Anti-Inflammatory Effect of Pterospartum tridentatum Leaf Extract in Acute and Chronic Inflammation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. High-Pressure Liquid Chromatography
2.3. In Vivo Experiments
2.3.1. Ethical Considerations and Handling
2.3.2. Induction of Ear Oedema
2.3.3. Macroscopic Assessment of Ear Oedema
2.3.4. Histological Processing of Ear Samples
2.3.5. Histopathological Assessment of Ear Samples
2.3.6. Experimental Osteoarthritis (OA) Induction
2.3.7. Drug Preparation and Administration
2.3.8. Pressure Application Measurement (PAM)
2.3.9. Perimeter of Knee
2.3.10. Experimental Design
- Experiment 1
- Experiment 2
2.4. Computational Models—Molecular Docking
2.5. Statistical Analysis
3. Results
3.1. Identification of Phenolic Compounds by HPLC-DAD
3.2. Macroscopic Assessment of Ear Edema
3.3. Histopathological Assessment of Ear Samples
3.4. Mechanical Hyperalgesia
3.5. Perimeter of Knee
3.6. Molecular Docking Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Freire, M.O.; Van Dyke, T.E. Natural resolution of inflammation. Periodontology 2000 2013, 63, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Tabas, I.; Glass, C.K. Anti-Inflammatory Therapy in Chronic Disease: Challenges and Opportunities. Science 2013, 339, 166–172. [Google Scholar] [CrossRef] [Green Version]
- Tolba, R. Nonsteroidal Anti-inflammatory Drugs (NSAIDs). In Treatment of Chronic Pain Conditions: A Comprehensive Handbook; Pope, J., Deer, T., Eds.; Springer: New York, NY, USA, 2017; pp. 77–79. [Google Scholar] [CrossRef]
- Rahman, M.; Rahaman, S.; Islam, R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, S.; et al. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules 2022, 27, 233. [Google Scholar] [CrossRef]
- Khanna, D.; Sethi, G.; Ahn, K.S.; Pandey, M.K.; Kunnumakkara, A.B.; Sung, B.; Aggarwal, A.; Aggarwal, B.B. Natural products as a gold mine for arthritis treatment. Curr. Opin. Pharmacol. 2007, 7, 344–351. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Thongboonyou, A.; Pholboon, A.; Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines 2018, 5, 93. [Google Scholar] [CrossRef]
- Coelho, M.T.; Gonçalves, J.C.; Alves, V.; Moldão-Martins, M. Antioxidant activity and phenolic content of extracts from different Pterospartum tridentatum populations growing in Portugal. Procedia Food Sci. 2011, 1, 1454–1458. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.M.; Dinis, L.T.; Azedo, P.; Galhano, C.I.; Simões, A.; Cardoso, S.M.; Rosário, M.; Domingues, M.; Pereira, O.R.; Palmeira, C.M.; et al. Antioxidant capacity and toxicological evaluation of Pterospartum tridentatum flower extracts. CyTA—J. Food 2012, 10, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.A.; Monteiro, A.M.; da Fonseca Silva, M.D. Etnobotânica: Plantas Bravias Comestíveis, Condimentares e Medicinais, 2nd ed.; J. Azevedo: Mirandela, Portugal, 2000; p. 96. ISBN 9729001448. [Google Scholar]
- Bremner, P.; Rivera, D.; Calzado, M.; Obón, C.; Inocencio, C.; Beckwith, C.; Fiebich, B.; Muñoz, E.; Heinrich, M. Assessing medicinal plants from South-Eastern Spain for potential anti-inflammatory effects targeting nuclear factor-Kappa B and other pro-inflammatory mediators. J. Ethnopharmacol. 2009, 124, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Gião, M.S.; González-SanJosé, M.L.; Rivero-Pérez, M.D.; Pereira, C.I.; Pintado, M.M.; Malcata, F.X. Infusions of Portuguese medicinal plants: Dependence of final antioxidant capacity and phenol content on extraction features. J. Sci. Food Agric. 2007, 87, 2638–2647. [Google Scholar] [CrossRef]
- Luís, Â.; Domingues, F.; Duarte, A.P. Bioactive Compounds, RP-HPLC Analysis of Phenolics, and Antioxidant Activity of Some Portuguese Shrub Species Extracts. Nat. Prod. Commun. 2011, 6, 1863–1872. [Google Scholar] [CrossRef] [Green Version]
- Aires, A.; Marrinhas, E.; Carvalho, R.; Dias, C.; Saavedra, M.J. Phytochemical Composition and Antibacterial Activity of Hydroalcoholic Extracts of Pterospartum tridentatum and Mentha pulegium against Staphylococcus aureus Isolates. BioMed Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Dias, A.C.P.; Seabra, R.M.; Andrade, P.B.; Fernandes-Ferreira, M. The development and evaluation of an hplc-dad method for the analysis of the phenolic fractions from in vivo and in vitro biomass of hypericum species. J. Liq. Chromatogr. Relat. Technol. 2007, 22, 215–227. [Google Scholar] [CrossRef]
- Rodrigues, K.C.; Chibli, L.A.; Santos, B.C.; Temponi, V.S.; Pinto, N.C.; Scio, E.; Del-Vechio-Vieira, G.; Alves, M.S.; Sousa, O.V. Evidence of Bioactive Compounds from Vernonia polyanthes Leaves with Topical Anti-Inflammatory Potential. Int. J. Mol. Sci. 2016, 17, 1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, J.M.; Kotobuki, N.; Tadokoro, M.; Hirose, M.; Mano, J.F.; Reis, R.L.; Ohgushi, H. Ex vivo culturing of stromal cells with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles promotes ectopic bone formation. Bone 2010, 46, 1424–1435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinto-Ribeiro, F.; Amorim, D.; David-Pereira, A.; Monteiro, A.M.; Costa, P.; Pertovaara, A.; Almeida, A. Pronociception from the dorsomedial nucleus of the hypothalamus is mediated by the rostral ventromedial medulla in healthy controls but is absent in arthritic animals. Brain Res. Bull. 2013, 99, 100–108. [Google Scholar] [CrossRef]
- David-Pereira, A.; Puga, S.; Gonçalves, S.; Amorim, D.; Silva, C.; Pertovaara, A.; Almeida, A.; Pinto-Ribeiro, F. Metabotropic glutamate 5 receptor in the infralimbic cortex contributes to descending pain facilitation in healthy and arthritic animals. Neuroscience 2016, 312, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Amorim, D.; David-Pereira, A.; Pertovaara, A.; Almeida, A.; Pinto-Ribeiro, F. Amitriptyline reverses hyperalgesia and improves associated mood-like disorders in a model of experimental monoarthritis. Behav. Brain Res. 2014, 265, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Malfait, A.M.; Little, C.B.; McDougall, J.J. A commentary on modelling osteoarthritis pain in small animals. Osteoarthr. Cartil. 2013, 21, 1316–1326. [Google Scholar] [CrossRef] [Green Version]
- Barton, N.J.; Strickland, I.T.; Bond, S.M.; Brash, H.M.; Bate, S.T.; Wilson, A.W.; Chessell, I.P.; Reeve, A.J.; McQueen, D.S. Pressure application measurement (PAM): A novel behavioural technique for measuring hypersensitivity in a rat model of joint pain. J. Neurosci. Methods 2007, 163, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Adães, S.; Ferreira-Gomes, J.; Mendonça, M.; Almeida, L.; Castro-Lopes, J.M.; Neto, F.L. Injury of primary afferent neurons may contribute to osteoarthritis induced pain: An experimental study using the collagenase model in rats. Osteoarthr. Cartil. 2015, 23, 914–924. [Google Scholar] [CrossRef] [Green Version]
- Hendriani, R.; Nursamsiar, N.; Tjitraresmi, A. In Vitro and in silico evaluation of xanthine oxidase inhibitory activity of quercetin contained in sonchus arvensis leaf extract. Asian J. Pharm. Clin. Res. 2017, 50–53. [Google Scholar] [CrossRef]
- Roriz, C.L.; Barros, L.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C. Scientific validation of synergistic antioxidant effects in commercialised mixtures of Cymbopogon citratus and Pterospartum tridentatum or Gomphrena globosa for infusions preparation. Food Chem. 2015, 185, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinela, J.; Barros, L.; Carvalho, A.M.; Ferreira, I.C. Influence of the drying method in the antioxidant potential and chemical composition of four shrubby flowering plants from the tribe Genisteae (Fabaceae). Food Chem. Toxicol. 2011, 49, 2983–2989. [Google Scholar] [CrossRef] [PubMed]
- Grosso, A.C.; Costa, M.M.; Ganço, L.; Pereira, A.L.; Teixeira, G.; Lavado, J.M.; Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G. Essential oil composition of Pterospartum tridentatum grown in Portugal. Food Chem. 2007, 102, 1083–1088. [Google Scholar] [CrossRef]
- Gonçalves, S.; Gomes, D.; Costa, P.; Romano, A. The phenolic content and antioxidant activity of infusions from Mediterranean medicinal plants. Ind. Crops Prod. 2013, 43, 465–471. [Google Scholar] [CrossRef]
- Di Meglio, P.; Perera, G.K.; Nestle, F.O. The Multitasking Organ: Recent Insights into Skin Immune Function. Immunity 2011, 35, 857–869. [Google Scholar] [CrossRef] [Green Version]
- Barnes, P.J. How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br. J. Pharmacol. 2006, 148, 245–254. [Google Scholar] [CrossRef] [PubMed]
- Neugebauer, V.; Han, J.S.; Adwanikar, H.; Fu, Y.; Ji, G. Techniques for Assessing Knee Joint Pain in Arthritis. Mol. Pain 2007, 3, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mussawy, H.; Zustin, J.; Luebke, A.M.; Strahl, A.; Krenn, V.; Rüther, W.; Rolvien, T. The histopathological synovitis score is influenced by biopsy location in patients with knee osteoarthritis. Arch. Orthop. Trauma Surg. 2021, 142, 2991–2997. [Google Scholar] [CrossRef]
- Pinto, D.C.; Simões, M.A.; Silva, A.M. Genista tridentata L.: A Rich Source of Flavonoids with Anti-Inflammatory Activity. Medicines 2020, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Ferrandiz, M.L.; Alcaraz, M. Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Actions 1991, 32, 283–288. [Google Scholar] [CrossRef]
- Roriz, C.L.; Barros, L.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C. Pterospartum tridentatum, Gomphrena globosa and Cymbopogon citratus: A phytochemical study focused on antioxidant compounds. Food Res. Int. 2014, 62, 684–693. [Google Scholar] [CrossRef] [Green Version]
- Caleja, C.; Finimundy, T.C.; Pereira, C.; Barros, L.; Calhelha, R.C.; Sokovic, M.; Ivanov, M.; Carvalho, A.M.; Rosa, E.; Ferreira, I.C. Challenges of traditional herbal teas: Plant infusions and their mixtures with bioactive properties. Food Funct. 2019, 10, 5939–5951. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 1, 33–42. [Google Scholar] [CrossRef]
- Goh, Y.X.; Jalil, J.; Lam, K.W.; Husain, K.; Premakumar, C.M. Genistein: A Review on its Anti-Inflammatory Properties. Front. Pharmacol. 2022, 13. [Google Scholar] [CrossRef]
- Elnoury, H.A. Isoquercetin Could Protect Against Ovariectomy-Induced Neuronal Changes in Rats. Egypt. J. Basic Clin. Pharmacol. 2019, 9. [Google Scholar] [CrossRef]
- Yang, Q.; Kang, Z.; Zhang, J.; Qu, F.; Song, B. Neuroprotective effects of isoquercetin: An in vitro and in vivo study. Cell J. 2021, 23, 355. [Google Scholar] [CrossRef]
- Decara, J.; Rivera, P.; López-Gambero, A.J.; Serrano, A.; Pavón, F.J.; Baixeras, E.; De Fonseca, F.R.; Suárez, J. Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Front. Pharmacol. 2020, 11, 730. [Google Scholar] [CrossRef]
- Mohd Amin, S.N.; Idris, M.H.; Selvaraj, M.; Mohd Amin, S.N.; Jamari, H.; Kek, T.L.; Salleh, M.Z. Virtual screening, ADME study, and molecular dynamic simulation of chalcone and flavone derivatives as 5-Lipoxygenase (5-LO) inhibitor. Mol. Simul. 2020, 46, 487–496. [Google Scholar] [CrossRef]
- Glushkova, O.V.; Parfenyuk, S.B.; Novoselova, T.V.; Khrenov, M.O.; Lunin, S.M.; Novoselova, E.G. The Role of p38 and CK2 Protein Kinases in the Response of RAW 264.7 Macrophages to Lipopolysaccharide. Biochemistry 2018, 83, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Larson, S.R.; Bortell, N.; Illies, A.; Crisler, W.J.; Matsuda, J.L.; Lenz, L.L. Myeloid Cell CK2 Regulates Inflammation and Resistance to Bacterial Infection. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Calvello, R.; Lofrumento, D.D.; Perrone, M.G.; Cianciulli, A.; Salvatore, R.; Vitale, P.; De Nuccio, F.; Giannotti, L.; Nicolardi, G.; Panaro, M.A.; et al. Highly Selective Cyclooxygenase-1 Inhibitors P6 and Mofezolac Counteract Inflammatory State both In Vitro and In Vivo Models of Neuroinflammation. Front. Neurol. 2017, 8, 251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, T.; Brüne, B. Prostanoids and resolution of inflammation–beyond the lipid-mediator class switch. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef]
- Simões, M.A.; Pinto, D.C.; Neves, B.M.; Silva, A.M. Flavonoid Profile of the Genista tridentata L., a Species Used Traditionally to Treat Inflammatory Processes. Molecules 2020, 25, 812. [Google Scholar] [CrossRef] [Green Version]
Peak | Retention Time (min) | Compound | μg/mg dwb |
---|---|---|---|
14 | 15.447 | taxifolin | 12 |
15 | 16.186 | rutin | 8 |
16 | 16.827 | isoquercetin | 135 |
17 | 17.853 | genistin | 33 |
19 | 18.953 | i.d. | 29 |
20 | 20.053 | i.d. | 53 |
22 | 20.920 | genistein | 225 |
23 | 21.220 | q.d. | 52 |
24 | 22.087 | i.d. | 65 |
Protein | Compound | Binding Energy (kcal/mol) | Inhibition Konstant (µM) | Intermolecular Energy (kcal/mol) |
---|---|---|---|---|
PPARƴ (PDB 6tsg) | Isoquercetin | −7.24 | 4.91 | −10.82 |
Quercetin | −6.23 | 26.93 | −10.11 | |
Genistein | −5.81 | 55.18 | −9.09 | |
COX-2 (PDB 4yl1) | Isoquercetin | −4.66 | 385.08 | −8.24 |
Quercetin | −4.79 | 310.18 | −8.66 | |
Genistein | −4 | 1160 | −7.28 | |
COX-1 (PDB 1q4g) | Isoquercetin | −5.98 | 41.07 | −9.56 |
Quercetin | −9.01 | 0.24772 | −10.80 | |
Genistein | −8.78 | 0.36957 | −9.97 | |
PPARα (PDB 2p54) | Isoquercetin | −7.27 | 4.68 | −10.85 |
Quercetin | −5.66 | 71.17 | −9.54 | |
Genistein | −6.24 | 26.76 | −9.52 | |
CK2α (PDB 6tgu) | Isoquercetin | −8.66 | 0.44756 | −12.08 |
Quercetin | −9.97 | 0.04941 | −11.76 | |
Genistein | −9.78 | 0.06758 | −10.98 | |
5-LO (PDB 2q7m) | Isoquercetin | −7.96 | 1.46 | −11.54 |
Quercetin | −6.92 | 8.43 | −10.80 | |
Genistein | −6.87 | 9.19 | −10.15 | |
mPGES-1 (PDB 5t36) | Isoquercetin | −4.62 | 410.41 | −8.2 |
Quercetin | −1.52 | 5457 | −5.6 | |
Genistein | −5.04 | 201.89 | −8.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laranjeira, I.M.; Gonçalves, J.N.D.; Gonçalves, C.; Silva, M.; Mouta, N.; Dias, A.C.P.; Pinto-Ribeiro, F. Anti-Inflammatory Effect of Pterospartum tridentatum Leaf Extract in Acute and Chronic Inflammation. Appl. Sci. 2023, 13, 4494. https://doi.org/10.3390/app13074494
Laranjeira IM, Gonçalves JND, Gonçalves C, Silva M, Mouta N, Dias ACP, Pinto-Ribeiro F. Anti-Inflammatory Effect of Pterospartum tridentatum Leaf Extract in Acute and Chronic Inflammation. Applied Sciences. 2023; 13(7):4494. https://doi.org/10.3390/app13074494
Chicago/Turabian StyleLaranjeira, Inês Martins, João N. D. Gonçalves, Cátia Gonçalves, Marlene Silva, Nuno Mouta, Alberto C. P. Dias, and Filipa Pinto-Ribeiro. 2023. "Anti-Inflammatory Effect of Pterospartum tridentatum Leaf Extract in Acute and Chronic Inflammation" Applied Sciences 13, no. 7: 4494. https://doi.org/10.3390/app13074494
APA StyleLaranjeira, I. M., Gonçalves, J. N. D., Gonçalves, C., Silva, M., Mouta, N., Dias, A. C. P., & Pinto-Ribeiro, F. (2023). Anti-Inflammatory Effect of Pterospartum tridentatum Leaf Extract in Acute and Chronic Inflammation. Applied Sciences, 13(7), 4494. https://doi.org/10.3390/app13074494