susceptible to analysis. Each InRow has control over four sensors: (a) unit entering
fluid temperature (TFEU), which measures the temperature of the input fluid to the InRow
unit, (b) unit leaving fluid temperature (TFSU), which measures the temperature of the
fluid leaving the InRow back to the outside cooler, (c) unit return air temperature (TAR)
unit, which measures the temperature of the air entering the InRow air conditioning unit
of the closed hot corridor, and (d) unit supply air temperature (TAS), which measures the
temperature of the air coming out of the InRow into the cold corridor.

Based on how the CoAP protocol works, a client node can command each InRow
node sending a CoAP packet. Every sensor is identified by a uniform resource identifier
(URI) address (ex. www.inrow15.gal/1) , where the resource indicates the InRow, and the
number that follows the slash corresponds to its sensor: (1) TAS, (2) TAR, (3) TFEU, and
(4) TFSU. Then, when performing virtualisation, there will be a virtual machine for each
InRow, with the host machine acting as a client.

3.2. Virtual Scenario Description

To generate the dataset, a virtual infrastructure was deployed using the ESXi 6.5
hypervisor. Through the vSwitch capacity provided by this hypervisor, an isolated Ethernet
network, called the IoT network, hwas configured, so that the infrastructure is not interfered
with by external or unwanted traffic. Five virtual machines with the Ubuntu 20.04 operating
system were deployed in this network, four of which represent the four CoAP servers, called
inRow, which in turn have four sensors each, while the fifth virtual machine implements
the CoAP client functions and therefore implements the messages sent to each of the four
sensors of each of the four CoAP servers, thus performing the function of a system monitor.
Figure 1 shows the scenario with different virtual machines that contain a client and four
CoAP servers.

www.inrow15.gal/1
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Figure 1. Virtual scenario, including a CoAP client and four CoAP servers (InRows).

The CoAP client message, sent by the client virtual machine, contains a CoAP packet
built using the Scapy for Python tool [43], where the IP and UDP protocols are concatenated
and the token value is randomly generated. Finally, the CoAP packet is sent asynchronously
using the send method from the Scapy library. In each of the four virtual machines that
simulate the operation of the InRows, a server CoAP that listens for messages from the
CoAP client was implemented, using the sniff method of the Scapy library and performing a
filtering process. For each message received, a reply is sent, which includes the temperature
value for each node. The temperature values were calculated based on the time series
implemented in [33].

Each of the samples generated by the sensors is sent every five minutes to the client
through a CoAP message that contains its node identifier as a clientID (using URI-Host
and URI-Path values). The capture of the traffic exchange between the nodes is executed
on the client. The connection information is stored to be latter tagged in the dataset via
Scapy. Most abnormal packets are flagged on the server, except those that belong to the
interception anomaly.

4. Dataset Generation

The CIDAD was generated from a seven day monitoring of the situation that occurs
daily in a simulated environment. Five of the seven days present anomalies injected in
one of the InRows on the payload of the CoAP message. Traffic labelling is performed at
the packet level, where abnormal traffic is statistically different from normal traffic. Three
different scenarios of anomalies are presented in the dataset, where the behaviour of the
node can be affected as follows:

• Interception: the duplication anomaly consists of arbitrarily removing packages.
• Modification: this anomaly consists of modifying the temperature of the sensors to

a very low value. This causes the system to stop cooling, resulting in overheating of
the devices.

• Duplication:this anomaly sends more tokens than the packets initially planned.

Dataset Setup

One of the most promising protocols for small devices is CoAP. It is intended to be
used for web transfer with restricted devices and networks, such as scenarios with power
constraints or dissipating lines. It is created to communicate machine to machine applica-
tions, according to a request–response model. It is capable of discovering both services and
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resources. Moreover, it takes into account very important web ideas, such as the unified
resource identification (URI) and media types. For this reason, it can communicate with
HTTP; however, at the same time, it allows for multicast communications, very slight
overhead, and plainness for limited scenarios. CoAP employs UDP at the transport layer,
so it communicates with unreliable and connectionless datagrams [2]. The UDP port is
5683. The structure used in this scenario for the exchange of messages in each of the roles
used by every host is described below:

• Client: The client sends CoAP request messages to InRows (servers). These messages
are of type NON (non-confirmable) and do not require a confirmation ACK message
(the network will be less overloaded and the devices will consume fewer resources
when processing and sending these messages). The request sent by the client has the
following structure:

– Version: the value of this field will be 1 (01).
– Type: since the messages will be of type NON, the value will be 1 (01).
– Code: the messages that are sent from the client requesting a resource from the

server will be of the GET method. Therefore, the value of the code field will be
1 (0.01).

– Message ID: this is calculated according to the message sent; the message id
increases according to each message and follows a chronological order.

– Token: each token is a unique and randomly generated field of the message.
The size of this token is 4 bytes, the minimum size recommended.

– Options: the options used are URI-Host and URI-Path, able to correctly identify
the resource on the corresponding server. We will also add the Accept option
with value 0, which indicates that the format of resource representation that the
client accepts is plain text (text/plain).

• Server: the InRows will act as servers, sending back responses to the client. The scenario
includes four servers: InRow (1) www.inrow13.gal, (2) www.inrow15.gal, (3) www.
inrow23.gal, and (4) www.inrow25.gal. Each InRow has four sensors, whose resource
identifier or URI-Path in CoAP will be 1, 2, 3, and 4. The responses sent by the server
have the following structure:

– Version: the same as the original message (01).
– Type: the same type as the original message (type NON, 01).
– Code: the response code is 2.05 Content, which includes a representation of the

requested resource.
– Message ID: this is generated randomly for each reply message.
– Token: the same as the request message.
– Options: the URI-Host and URI-Path options are the same as the request. The

Content-Format option is also added, which specifies the representation format
of the object included in the payload field of the message (in our case, the value
will be 0, text/plain).

– Payload: this field includes a representation of the object, which is the temperature
measured by the sensor in this specific scenario.

The Python code shown below indicates how the client constructs the message for
each of the InRow nodes:

for server,ip in self.servers:
for sensor in self.sensors:

coapPackage = CoAP(ver=1, type=1,
code=1, msg_id =
self.create_msgID,
token = self.create_token,
options = [(‘‘Uri-Host’’, server),
‘‘Uri-Path’’,sensor),
(‘‘Accept’’, b‘‘\x00’’)],

www.inrow13.gal
www.inrow15.gal
www.inrow23.gal
www.inrow23.gal
www.inrow25.gal
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paymark = b‘‘\xff’’)
packet = (IP(dst=ip)
/ UDP(sport=5683, dport=5683)
/ coapPackage)

Next, the code shown below indicates the reply code from the server to the client.
The client has an IP address “192.168.0.1”:

if req.haslayer(CoAP) and
req.getlayer(IP).dst == ‘‘192.168.0.1’’:

respCoap = (CoAP(ver=coap.ver,
type=coap.type, code=69,
msg_id = self.create_msgID(),
token=coap.token,
options = [coap.options[0],
coap.options[1],
(‘‘Content-Format’’, b‘‘\x00’’)],
paymark=coap.paymark) /
Raw(load=
self.calculate_replyText(coap)))

respIP = (IP(dst=ip.src) /
UDP(sport=udp.dport,
dport=udp.sport) / respCoap)

5. Dataset Analysis

The anomaly traffic is measured from InRow 13 with IP source 192.168.0.2 during one
week, as shown in Table 2.

Table 2. Dataset anomalies.

Day Modification Interception Duplication

Monday 27 July 2020
Tuesday 28 July 2020 X

Wednesday 29 July 2020 X
Thursday 30 July 2020 X

Friday 31 July 2020 X X X
Saturday 1 August 2020 X X X
Sunday 2 August 2020

All the anomalies presented are performed on the temperature message packets.
During the interception anomaly, the data text line packets from the InRow 13 sensors are
not sent to the client. For the modification anomaly, all the temperature measurements are
adjusted to the same value, placing them at 11.56 ºC regardless of which sensor they belong
to. When a duplication anomaly occurs, additional packets are sent to the client.

As aforementioned, the sensor sends data to the client every 5 min. The CoAP data
text line packets correspond to the messages from the sensors. Therefore, under normal
conditions, there should be 288 daily CoAP data text line packets. Anomalous duplication
and modification packets must be reflected in the number of labelled daily packets. In the
case of interception, the packets are not shipped from the host; thus, these do not exist in
the dataset and cannot be labelled as an anomaly. However, the request messages sent by
the client, in this case, are labelled as anomalies.

5.1. General Dataset Description

Taking the type of communication used in the proposed scenario into account, a series
of important features are selected in the sending of CoAP messages, such as the amount
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of source and destination bytes, the number of source and destination packets sent, the
number of packets for each protocol, and the amount of abnormal and normal packets
per day.

The CIDAD has a total of 88,238 packets, and recalling that the CoAP protocol goes
over the UDP, 73% of all the traffic corresponds to UDP packets. Detailed information is
presented in Table 3. It contains ARP, IP, and IPv6 traffic. However, the number of packets
sent in IPv6 represents only 0.95% of the total packets and 26% of the ARP traffic. All
IPv6 packets correspond to ICMPv6 packets, while IPv4 packets contain UDP and ICMP
datagrams. All the anomaly packets belong to UDP protocol. Thus, 71.62% of UDP packets
are normal, while just 1.20% of all the traffic is labelled as an anomaly. It is important to
note that the packets from the sensor that are intercepted do not appear in the dataset
because they do not exist anymore. As a consequence, the request packets sent by the client
that have no response are labelled as anomalies.

Table 3. Dataset statistics.

Day Src
Bytes

Dst
Bytes

Src
Packets

Dst
Packets

ARP
Protocol

IP
Protocol

IPv6
Protocol

UDP
Protocol

Normal
Packets

Anomaly
Packets

Monday 490,344 331,776 7040 4608 2312 9216 120 9216 11,648 0
Tuesday 529,942 331,818 7737 4609 3105 9123 118 9120 12,250 96
Wednesday 537,736 331,818 7836 4609 3105 9219 121 9216 12,349 96
Thursday 516,302 330,666 7464 4593 2702 9235 120 9232 11,961 96

Friday 633,196 331,902 9442 4611 4707 9225 121 9216 13,669 384
Saturday 633,056 331,902 9440 4611 4707 9225 119 9216 13,667 384
Sunday 489,796 331,776 7030 4608 2304 9216 118 9216 11,638 0

Total 3,830,372 2,321,658 55,989 32,249 22,942 64,459 837 64,432 87,182 1056

Knowing how CoAP carries out the exchange of messages and assuming the re-
quest/response connection, in normal instances, there should be homogeneity in the
number of packets sent from each IP address source, as well as the number of bytes sent.
Therefore, alterations in data uniformity are an indication of an anomaly.

The four sensors belonging to the same InRow share the same IP address. Due to
the type of architecture presented, the sensors of the IoT network only send packets to
the client and do not create connections between them. A large portion of packets, about
32,249, corresponds to requests made by the client. All abnormal traffic is involved with
InRow 13 with the IP address 192.168.0.2, over IPv4.

The lack of homogeneity in the packets sent by the sensors represents abnormal
network behaviour. The frame length determines the number of bytes sent per packet.
Taking into account the proposed scenario and the homogeneity that must be presented,
given the nature of the CoAP protocol, changes in the density function of the frame length
imply anomalies in the packets sent.

5.2. UDP/CoAP Description

The CIDAD presents the UDP protocol at the transport layer and the CoAP at the
application layer. The CoAP makes use of two message types, requests and responses,
using a simple, binary-based header format. In the dataset, there are two types of CoAP
messages; the packets marked as CoAP represent those requests made by the client and the
CoAP data text line are the responses sent by each of the sensors. Therefore, the messages
with the temperature data from the sensors will be housed in the payload of the CoAP data
text line messages.

Table 4 shows the number of packets for each type of CoAP message. As mentioned
above, all anomaly packets are over UDP messages. The packets labelled as anomalies
in the CoAP protocol on Tuesdays, Fridays, and Saturdays correspond to packets sent by
the client that have not received a response and correspond to an interception anomaly.
This anomaly is also reflected in the absence of a data text line CoAP. The modification and
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duplication anomalies are labelled over the CoAP data text line. In the case of Wednesday
(modification anomaly), the number of packets remains unchanged, while on Thursday
(duplication anomaly), there is a considerable increase in the number of packets. In cases
where there is a mixture of anomalies (Friday and Saturday), the number of packets and
their distribution is not an accurate indicator of the presence of anomalies.

Table 4. UDP protocol composition.

CoAP CoAP Data Text Line
Day Normal Anomaly Normal Anomaly

Monday 4608 0 4608 0
Tuesday 4512 96 4512 0

Wednesday 4608 0 4512 96
Thursday 4592 0 4544 96

Friday 4512 96 4320 288
Saturday 4512 96 4320 288
Sunday 4608 0 4608 0

Total 31,952 288 31,424 768

As a consequence of the simplicity of the structure handled by the CoAP protocol,
the network presents a low, uniform, and homogeneous exchange of packets. This fact
makes it necessary to find other types of features that allow to model network behaviour as
normal or abnormal.

All InRow sensors have the same IP address, but the URI-host field allows to deter-
mine the InRow to which it belongs, and the URI-path field allows to identify the sensor.
The network has a total of 16 sensors and each sensor sent 288 packets per day to the
client. The absence or presence of additional packets also gives us an initial indicator of
the type of anomaly the InRow presents that day. The first evidence of removed packets
in this kind of lightweight environment could be the lack of uniformity in traffic. Indeed,
the packet reduction presented on Tuesday at InRow 13 is a strong indicator of the presence
of an interception anomaly, in contrast to the excess of packets on Thursday, indicating a
duplication anomaly. In the case of days in which there is a mixture of anomalies, such as
Friday and Saturday, the presence of duplication and interception anomalies will not affect
the homogeneity in the number of packets sent per day, but the number of anomalous
packets will increase.

6. Machine Learning Techniques

The aim of a machine-learning-supervised approach is to train an algorithm using a
dataset for which we know the result. From this data, the algorithm “learns” and can then
in the future make decisions about values for which the outcome is not known [44]. There
are many machine learning methods, some are more or less flexible, and shallow models
are simpler since they have a relatively small estimation range. The implementation of the
algorithms was executed using the scikit-learn tools for classification in Python [45].

During the training phase, there is a process called hyperparameter optimisation or
tuning. It consists of trying several models with different combinations of values and then
comparing the model performance to choose the best one according to a predefined metric
on a cross-validation (cv) set. The principle of grid search is exhaustive searching [46].

To perform the experiment, five machine learning models were selected in order to
validate the dataset to be employed to detect traffic anomalies in CoAP-IoT networks:
logistic regression, naive Bayes, random forest, AdaBoost, and support vector machine.
Initially, logistic regression with the liblinear solver, tuning L1, L2, and C parameters to
address overfitting, was applied.

To check or visualise the performance of a classification problem, one of the most
important evaluation metrics is the AUC (area under the curve) ROC (receiver operating
characteristics) curve. The ROC is a probability curve and the AUC represents the degree
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or measure of separability. It tells us to what extent the model is capable of distinguishing
between classes. The higher the AUC, the better the model is at predicting 0 classes as 0
and 1 class as 1. A mathematical explanation of the metric can be found in [47].

The type of classification performed on experiments is binary; thus, the Bernoulli
naive Bayes was employed, using a single parameter, α, for optimisation. For random
forest classification, the parameters considered were the n_estimators and the max_features.
The n_estimators parameter suggests the number of trees established in the RF model.
The max_ f eatures parameter can take the values of sqrt and log2. It suggests the number
of features to deal with when searching for the best split. The fourth model selected was
AdaBoost, using the decision tree classifier as a base estimator. The hyperparameters
selected for tuning AdaBoost, considering a trade-off between them, were n_estimators
and learning _rate. Finally, a crucial hyperparameter for a linear support vector machine
(SVM) model is the regularisation penalty, C, which can severely affect the resulting shape
of the regions for each class.

7. Data Preparation

This work was developed by adapting the the cross-industry standard process for
data mining (CRISP-DM) [48]. The first step in a machine learning pipeline involves all the
techniques adopted to clean the dataset, reduce their dimensionality, and remove noise.
The algorithm performance can be adversely affected when using raw datasets. Some
features can determine the general behaviour of the sample, while others simply do not
provide additional information. Therefore, it is important to have a clear view of a dataset
and reduce or select the number of relevant features.

After the analysis carried out in Section 5, the following features were initially considered:

frame.len,frame.time_epoch,ip.dst,
ip.id, ip.len, ip.src, ipv6.dst,
ipv6.src, ipv6.flow, udp.length,
udp.time_delta, udp.time_relative,
udp.checksum_d, temperature, weekday,
protocol_IoT, coap_sensor, label

The implementation of the selected machine learning algorithms requires numerical
arrays as input data, so it is necessary to transform categorical variables into numerical ones.
This process is known as discretisation. In this approach, the features are encoded using a
“dummy” encoding scheme. This creates a binary column for each category and returns
a sparse matrix or a dense array (depending on the sparse parameter). After mapping
symbolic attributes to numeric values, if there is significant variance, scaling of the feature
values is required. Feature scaling is achieved through mean normalisation.

In this case, the dimensionality of the input dataset is high and so is the complexity
of every related machine learning algorithm. Feature selection is the process in which
each characteristic is evaluated to determine the ones that effect the outcome within the
dataset. Its purpose is to reduce high-dimensional data and maintain or improve precision.
The recursive feature elimination (RFE) algorithm excludes properties and calculates their
performance recurrently [49]. For the estimation of the RFE in CIDAD, a DT classifier with
a cv k-fold of 5 divisions was used as the base model. The feature importance ranking is
shown in Figure 2, and each colour represents each of the iterations.

The best accuracy was achieved adopting nine features: temperature, hora_cos,
hora_sin, ip.dst_192.168.0.2, ip.src_192.168.0.2, weekday_Friday, weekday_Saturday, and
weekday_Thursday.

Unbalanced data are a common problem in network intrusion systems, where the
important cases requiring detection represent a very small portion of the data. This situation
is clearly presented here (see Table 3), where abnormal packets represent 1.2% of the total
packets. When learning extremely unbalanced data, there is a significant probability that
a selected sample contains few or even none of the minority class. All of this results in
an algorithm with poor performance in predicting the minority class. An alternative to
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mitigate misclassifications in machine learning algorithms is using stratified k-fold cv. This
technique generates partitions in the data, maintaining the balance of the samples between
the classes during the training of multiple models. Another mechanism that permits a
reduction in the imbalance is the use of sampling techniques. The synthetic minority
oversampling technique (SMOTE) is a function that allows handling cases of unbalanced
classification by randomly subsampling the majority class. Instead of oversampling the
minority class with existing samples, it creates instances of synthetic minority classes to
increase the current data and try to avoid overfitting [50,51].
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Figure 2. Accuracy versus variable importance.

8. Models Training

As a good practice, the CIDAD was split into training and test sets, with a training
subset of 80%. For the evaluation of the models, a nested stratified k-fold cv was chosen
with an internal and an external loop. Both loops were adjusted with k = 5. Additionally,
to guarantee balanced samples, SMOTE was applied in the internal loop using five k-
neighbour. The minority class is over-sampled at about a ratio of 0.4, and the majority
class is under-sampled at a ratio of 0.5. This section outlines the process of hyperparameter
tuning on the machine learning models over the remaining training data, computing ROC
AUC scores. The results presented correspond to the average value of the inner cv, and the
best parameters will be chosen to be used in the test stage.

The first model to consider was logistic regression used with a liblinear solver. The
penalty hyperparameter was adjusted to L1 and L2. To tune the C parameter, a sweep over
the values of 0.001, 0.1, 1, 100, and 1000 was carried out. The best model was obtained with
an L2 penalty and a C value of 0.1 and an ROC AUC score of 0.984. The global mean over
all iterations was 0.9845, with a standard deviation of 1.013 × 10−3. Normally, a better
operation is expected at high values of C; however, as can be seen in Figure 3, the variation
in the parameter C does not significantly affect the performance of the model with an
appropriate choice of penalty.

The tuned hyperparameters that offer the best results for LR, in all cases, are a C equal
to 0.1 and a penalty L2, as shown in Table 5. This table presents the parameters that obtain
the best average score in each internal cv and its standard deviation, among all the possible
combinations tested. The parameters selected here are those used in the evaluation of the
model in the test split.
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Figure 3. Logistic regression mean score by iteration.

Table 5. Best logistic regression model by iteration.

cv C Penalty Mean SD

1 0.1 l2 0.9841 1.28 × 10−3

2 0.1 l2 0.9845 0.66 × 10−3

3 0.1 l2 0.9848 1.01 × 10−3

4 0.1 l2 0.9846 1.27 × 10−3

5 0.1 l2 0.9847 0.82 × 10−3

To identify the optimal composition of hyperparameters for the Bernoulli naive Bayes
model, a sweep for the values 0.01, 0.1, 0.5, 1, and 10 in the parameter α was performed.
The overall mean ROC AUC value was 0.9398, with a standard deviation of 7.35 × 10−3.
The best individual score for this model was 0.9596, with α equal to 10. Figure 4 shows
the average results obtained over the selected values of α in the inner iterations. As a
logistic regression, naive Bayes does not present a linear relationship between values of α
in each iteration.
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Figure 4. Naive Bayes mean scoring by iteration.
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An average of the values obtained in the internal iteration in each of the parameter
combinations is calculated for the selection of the parameters that will be used in the model.
The best mean in the inner cv is adopted and defines the parameter that will be used in the
test split. Table 6 presents the results of this process for the NB model.

Table 6. Best naive Bayes model by iteration.

cv α Mean SD

1 10.0 0.9412 9.39 × 10−3

2 0.1 0.9398 4.90 × 10−3

3 0.01 0.9389 8.72 × 10−3

4 0.5 0.9393 6.93 × 10−3

5 10.0 0.9399 6.81 × 10−3

To perform RF, the hyperparameters were tuned using sqrt and log2 as max_features,
and tested with 100, 200, and 300 trees. This model obtains a score of 1 on average
over all iterations. Figure 5 presents the average AUC ROC results by iteration. The best
performance found among all the models at the training stage is obtained by random forest.
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Figure 5. Random forest mean score by iteration.

In tree-based models, the number of trees and features can affect the time and per-
formance of the model during its execution. For this dataset, many combinations of
parameters presented perfect scores; however, those that achieved the same performance
with fewer trees were selected. Table 7 shows the chosen parameter combinations that
perform perfectly for each inner iteration.

Table 7. Best random forest model by iteration.

cv max_features n_estimators Mean SD

1 sqrt 100 1 9.89 × 10−7

2 log2 200 1 7.54 × 10−7

3 sqrt 100 1 0
4 log2 300 1 1.39 × 10−6

5 log2 100 1 6.62 × 10−7

On the other hand, the AdaBoost classifier employs a DT base estimator initialised
with a max_ depth = 1. In this model, tuning is performed on the values of 500, 1000, and
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2000 trees. The learning rate values tested were 0.001, 0.1, 0.5, and 1. The overall mean
AUC ROC obtained was 0.99, with a standard deviation of 4.04 × 10−4.

AdaBoost’s performance can be improved by increasing the learning rate parameter
and the number of selected trees, as shown in Figure 6. Even so, in the ideal scenario, high
accuracy values are obtained with low learning rates and less trees in the classifier.
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Figure 6. AdaBoost mean score by iteration.

Table 8 presents the parameters that achieve the highest average in internal cv for the
AdaBoost model. The best parameter frequently obtained is a learning rate of 0.5 using
500 n_estimators.

Table 8. Best AdaBoost model by iteration.

cv Learning Rate n_estimators Mean SD

1 1 500 0.99 4.60 × 10−4

2 0.5 1000 0.99 3.96 × 10−4

3 0.5 500 0.99 3.87 × 10−4

4 0.5 500 0.99 3.38 × 10−4

5 0.5 500 0.99 4.39 × 10−4

Finally, in SVM, the penalty parameter C defines how much error is bearable and can
regulate the trade-off between the decision boundary and the misclassification term. The
parameter C was varied between 0.1, 1, 5, and 10. The linear SVM achieved a mean ROC
AUC score of 0.98, with a standard deviation of 1.04 × 10−3.

Figure 7 shows the averages obtained in each of the internal iterations for the SVM
model. For this dataset, the variations in the parameter C do not improve the performance
of the model. As can be seen in Table 9, the configurations of the parameter C that obtain
the best means are 10 and 1, with an ROC AUC value of 0.98.

Table 9. Best support vector machine model by iteration.

cv C Mean SD

1 10 0.9838 1.39 × 10−3

2 1 0.9843 7.22 × 10−4

3 10 0.9845 1.04 × 10−3

4 1 0.9844 1.24 × 10−3

5 1 0.9844 8.34 × 10−4
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Figure 7. Support vector machine mean score by iteration.

9. Results and Model Comparison

A classification task can be evaluated in many different ways to accomplish specific
objectives. For binary classification problems, the assessment of the optimal performance of
the algorithm can be defined based on a confusion matrix. A confusion matrix compares the
values of the current target with those predicted by the machine learning model. In practice,
accuracy is the most widely used evaluation metric either for binary or multi-class classifica-
tion problems. Through accuracy, the quality of the produced approach is evaluated based
on the proportion of correct predictions over total observations. Instead of accuracy, F1 is
also a good discriminator and performs better than the latter in optimising binary classifica-
tion assignments. In contrast, precision and recall present a single evaluation task (positive
or negative class, respectively). This section presents the results of four traditional metrics
for all the shallow machine learning models selected: (a) accuracy, (b) precision, (c) recall,
and (d) F1. The definitions of the metrics are thoroughly explained in [47]. Furthermore,
Cohen’s kappa statistic is evaluated. In order to achieve the best model, a comparison
between the performance of the algorithms is made.

The evaluation of the models uses the remaining 20% of the dataset. The hyperparame-
ters and configurations used in the test stage are the same used in the training split. Figure 8
shows the results of the average values in inner iterations in each of the outer iterations.

Figure 8a presents the mean accuracy values for each model. Even though the naive
Bayes classifier exhibits the lowest performance for this metric, it is still an excellent
result, with a detection rate above 90%. In other words, all the classifiers for the selected
configurations perform a correct prediction on the total number of evaluated observations.
The best results are achieved by the models based on decision trees, obtaining a perfect
result in some iterations.

Precision refers to the ratio of positive instances that are correctly predicted to the total
observations in the positive class. Figure 8b illustrates the results obtained for this metric.
Decision-tree-based classifiers achieved values of 1 in most iterations. On the contrary,
the rest of the models obtained very low values of below 50%.

Since we are interested in the detection of network traffic anomalies, the classification
of abnormal packets as normal can imply a risk for the system, and therefore it is important
to minimise false negatives. The recall metric, illustrated in Figure 8c, provides an indication
of how well the model correctly identifies positives out of the total number of true positives.
For this metric, NB obtains deficient values, contrary to SVM, LR, AdaBoost, and RF, which
also obtain very satisfactory results.
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Figure 8. Metrics by iteration: (a) accuracy, (b) precision, (c) recall, and (d) F1.

The F1 metric defines a harmonic mean between precision and recall; thus, low values
in any of these metrics will directly affect the values of F1, as shown in Figure 8.

The global results obtained for each model and their standard deviation are presented
in Table 10. The naive Bayes classifier presents the lowest performance in all metrics.
Despite having excellent results in accuracy, NB cannot be declared as a reliable classifier.
The linear family models, SVM and LR, give similar results. Likewise, decision-tree-based
classifiers obtain similar results and are found to be the best models, with RF being an
optimal classifier for this dataset.

Table 10. Best scoring model by iteration.

NB AdaBoost LR RF SVM

Mean accuracy 0.9210 0.9964 0.9579 0.9999 0.9524
Mean precision 0.1030 0.7991 0.2187 0.9953 0.1984

Mean recall 0.7272 0.9962 0.977 1 0.9791
Mean F1 0.1805 0.8785 0.3573 0.9976 0.3299

Std. accuracy 1.1980 × 10−3 3.2419 × 10−3 1.6584 × 10−3 4.0069 × 10−3 1.9381 × 10−3

Std. precision 3.8186 × 10−3 0.1779 6.2834 × 10−3 3.3197 × 10−3 5.5056 × 10−3

Std. recall 3.6408 × 10−2 3.9638 × 10−3 1.0289 × 10−3 0 1.0395 × 10−2

Std. F1 6.9215 × 10−3 0.10756 8.2403 × 10−3 1.6677 × 10−3 7.1099 × 10−3

Cohen’s kappa statistic is a very useful evaluation metric when dealing with imbal-
anced data. It is a metric often used to evaluate the agreement between two qualifiers and
can also be used to assess the performance of a classification model. In the experiments,
the NB classifier obtained a kappa score of 0.11, meaning that the classification could have
been obtained by a random guess. The LR and SVM classifiers have a poor score of around
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0.34. On the other hand, RF and AdaBoost presented kappa statistics of 0.86 and 0.99,
respectively, guaranteeing an excellent classification performance.

10. Discussion

After the recent advances in IoT networks present in daily life and the difficult task
of incorporating secure systems, intrusion detection systems have been a versatile tool to
certify their integrity and confidentiality.

Preventing or avoiding network failures using anomaly-based IDSs requires accessible
datasets to analyse and detect anomalous behaviour in network traffic. The CoAP protocol
is one of the most widespread protocols in the IoT environment. However, after reviewing
the literature, it was not possible to find datasets fulfilling our requirements that were
developed for this protocol to allow determining its scope and limitations.

This article presents a versatile, realistic, easy to handle, and fully labelled dataset
designed for use in intrusion detection systems in CoAP-IoT environments. In addition,
a specific analysis of the most relevant characteristics of the dataset is undertaken. It
contains a total of 88,238 packets, among which we find the use of ARP, IP, and IPv6
protocols. A total of 64,459 packets correspond to UDP, and all the anomalies are performed
over the CoAP data. This means all anomaly packets belong to UDP/CoAP and represent
1.64% of the UDP packets and 1.2% of the total packets presented in the dataset.

To validate the dataset, we selected five widely used shallow machine learning al-
gorithms, such as logistic regression, naive Bayes, random forest, and linear support
vector machine. Three of them base their behaviour on statistical linear functions (logistic
regression, naive Bayes, and SVM) and the other two on are based on decision trees.

The data entered into the classifier had to be appropriate so that it was perfectly
understood by the classifier. Initially, data pre-processing using discretisation techniques
was performed. Then, RFE for feature eliminations was carried out. The SMOTE data bal-
ancing technique, along with stratified k-fold cross-validation, assured the presence of the
minority class, while the hyper parameterisation of the model looked for the configuration
that presented the best results for the classifier.

To evaluate machine learning algorithms for classification, the cv train–test split
procedure was used. In the training stage, the AUC ROC score was considered. The best
values achieved were 0.97 for LR and SVM, 0.96 for NB, and 1 for RF and Adaboost,
in different configurations of parameter combinations.

For the test stage, as traditional for ML models, four measures were analysed to
determine the quality of the classifier: accuracy, precision, recall, and F1. However, due to
the type of scenario in which the study was developed, i.e., detection of traffic anomalies,
the most relevant aspect is the adequate detection of positives. This is the reason why recall
is so important in this context, since it measures the ability of an algorithm to predict a
positive outcome when the actual outcome is positive.

The obtained results confirm the tree-based classifiers as the best for this dataset, reach-
ing almost perfect values (close to 1) and also presenting the lowest standard deviations,
indicating the stability of the classifier. As expected, models of the same nature obtained
very similar results. Cohen’s kappa supplied a more objective description of the model
performance, confirming RF and AdaBoost as the best classifiers. These results demonstrate
that this dataset can be used for anomaly traffic detection in IoT-CoAP environments.

In conclusion, we present the first application of ML algorithms on the proposed
dataset for anomaly detection in IoT networks. In future work, we will consider other
datasets in order to verify the obtained results. On the other hand, this research focuses on
the application of shallow machine learning models. However, in the future, the research
can be expanded to the application of deep learning algorithms on the proposed dataset.
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