
Citation: Song, H.; Choi, H.

Forecasting Stock Market Indices

Using the Recurrent Neural Network

Based Hybrid Models: CNN-LSTM,

GRU-CNN, and Ensemble Models.

Appl. Sci. 2023, 13, 4644. https://

doi.org/10.3390/app13074644

Academic Editors: Amerigo Capria

and Seung-Hoon Yoo

Received: 19 December 2022

Revised: 27 March 2023

Accepted: 4 April 2023

Published: 6 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Forecasting Stock Market Indices Using the Recurrent Neural
Network Based Hybrid Models: CNN-LSTM, GRU-CNN,
and Ensemble Models
Hyunsun Song * and Hyunjun Choi

Department of Nano & Semiconductor Engineering, Tech University of Korea,
Siheung-si 15073, Republic of Korea
* Correspondence: hyunsun0113@tukorea.ac.kr; Tel.: +82-31-8041-0380

Abstract: Various deep learning techniques have recently been developed in many fields due to
the rapid advancement of technology and computing power. These techniques have been widely
applied in finance for stock market prediction, portfolio optimization, risk management, and trading
strategies. Forecasting stock indices with noisy data is a complex and challenging task, but it plays an
important role in the appropriate timing of buying or selling stocks, which is one of the most popular
and valuable areas in finance. In this work, we propose novel hybrid models for forecasting the one-
time-step and multi-time-step close prices of DAX, DOW, and S&P500 indices by utilizing recurrent
neural network (RNN)–based models; convolutional neural network-long short-term memory (CNN-
LSTM), gated recurrent unit (GRU)-CNN, and ensemble models. We propose the averaging of the
high and low prices of stock market indices as a novel feature. The experimental results confirmed
that our models outperformed the traditional machine-learning models in 48.1% and 40.7% of the
cases in terms of the mean squared error (MSE) and mean absolute error (MAE), respectively, in the
case of one-time-step forecasting and 81.5% of the cases in terms of the MSE and MAE in the case of
multi-time-step forecasting.

Keywords: deep learning; convolutional neural networks; recurrent neural networks; long short-term
memory; gated recurrent unit; ensemble model; feature engineering

1. Introduction

Forecasting stock market indices is one of the most critical yet challenging areas in
finance, as a key task in investment management. The stock market indices are used to
formulate and implement economic policy, and they are also used to inform decisions about
the timing and size of various investments, such as stocks and real estate for investors.

In finance, stock market forecasting is one of the most challenging tasks due to the
inherently volatile, noisy, dynamic, nonlinear, complex, non-parametric, non-stationary,
and chaotic nature of stock markets, making any prediction model subject to large errors [1,2].
Additionally, price fluctuations are influenced not only by historical stock trading data,
but also by nonlinear factors, such as political factors, investor behavior, and unexpected
events [3–6].

To overcome these difficulties, numerous studies have been conducted over the past
decades to predict various types of financial time-series data.

Linear models, such as the autoregressive and moving average (ARMA) and au-
toregressive integrated moving average (ARIMA) models have achieved high predictive
accuracy in predicting stock market trends. However, traditional statistical models assume
that financial time series are linear, which is not the case in real-world scenarios. Meanwhile,
as many machine learning techniques capture nonlinear relationships from the data [7], they
might be very useful for decision-making with respect to financial market investments [8].

Appl. Sci. 2023, 13, 4644. https://doi.org/10.3390/app13074644 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13074644
https://doi.org/10.3390/app13074644
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7790-5105
https://orcid.org/0000-0002-4628-1122
https://doi.org/10.3390/app13074644
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13074644?type=check_update&version=2

Appl. Sci. 2023, 13, 4644 2 of 26

A variety of deep learning models has been shown to significantly improve upon
previous machine learning models in tasks, such as speech recognition, image captioning,
question answering, natural language processing, autonomous self-driving cars, sports,
arts, and regression tasks [9–11]. Deep-learning-based models have also been widely used
in financial areas, such as forecasting stock price and index, portfolio optimization, risk
management, financial information processing, and trade execution strategies.

In particular, RNNs, LSTMs, and GRUs have been designed to deal with time-series
data and have been shown to perform better than traditional time-series models when a
series of previous events is essential to predict future events. Thus, they have been actively
applied to tasks, such as stock market index prediction and language translation [12,13].

RNNs have many advantages when processing short sequences. However, when the
distance between the relevant information and the point using the information increases,
the learning ability of the network is significantly reduced. The reason for this problem
is that the back-propagation algorithm has difficulty in long-term dependency learning.
In the process of updating the weights, the gradient disappears as values smaller than
one are continuously multiplied, which is called the vanishing gradient problem. To solve
the long-term dependency problem of RNNs, the LSTM and GRU models have been
proposed, which represent the transformation algorithms of RNNs. In the LSTM model,
a structure called the cell state is added to resolve long-term dependencies. Additionally,
three additional input, forget, and output gates are added where the data are computed,
which partially solves the problem of long-term dependencies by storing each state value
in a memory space cell. The GRU is similar to LSTM; however, it has only update and
reset gates and no output gate, thus being a simpler model with fewer parameters than
LSTM. Recently, the LSTM model has shown great success in various domains, including
speech recognition and machine translation, outperforming vanilla RNNs and conventional
machine learning algorithms.

In this study, we propose hybrid models based on a variation of RNN models, such as
LSTMs and GRUs, to improve stock market index prediction performance. The proposed
models are divided into three types: a CNN-LSTM model that stacks a one-dimensional
CNN and LSTM, a GRU-CNN model that stacks GRU and a one-dimensional CNN, and an
ensemble model that takes the average value of each output result by placing RNN, LSTM,
and GRU in parallel. The experiments were conducted on various daily stock market indices
(i.e., Deutscher Aktienindex (DAX), Dow Jones Industrial Average (DOW), and Standard
and Poor’s 500 (S&P500)) for the periods from 1 January 2017 through 31 December 2019
and from 1 January 2019 through 31 December 2021 for three years before and after the
COVID-19 pandemic, respectively. Additionally, we considered a long period of time from
1 January 2000 through 31 December 2019 for the DOW and S&P500 and from 24 October
2014 through 31 December 2019 for DAX because the DAX data were only available from
24 October 2014 in the pandas DataReader module.

We considered the look-back periods of 5, 21, and 42 days and look-ahead periods
of one day for one-time-step and five days for multi-time-step prediction. To verify the
robustness of our results, we compared our models with conventional deep-learning models
such as RNN, LSTM, GRU, and WaveNet.

The main contributions of this study include the following:

• Novel RNN-based hybrid models are proposed to forecast one-time-step and multi-
time-step closing prices of the DAX, DOW, and S&P500 indices by utilizing neural
network structures: CNN-LSTM, GRU-CNN, and ensemble models.

• The novel feature, which is the average of the high and low prices of stock market
indices, is used as an input feature.

• Comparisons between the proposed and traditional benchmark models with various
look-back periods and features are presented.

• The experimental results indicate that the proposed models outperform the benchmark
models in 48.1% and 40.7% of the cases in terms of the mean squared error (MSE)
and mean absolute error (MAE), respectively, in the case of one-time-step forecasting

Appl. Sci. 2023, 13, 4644 3 of 26

and 81.5% of the cases in terms of the MSE and MAE in the case of multi-time-step
forecasting.

• Further, compared with previous studies that involved using open, high, and low
prices, and trading volume of stock market indices as features, in this study, we
evaluate the performance of our models by adding a novel feature to reduce the
influence of the highest and lowest prices. The results confirm that the newly proposed
feature contributes to improving the performance of the models in forecasting stock
market indices.

• In particular, the ensemble model provides significant results for one-time-step
forecasting.

The remainder of this paper is organized as follows. Section 2 presents an overview
of deep learning models and reviews the relevant existing literature on stock market
forecasting. Section 3 describes the proposed models designed using RNN-based hybrid
architectures and provides the implementation details of the experiment, including the
data and experimental setting. In Section 4, we present the experimental results, where we
evaluate the proposed models on three stock market indices, compare them with benchmark
models, and analyze the effect of the novel feature. Section 5 discusses the implications
and advantages of the proposed models. Finally, Section 6 summarizes the conclusions of
the study.

2. Background and Related Work
2.1. Deep-Learning Background

In this subsection, we review the artificial neural network (ANN), multilayer percep-
tron (MLP), CNN, RNN, LSTM, and GRU.

2.1.1. ANN

ANNs, also known as feedforward neural networks, are computing systems inspired
by the biological human brain and consist of input, hidden, and output layers with con-
nected neurons, wherein connections between neurons do not form a cycle. An ANN is
capable of learning nonlinear functions and processing information in parallel [14]. Each
neuron computes the weighted sum of all of its inputs, and a nonlinear activation function
is applied to this sum to produce the output result of each neuron. The weights are adjusted
to minimize a metric of the difference between the actual and predicted values of the data
using the back-propagation algorithm [15].

2.1.2. MLP

The perceptron was proposed by [16] in 1943, representing an algorithm for the
supervised learning of binary classifiers. As a linear classifier, a single-layer perceptron is
the simplest feedforward neural network. Minsky and Papert [17] showed that a single-
layer perceptron is incapable of learning the exclusive or (XOR) problem, whereas an MLP
is capable of solving the XOR problem.

An MLP is a fully connected class of ANN. Attempts to solve linearly inseparable
problems, such as the XOR problem, have led to different variations in the number of layers
and neurons as well as nonlinear activation functions, such as a logistic sigmoid function
or a hyperbolic tangent function [18].

2.1.3. CNN

The CNN was proposed to automatically learn spatial hierarchies of features in tasks,
such as image recognition and speech recognition [19], by exploiting the spatial relation-
ships among the pixels in an image. In [20], a CNN is composed of convolutional layers,
pooling layers, and fully connected layers, and is trained with the adaptive moment esti-
mation (Adam) optimizer on mini batches [21]. The convolutional layers extract the useful
features, while the pooling layers reduce the dimensions of the feature maps. The rectified
linear unit (ReLU) is applied as a nonlinear activation function [22], and a dropout layer is

Appl. Sci. 2023, 13, 4644 4 of 26

used as a regularization method in which the output of each hidden neuron is set to zero
with a given probability [23].

2.1.4. RNN

The assumption of a traditional neural network is that all the inputs are independent
of each other, which makes them ineffective when dealing with sequential data and varied
sizes of inputs and outputs [24]. The RNN is an extension of the conventional feedforward
neural network and is well suited to sequential data, such as time series, gene sequences,
and weather data.

An RNN has memory loops and handles a variable length of input sequence by having
a recurrent hidden state [25]. It is known to have a shortcoming of a significant decrease
in learning ability as the gradient gradually decreases during back-propagation when
the distance between the relevant information and the point is long, which is called the
vanishing gradient problem [26]. Errors from later time steps are difficult to propagate
back to previous time steps, which results in difficulty in training deep RNNs to preserve
information over multiple time steps because the gradients tend to either vanish or explode
as they cycle through feedback loops [27]. To address this problem, Hochreiter and Schmid-
huber [26] proposed the LSTM, which is capable of solving the vanishing gradient problem
using memory cells.

2.1.5. LSTM

The LSTM was proposed by [26] as a variant of the vanilla RNN to overcome the
vanishing or exploding gradient problem by adding the cell state to the hidden state of an
RNN. The LSTM is composed of a cell state and three gates: input, output, and forget gates.
The following equations describe the LSTM architecture.

The forget gate ft determines which information is input to forget or keep from the
previous cell state Ct−1 and is computed as

ft = σ(Wf · [ht−1, xt] + bf), (1)

where xt is the input vector at time t the function σ is a logistic sigmoid function.
The input gate it determines which information is updated to the cell state Ct and is

computed by

it = σ(Wi · [ht−1, xt] + bi). (2)

The candidate value C̃t that can be added to the state is created by a tanh activation
function and is computed by

C̃t = tanh(WC · [ht−1, xt] + bC). (3)

The cell state Ct can store information over long periods of time by updating the
internal state and is computed by

Ct = ft � Ct−1 + it � C̃t, (4)

where the operator � represents the element-wise Hadamard product.
The output gate ot determines what information from the cell state to be used as an

output by taking the logistic sigmoid activation function, and is computed by

ot = σ(Wo · [ht−1, xt] + bo), (5)

and the output ht is computed as

ht = ot � tanh(Ct), (6)

where W∗ and b∗ represent weight matrices and bias vectors, respectively.

Appl. Sci. 2023, 13, 4644 5 of 26

Following [26], the gates decide which information to be forgotten or to be remem-
bered; therefore, the LSTM is suitable for managing long-term dependencies and forecasting
time series with different numbers of time steps. Further, it can generalize and handle noise,
distributed representations, and continuous values well.

2.1.6. GRU

The GRU, proposed in [28], is a simpler variation of LSTM and has fewer parameters
than LSTM. The LSTM has update, input, forget, and output gates and maintains the
internal memory state, whereas the GRU has only update and reset gates. It combines the
forget and input gates of LSTM into a single update gate and has fewer tensor operations,
resulting in faster training than LSTM.

The GRU merges the cell and hidden states. It performs well in sequence learning tasks
and overcomes the problems of vanishing or exploding gradients in vanilla RNNs when
learning long-term dependencies [29]. It also tends to perform better than LSTM on fewer
training data, whereas LSTM is more efficient in remembering longer sequences [30–32].
The following equations describe how memory cells at each hidden layer are updated at
each time step [33]. The reset gate rt controls the influence of ht−1 and is computed as

rt = σ(Wr · [ht−1, xt]), (7)

where xt and ht−1 are the input and the previous hidden state, respectively.
The update gate zt specifies whether to ignore the current information xt and is

computed as

zt = σ(Wz · [ht−1, xt]). (8)

The computation of candidate activation ht is similar to that of the traditional recurrent
unit, that is,

ht = zt � ht−1 + (1− zt)� h̃t, (9)

where

h̃t = tanh(Wh · [rt � ht−1, xt]), (10)

Wr, Wz and Wh are weight matrices which are learned.

2.2. Related Work

A stock market index is an important indicator of changes in the share prices of
different companies, thus informing investment decisions. It is also more advantageous to
invest in an index fund than to invest in individual stocks because it keeps costs low and
removes the need to constantly manage reports from many companies. However, stock
market index forecasting is extremely challenging because of the multiple factors affecting
the stock market, such as politics, global economic conditions, unexpected events, and the
financial performance of companies listed on the stock market.

Recently, deep-learning models have been extensively applied to numerous areas in
finance, such as the forecasting future prices of stocks, prediction of stock price movements,
portfolio management, risk assessment, and trading strategies [34–39]. Using deep learning-
based models, such as CNNs, RNNs, LSTMs, and GRUs, studies have shown that such
models outperform classical methods for time series forecasting tasks because of their
ability to handle nonlinearity [19,25,26,33].

CNN models have been used in different time series forecasting applications. Chen
et al. [40] and Sezer and Ozbayoglu [41] transformed time-series data into two-dimensional
image data and used them as inputs for a CNN to classify the movement of the data. Mean-
while, Gross et al. [42] interpreted multivariate time series as space-time pictures.

Appl. Sci. 2023, 13, 4644 6 of 26

RNN-based models have been used to predict time-series data. Fischer and Krauss [43]
showed that LSTM outperformed memory-free classification methods, such as random
forests, deep ANNs, and logistic regression classifiers, in prediction tasks. Dutta et al. [44]
proposed the GRU model with recurrent dropout to predict the daily cryptocurrency prices.

Other deep learning models have been applied for time series forecasting. Heaton
et al. [45] stacked autoencoders to predict and classify stock prices and their movements.
Abrishami et al. [7] used a variational autoencoder to remove noise from the data and
stacked LSTM to predict the close price of stocks. Wang et al. [2] used wavelet transform to
forecast time-series data.

Moreover, various architectures combining deep learning-based models have been
proposed in the literature. Ilyas et al. [46] combined technical and content features via
learning time series and textual data, Livieris et al. [47] introduced the CNN-LSTM model
to predict gold prices and movements, while Daradkeh [6] integrated a CNN and a bidirec-
tional LSTM to predict stock trends. Zhang et al. [4] combined attention and LSTM models
for financial time series prediction. Livieris and Pintelas [48] proposed ensemble learning
strategies with advanced deep learning models for forecasting cryptocurrency prices and
movements. Bao et al. [24] combined wavelet transforms, stacked autoencoders, and LSTM
to forecast the closing stock prices for the next day by eliminating noise from the data
and generating deep high-level features. Meanwhile, Zhang et al. [49] proposed a novel
architecture of a generative adversarial network (GAN) with an MLP as the discriminator
and an LSTM as the generator for forecasting the closing price of stocks.

Further, Leung et al. [50] proposed a two-timescale duplex neurodynamic approach
for solving the portfolio optimization problem, and several studies have applied an LSTM
to construct a portfolio [36,51–55].

This study proposes three models by combining CNN and RNN-based models for
predicting the stock market index. Additionally, in contrast to existing studies, which
employed open, high, and low prices, trading volume, and change in stock market indices,
we introduce a novel input feature: the average of high and low prices. Furthermore,
the three proposed models are evaluated on three daily stock market indices with two
different optimizers and four different features. Finally, we compare the performance of
the proposed models with conventional benchmark models with respect to forecasting the
closing prices of the stock market indices.

3. Materials and Methods
3.1. Proposed Models

Following Livieris and Pintelas [48], by combining prediction models, a bias is added,
which in turn reduces the variance, resulting in a better performance than that of single
models. Therefore, we propose three RNN-based hybrid models that predict the stock
market indices for one-time-step and multi-time-step at a time.

3.1.1. Proposed CNN-LSTM Model

CNNs can effectively learn the internal representations of time-series data [47]. The
one-dimensional convolutional layer filters out the noise, extracts spatial features, and re-
duces the number of parameters. The causal convolution ensures that the output at time t
derives only inputs from time t− 1. RNNs are considered the best sequential deep-learning
models for forecasting time-series data. To this end, we combine a one-dimensional CNN
and an LSTM in a new model: CNN-LSTM. The CNN-LSTM model consists of (1) a one-
dimensional convolutional layer, (2) an LSTM layer, (3) a batch-normalization layer, (4) a
dropout layer, and (5) a dense layer.

To determine the best-performing parameters, we examined different variants of the
model: the number of hidden layers (1 and 2), the number of neurons (64 and 128), the
batch size (32 and 64), and the dropout rate (0.2 and 0.5).

The best-performing CNN-LSTM model comprised a one-dimensional convolutional
layer with 32 filters of size 3 with a stride of 1, causal padding, and the ReLU activation

Appl. Sci. 2023, 13, 4644 7 of 26

function; an LSTM layer with 128 units and tanh activation function; a batch-normalization
layer; a dropout layer with a rate of 0.2; and a dense layer with a prediction window size of
units and the ReLU activation function. Figure 1 illustrates the architecture of the proposed
CNN-LSTM model, while Table 1 summarizes the configuration.

Figure 1. (a) Architecture of the CNN-LSTM model. (b) Architecture of the GRU-CNN model. (c) Ar-
chitecture of the ensemble model.

Table 1. Model configuration of the proposed models.

Model Description

CNN-LSTM One-dimensional convolutional layer with 32 filters of size 3 with a stride of 1
LSTM layer with 128 units and tanh activation function
Batch-normalization layer
Dropout layer with a rate of 0.2
Dense layer with a prediction window size of units

GRU-CNN GRU layer with 128 units and the tanh activation
One-dimensional convolutional layer with 32 filters of size 3 with a stride of 1
One-dimensional global max-pooling layer
Batch-normalization layer
Dense layer with 10 units and the ReLU activation
Dropout layer with a rate of 0.2
Dense layer with a prediction window size of units

Ensemble RNN layer with 128 units and the tanh activation function
LSTM layer with 128 units and the tanh activation function
GRU layer with 128 units and the tanh activation function
Average of all the hidden states from RNN, LSTM, and GRU
Dropout layer with a rate of 0.2
Dense layer with 32 units and the ReLU activation function
Dense layer with a prediction window size of units

3.1.2. Proposed GRU-CNN Model

The GRU is simpler than LSTM, has the ability to train sequential patterns, and takes
less time to train the model with improved network performance. To utilize both GRU
and one-dimensional CNN, we propose a stacked architecture where a GRU and a one-
dimensional CNN are combined, namely the GRU-CNN model. The parameters used for
the GRU-CNN model were similar to those of the CNN-LSTM model, as described in
Section 3.1.1. The difference between the CNN-LSTM and GRU-CNN models is in the order
of stacking the RNN and CNN layers.

The GRU-CNN model consists of a GRU layer with 128 units and the tanh activation
function; a one-dimensional convolutional layer with 32 filters of size 3 with a stride of 1,

Appl. Sci. 2023, 13, 4644 8 of 26

causal padding, and the ReLU activation function; a one-dimensional global max-pooling
layer; a batch-normalization layer; a dense layer with 10 units and the ReLU activation
function; a dropout layer with a rate of 0.2; and a dense layer with a prediction window size
of units and the ReLU activation function. In the GRU-CNN model, the GRU layer returns a
sequence, and the one-dimensional global max-pooling layer takes only important features
and reduces the dimension of the feature map. The architecture of the proposed GRU-CNN
model is illustrated in Figure 1, while the configuration is listed in Table 1.

3.1.3. Proposed Ensemble Model

While evaluating the performance of the benchmark models, various RNN models,
such as RNN, LSTM, and GRU, exhibited high predictive performance on different types of
datasets. There are three types of widely employed ensemble learning strategies: ensemble
averaging, bagging, and stacking. Based on the results of the benchmarks, the CNN-LSTM,
and the GRU-CNN as implemented above, we propose an average ensemble of three RNN-
based models to achieve averaged high performance for various datasets. The proposed
ensemble model can utilize the representations of the RNN, LSTM, and GRU models. The
parameters used for the ensemble model were similar to those of the CNN-LSTM and
GRU-CNN models, as described in Section 3.1.1.

The ensemble model consists of an RNN layer with 128 units and the tanh activation
function; an LSTM layer with 128 units and the tanh activation function; a GRU layer with
128 units and the tanh activation function; followed by taking the average of all the hidden
states from RNN, LSTM, and GRU; a dropout layer with a rate of 0.2; a dense layer with
32 units and the ReLU activation function; and a dense layer with a prediction window
size of units and the ReLU activation function. Figure 1 illustrates the details of each layer
of the proposed ensemble model, while Table 1 presents the configuration.

3.2. Implementation Details

In this subsection, we present an extensive empirical analysis of the proposed models
on three datasets. First, we describe the datasets and the experimental setting used to
demonstrate the validity of our financial time-series prediction models. Next, we evaluate
the performance of our models on several datasets and compare them with those of
conventional deep learning models.

3.2.1. Dataset

We evaluated the performance of the proposed models on daily stock market indices
to verify the robustness of our models. We considered three stock market indices from
major stock markets listed below.

(1) DAX: Deutscher Aktienindex, which is a stock market index consisting of the 40 (ex-
panded from 30 in 2021) major German blue-chip companies trading on the Frankfurt
stock exchange.

(2) DOW: Dow Jones Industrial Average, which is a stock market index of 30 prominent
companies in the United States.

(3) S&P500: Standard and Poor’s 500, which is a stock market index of 500 large companies
in the United States.

The DOW is the most influential and widely used stock market index in the literature.
We considered three types of periods for all three indices: the period from 1 January 2000
through 31 December 2019 for DOW and S&P500 and from 24 October 2014 through
31 December 2019 for DAX as long periods; from 1 January 2017 through 31 December 2019
and from 1 January 2019 through 31 December 2021 as short periods before and after the
COVID-19 pandemic, respectively.

The historical prices of each stock market index were obtained using the Finance-
DataReader open-source library available in the pandas DataReader module of the Python
programming language [56]. The raw data included six features: open, high, low, and close
prices, trading volume, and change. The incomplete data were removed.

Appl. Sci. 2023, 13, 4644 9 of 26

Before feeding the raw data into our models, we pre-processed the data. We normalized
the raw data using Scikit-learn’s MinMaxScaler tool, as follows:

x =
x− xmax

xmax − xmin
, (11)

where x is the input feature of the stock market index and xmax and xmin are the maximum
and minimum values of each input feature, respectively. Granger [57] suggested holding
approximately 20% of the data for out-of-sample testing. Following this suggestion, the first
80% of the data were used as the training set for in-sample training, while the remaining
20% were used as the test set, to ensure that our models were evaluated on unseen out-
of-sample data. The first 90% of the training set was used to train the network and to
iteratively adjust its parameters such that the loss function was minimized. The trained
network predicted the remaining 10% for validation, and the validation loss was computed
after each epoch.

3.2.2. Generation of the Inputs and Outputs Using the Sliding Window Technique

This subsection describes the generation of the inputs and outputs. The daily open,
high, and low prices, trading volume, and change were commonly used as input features in
other studies. However, in the current study, we introduce a novel feature named medium,
which is the average of high and low prices, to reduce the influence of the unusually
extreme highest and lowest prices and to ensure generalizability.

For each stock market index, the partial features of daily open, high, low, and medium
prices, trading volume, and change (OHLMVC) were used as the input to train the model,
and the daily close prices were used as the output to predict one-time-step and multi-time-
step ahead.

For the input and output generation, the normalized data were segmented using the
sliding window technique, by which a fixed window size of time-series data was chosen
as the input and a fixed number of the following observations was chosen as the output.
This process was repeated for the entire dataset by sliding the window in intervals of one
time step to obtain the next input and output. We trained the proposed models to look at m
consecutive past data of features. The input at time t was denoted by

Xt =
(

xO
t , xH

t , xL
t , xM

t , xV
t , xCh

t

)
∈ Rm×6, (12)

where for each k ∈ {O, H, L, M, V, Ch},

xk
t =

(
xk

t−m+1, · · · , xk
t−1, xk

t

)T
∈ Rm, (13)

xO, xH , xL, xM, xV , and xCh are the daily open, high, low, and medium prices, trading
volume, and change from time t−m + 1 to time t, respectively.

The input Xt was fed sequentially into the proposed models to predict the following n
daily close prices of stock market indices, with the output denoted by

yC
t+1 = (yt+1, yt+2, ...yt+n)

T ∈ Rn. (14)

The look-back periods of 5, 21, and 42 days were considered as one week, one month,
and two months, respectively; while the look-ahead periods of one and five days were
considered to predict the future one-time-step or multi-time-step ahead. Figure 2 illustrates
the sliding window technique.

Appl. Sci. 2023, 13, 4644 10 of 26

Figure 2. Sliding window technique.

3.2.3. Software and Hardware

The proposed models were implemented, trained, and analyzed in Python 3.7.6 [58]
with the Keras library 2.4.3 [59] as a high-level neural network API using TensorFlow
2.3.1 as back-end [60], relying on NumPy 1.19.2 [61], Pandas 0.25.3 [56], and Scikit-learn
1.0.2 [62]. The code used for producing the figures and analysis is available on GitHub at
https://github.com/hyunsunsong/Project.

All experiments were performed using a workstation equipped with an Intel Xeon
Silver 4208 CPU at 2.10 GHz x8, Nvidia GPU TITAN, and 12 GB RAM on each board.

3.2.4. Experimental Setting

The proposed models were trained with the Huber loss function, which combines
the characteristics of MSE and MAE and is less susceptible to outliers in the data than the
MSE loss function [63]. It behaves quadratically for small residuals and linearly for large
residuals [64]. The parameters of the network were learned to minimize the average of the
Huber loss function over the entire training dataset.

The network weights and biases were initialized with the Glorot–Xavier uniform
method and zeros, respectively. Glorot and Bengio [65] proposed the Glorot–Xavier uniform
method to adopt a properly scaled uniform distribution for initialization.

The successful applications of neural networks require regularization [66]. Introduced
by [23], the dropout regularization technique randomly drops a fraction of the units with a
specified probability, along with connections during training, while all units are presented
during testing. We applied the dropout values of 0.2 and 0.5 to reduce overfitting and have
observed that higher dropout value result in a decline in performance. Therefore, we settled
on the relatively low dropout value of 0.2 as studied in [67].

The batch size and maximum number of epochs were set to 32 and 50, respectively,
and an early stopping patience of 10 was applied [68]. That is, once the validation loss no
longer decreased for the patience period, the training was stopped, and the weights of the
model with the lowest validation loss were restored using ModelCheckpoint callback in
the Keras library [59].

The optimization algorithms used for training were the Adam and root mean square
propagation (RMSProp) [69], which are adaptive learning rate methods. The RMSProp
is usually a viable choice for RNNs [59]. We compared the performance of the proposed
models using two different optimizers.

We applied learning rates of 0.001 and 0.0005 and found that a learning rate of 0.0005
resulted in a better performance. Therefore, the learning rate was set to 0.0005.

Appl. Sci. 2023, 13, 4644 11 of 26

The ReLU activation function proposed in [22] was used for the dense layers, and the
data shuffling technique was not used during training.

3.2.5. Predictive Performance Metrics

In this study, we adopted the MSE and MAE as evaluation metrics to compare the
performance of the proposed models with that of conventional benchmark models for
forecasting time-series data, which are calculated as follows:

MSE =
1
T

T

∑
t=1

(yt − ŷt)
2, (15)

MAE =
1
T

T

∑
t=1
|yt − ŷt|, (16)

where T is the number of prediction time horizons; yt and ŷt are the true and predicted
values, respectively, during one-time-step prediction. During multi-time-step prediction,
we only used the value of the last time step; thus, yt and ŷt represent the true and predicted
values of the last time step, respectively.

4. Experimental Results

In this section, we present the experimental results of the proposed models using
historical time-series data for three stock market indices: DAX, DOW, and S&P500. We first
describe the details of the benchmark models used for comparison. Second, we compare the
results for the proposed models and conventional benchmarks with respect to one-time-step
and multi-time-step predictions on three datasets over three different periods. Third, we
present the results of the impact of different features and optimizers on the performance of
the proposed models.

4.1. Benchmark Models

For benchmark comparison, we deploy several conventional deep learning models,
such as RNN, LSTM, and GRU, to examine whether the proposed models outperform the
benchmarks. In addition, we utilize WaveNet, which combines causal filters with dilated
convolutions, so that the model learns long-range temporal dependencies in time-series
data [70]. The benchmark models and corresponding architectures are listed below.

1. RNN: Two RNN layers with 128 units and a dense layer with a look-ahead period
of units;

2. LSTM: An LSTM layer with 128 units and a dense layer with a look-ahead period
of units;

3. GRU: A GRU layer with 128 units and a dense layer with a look-ahead period of units;
4. WaveNet: A simpler architecture of an audio generative model based on Pixel-

CNN [71], as described in [70].

Table 2 lists the training setting for the benchmark models. All benchmark models were
trained with 50 epochs, an early stopping patience of 10, a learning rate of 0.0005, a batch
size of 32, the MSE loss function, the Adam optimizer, and the ReLU activation function.

Table 2. Hyperparameter setting for the benchmark models.

Hyperparameter Value

Number of epochs 50
Early stopping patience 10

Learning rate 0.0005
Batch size 32

Loss function MSE
Optimizer Adam

Activation function ReLU

Appl. Sci. 2023, 13, 4644 12 of 26

4.2. One-Time-Step Prediction Comparisons between Proposed and Benchmark Models

In this subsection, we provide the experimental results of the proposed models to
predict the one-time-step ahead of the three stock market indices. We evaluated the per-
formance of the proposed models with various look-back periods of 5, 21, and 42 days as
one week, one month, and two months, respectively, for different periods. The proposed
and benchmark models were implemented as described in previous sections. The Adam
optimizer and OHLV features were used for all methods in Table 3.

Table 3. Comparison of one-time-step prediction between proposed and benchmark models.

Look-Back
Metric Model

2000–2019 1 2017–2019 2019–2021

Period DAX DOW S&P500 DAX DOW S&P500 DAX DOW S&P500

5 days

MSE

RNN 0.1505 0.5739 0.5618 0.1146 0.6942 0.6174 0.7626 0.8576 0.7843
LSTM 0.1505 0.5739 0.5618 0.1146 0.6942 0.6174 0.7626 0.8576 0.7843
GRU 0.1505 0.5739 0.0004 0.0012 0.6942 0.6174 0.7626 0.8576 0.0049

WaveNet 0.4040 0.0940 0.0886 0.4929 0.0411 0.0672 0.0177 0.0075 0.0189
CNN-LSTM 0.0079 0.0004 0.0040 0.0539 0.0154 0.1333 0.0868 0.0045 0.0032
GRU-CNN 0.0011 0.0132 0.0042 0.0014 0.0069 0.0135 0.0111 0.0103 0.7843
Ensemble 0.0017 0.0075 0.0059 0.0012 0.0023 0.0011 0.0009 0.0029 0.0003

MAE

RNN 0.3756 0.7410 0.7376 0.3207 0.8282 0.7779 0.8717 0.9253 0.8834
LSTM 0.3756 0.7410 0.7376 0.3207 0.8282 0.7779 0.8717 0.9253 0.8834
GRU 0.3756 0.7410 0.0185 0.0273 0.8282 0.7779 0.8717 0.9253 0.0674

WaveNet 0.6284 0.2645 0.2680 0.6942 0.1841 0.2384 0.1224 0.0781 0.1235
CNN-LSTM 0.0827 0.0162 0.0600 0.2120 0.1188 0.3520 0.2909 0.0650 0.0544
GRU-CNN 0.0255 0.1031 0.0593 0.0279 0.0779 0.1113 0.1022 0.0991 0.8834
Ensemble 0.0336 0.0740 0.0651 0.0262 0.0418 0.0279 0.0244 0.0468 0.0143

21 days

MSE

RNN 0.1509 0.5058 0.5341 0.0982 0.6552 0.6482 0.7252 0.8119 0.8070
LSTM 0.1658 0.5734 0.5602 0.1066 0.7420 0.6781 0.7555 0.8855 0.8273
GRU 0.1658 0.5734 0.0002 0.0008 0.7420 0.6781 0.7555 0.8855 0.8273

WaveNet 0.3877 0.0903 0.0856 0.4931 0.0371 0.0605 0.0196 0.0065 0.0154
CNN-LSTM 0.0078 0.0159 0.0033 0.0632 0.0148 0.1074 0.1507 0.1950 0.2035
GRU-CNN 0.0014 0.0356 0.0149 0.1066 0.0170 0.0193 0.0090 0.0033 0.0018
Ensemble 0.0008 0.0007 0.0014 0.0009 0.0023 0.0011 0.0008 0.0011 0.0004

MAE

RNN 0.3769 0.6934 0.7188 0.2927 0.8025 0.7941 0.8497 0.8987 0.8959
LSTM 0.3965 0.7418 0.7375 0.3074 0.8559 0.8145 0.8680 0.9401 0.9074
GRU 0.3965 0.7418 0.0136 0.0222 0.8559 0.8145 0.8680 0.9401 0.9074

WaveNet 0.6166 0.2596 0.2639 0.6936 0.1736 0.2251 0.1320 0.0722 0.1120
CNN-LSTM 0.0742 0.1178 0.0473 0.2296 0.1177 0.3223 0.3865 0.4398 0.4479
GRU-CNN 0.0290 0.1741 0.1135 0.3074 0.1224 0.1317 0.0888 0.0542 0.0384
Ensemble 0.0211 0.0220 0.0312 0.0240 0.0426 0.0280 0.0201 0.0281 0.0160

42 days

MSE

RNN 0.1619 0.4885 0.4736 0.1147 0.5921 0.5475 0.5888 0.7551 0.6797
LSTM 0.1683 0.5904 0.5766 0.1228 0.7307 0.6683 0.7352 0.8806 0.8292
GRU 0.1683 0.5904 0.0013 0.0009 0.7307 0.6683 0.7352 0.8806 0.8292

WaveNet 0.3732 0.0856 0.0816 0.5011 0.0378 0.0595 0.0211 0.0058 0.0125
CNN-LSTM 0.0025 0.0342 0.0210 0.0496 0.0783 0.0392 0.0833 0.0759 0.0004
GRU-CNN 0.0035 0.0459 0.0220 0.0075 0.0128 0.0128 0.0019 0.0712 0.0270
Ensemble 0.0007 0.0012 0.0007 0.0015 0.0013 0.0039 0.0009 0.0004 0.0007

MAE

RNN 0.3940 0.6829 0.6795 0.3161 0.7602 0.7295 0.7644 0.8666 0.8227
LSTM 0.4013 0.7536 0.7486 0.3282 0.8492 0.8087 0.8561 0.9737 0.9091
GRU 0.4013 0.7536 0.0343 0.0239 0.8492 0.8087 0.8561 0.9377 0.9091

WaveNet 0.6053 0.2532 0.2583 0.6978 0.1723 0.2192 0.1372 0.0670 0.1001
CNN-LSTM 0.0453 0.1844 0.1428 0.1883 0.2781 0.1910 0.2855 0.2738 0.0152
GRU-CNN 0.0459 0.2004 0.1399 0.0725 0.1021 0.1074 0.0384 0.2652 0.1611
Ensemble 0.0204 0.0308 0.0224 0.0289 0.0313 0.0548 0.0230 0.0167 0.0217

1 The period from 24 October 2014 through 31 December 2019 for the DAX.

Table 3 compares our models and the benchmark models for the different look-back
periods for one-time-step prediction, where the best performance results are marked in
bold for each stock market index, period, and metric.

According to the results in Table 3, increasing the look-back period slightly enhances
the performance across all operating conditions by keeping all other hyperparameters
constant. Moreover, a very long sequence length, such as the look-back period of 42,
increases the performance. From 1 January 2000 through 31 December 2019, the proposed
models improved the benchmarks in 77.8% and 77.8% of cases in terms of MSE and MAE,
respectively. Additionally, our models outperformed the benchmarks in 66.7% and 77.8% of
cases in terms of MSE and MAE, respectively, for the period from 1 January 2017 through
31 December 2019, before the COVID-19 pandemic, and in 100% of cases for the period
from 1 January 2019 through 31 December 2021, after the COVID-19 pandemic, in terms

Appl. Sci. 2023, 13, 4644 13 of 26

of both MSE and MAE. Some results were the same for different benchmarks because the
training algorithm might find the local optima. Further, an overall comparison between the
ensemble model and other models in Table 3 indicates that the ensemble model significantly
outperformed the other models.

We evaluated the performance of the proposed models with four different features
(i.e., MV, MVC, OHLV, and OHLMVC) in addition to a novel feature, medium, defined as
the average of high and low prices. In comparison, OHLVs have been commonly used as
features in other studies.

In addition, we evaluated the performance of our models using two different opti-
mizers, Adam and RMSProp, by keeping all other hyperparameters constant. The average
MSE and MAE over the three periods for the impact of different features and optimizers of
the proposed models are shown in Tables 4 and 5, where the best performance results are
marked in bold for each stock market index, a look-back period, and optimizer.

Table 4. Comparison of different optimizers and features in terms of average MSE over the three
periods for one-time-step prediction.

Look-Back
Optimizer Feature

CNN-LSTM GRU-CNN Ensemble

Period DAX DOW S&P500 DAX DOW S&P500 DAX DOW S&P500

5 days

Adam

MV 0.0406 0.0228 0.0154 0.0025 0.0070 0.2717 0.0014 0.0039 0.0026
MVC 0.0534 0.0366 0.0097 0.0026 0.0054 0.0053 0.0014 0.0039 0.0026
OHLV 0.0495 0.0068 0.0468 0.0045 0.0101 0.2674 0.0013 0.0042 0.0025

OHLMVC 0.0496 0.0025 0.0030 0.0070 0.0096 0.2668 0.0013 0.0042 0.0025

RMSProp

MV 0.0231 0.0239 0.0189 0.0023 0.0088 0.0063 0.0013 0.0031 0.0014
MVC 0.0972 0.0796 0.0270 0.0035 0.0197 0.0171 0.0013 0.0031 0.0014
OHLV 0.0175 0.0133 0.0206 0.0019 0.0144 0.2223 0.0013 0.0031 0.0014

OHLMVC 0.0330 0.0152 0.0396 0.0043 0.2513 0.0107 0.0013 0.0031 0.0014

21 days

Adam

MV 0.0174 0.0454 0.0217 0.0070 0.0133 0.0180 0.0010 0.0029 0.0011
MVC 0.1042 0.0489 0.1143 0.0030 0.0141 0.0115 0.0021 0.0040 0.0080
OHLV 0.0739 0.0752 0.1047 0.0390 0.0186 0.0120 0.0008 0.0013 0.0010

OHLMVC 0.0406 0.0228 0.0154 0.0054 0.0253 0.0138 0.0021 0.0040 0.0080

RMSProp

MV 0.0295 0.1721 0.2440 0.0163 0.0183 0.0242 0.0010 0.0042 0.0060
MVC 0.0318 0.0608 0.1752 0.0395 0.0306 0.0178 0.0017 0.0185 0.0038
OHLV 0.0477 0.1299 0.3043 0.0157 0.0229 0.0137 0.0008 0.0014 0.0015

OHLMVC 0.0406 0.0228 0.0154 0.0284 0.0244 0.0253 0.0021 0.0040 0.0080

42 days

Adam

MV 0.0443 0.0790 0.0105 0.0163 0.0169 0.2459 0.0014 0.0028 0.0022
MVC 0.0566 0.0585 0.0426 0.0227 0.0271 0.2339 0.0010 0.2455 0.0129
OHLV 0.0451 0.0628 0.0202 0.0043 0.0433 0.0206 0.0010 0.0010 0.0018

OHLMVC 0.0488 0.1413 0.0102 0.0088 0.0126 0.0124 0.0019 0.0026 0.0012

RMSProp

MV 0.1339 0.0792 0.1816 0.0084 0.0503 0.0223 0.0017 0.0036 0.0035
MVC 0.0659 0.2908 0.1823 0.0191 0.0609 0.3112 0.0012 0.0057 0.0049
OHLV 0.3795 0.3173 0.0588 0.0079 0.0394 0.0341 0.0008 0.0021 0.2784

OHLMVC 0.0496 0.0607 0.6410 0.0100 0.0256 0.0229 0.0010 0.0021 0.0017

Regarding the one-time-step prediction, Table 4 shows that the CNN-LSTM, GRU-
CNN, and ensemble models with the novel medium feature outperformed the other models
in 83.3%, 33.3%, and 0% of cases with the DAX dataset; 83.3%, 100%, and 16.7% of cases
with the DOW dataset; and 83.3%, 83.3%, and 33.3% of cases with the S&P500 dataset,
respectively, in terms of the average MSE over the three periods.

Table 5 shows that the CNN-LSTM, GRU-CNN, and ensemble models incorporating
the medium feature outperformed the other models in 83.3%, 33.3%, and 16.7% of cases
with the DAX dataset; 83.3%, 100%, and 16.7% of cases with the DOW dataset; and 66.7%,
66.7%, and 33.3% of cases with the S&P500 dataset, respectively, in terms of the average
MAE over the three periods.

An overall comparison between the models incorporating the medium feature and the
models without the medium feature shows that adding the medium feature improves the
performances of all models.

Appl. Sci. 2023, 13, 4644 14 of 26

Table 5. Comparison of different optimizers and features in terms of average MAE over the three
periods for one-time-step prediction.

Look-Back
Optimizer Feature

CNN-LSTM GRU-CNN Ensemble

Period DAX DOW S&P500 DAX DOW S&P500 DAX DOW S&P500

5 days

Adam

MV 0.1635 0.1285 0.1161 0.0405 0.0778 0.3662 0.0293 0.0460 0.0391
MVC 0.2047 0.1433 0.0810 0.0413 0.0640 0.0584 0.0259 0.0578 0.0423
OHLV 0.1952 0.0667 0.1554 0.0519 0.0934 0.3513 0.0280 0.0542 0.0358

OHLMVC 0.1806 0.0421 0.0466 0.0639 0.0860 0.3503 0.0227 0.0373 0.2706

RMSProp

MV 0.1344 0.1391 0.1186 0.0375 0.0765 0.0690 0.0288 0.0426 0.0311
MVC 0.2370 0.2125 0.1433 0.0472 0.0972 0.1134 0.0295 0.0556 0.0582
OHLV 0.1057 0.0813 0.0999 0.0353 0.0926 0.3573 0.0230 0.0328 0.0279

OHLMVC 0.1438 0.1012 0.1770 0.0578 0.3581 0.0872 0.0284 0.0666 0.0545

21 days

Adam

MV 0.0810 0.2076 0.1332 0.0679 0.1048 0.1066 0.0248 0.0439 0.0268
MVC 0.2429 0.1804 0.2890 0.0455 0.1116 0.0979 0.0340 0.0496 0.0603
OHLV 0.2301 0.2251 0.2725 0.1417 0.1169 0.0945 0.0217 0.0309 0.0251

OHLMVC 0.1635 0.1285 0.1161 0.0616 0.1519 0.1057 0.0340 0.0496 0.0603

RMSProp

MV 0.1454 0.3760 0.3348 0.1017 0.1177 0.1387 0.0236 0.0526 0.0645
MVC 0.1376 0.2006 0.3381 0.1432 0.1485 0.1213 0.0342 0.0940 0.0542
OHLV 0.1783 0.3155 0.4366 0.0902 0.1353 0.0930 0.0216 0.0291 0.0328

OHLMVC 0.1635 0.1285 0.1161 0.1149 0.1475 0.1484 0.0340 0.0496 0.0603

42 days

Adam

MV 0.1664 0.2570 0.0850 0.1085 0.1189 0.3836 0.0284 0.0421 0.0334
MVC 0.2052 0.1808 0.1750 0.1227 0.1499 0.3378 0.0245 0.3110 0.0719
OHLV 0.1730 0.2454 0.1164 0.0523 0.1892 0.1361 0.0241 0.0263 0.0330

OHLMVC 0.1970 0.3401 0.0741 0.0816 0.1013 0.1014 0.0336 0.0409 0.0275

RMSProp

MV 0.3173 0.2390 0.2914 0.0753 0.2114 0.1191 0.0330 0.0510 0.0512
MVC 0.2235 0.5177 0.4117 0.1108 0.2255 0.4436 0.0259 0.0607 0.0615
OHLV 0.4822 0.5251 0.2263 0.0692 0.1869 0.1710 0.0211 0.0371 0.3333

OHLMVC 0.1923 0.2253 0.5319 0.0806 0.1466 0.3771 0.0233 0.0375 0.0340

In addition, the proposed models were trained for 1500 epochs with the RMSProp
optimizer and MV features to achieve higher performance than that of the model trained
as described in Section 3.2.4. Figures 3–5 compare the actual and predicted close prices
of the DAX, DOW, and S&P500 indices, respectively, for the different look-back periods.
In Figures 3–5, the left, middle, and right plots correspond to the look-back periods of 5, 21,
and 42 days, respectively. Further, the look-back period and stock market index evidently
affect the model performance.

Figure 3. Comparison of true and predicted close prices of the DAX index between different look-back
periods for one-time-step prediction over the period from 24 October 2014 through 31 December 2019.

Figure 4. Comparison of true and predicted close prices of the DOW index between different look-back
periods for one-time-step prediction over the period from 1 January 2000 through 31 December 2019.

Appl. Sci. 2023, 13, 4644 15 of 26

Figure 5. Comparison of true and predicted close prices of the S&P500 index between different
look-back periods for one-time-step prediction over the period from 1 January 2000 through 31
December 2019.

Moreover, the proposed models were trained for 1500 epochs with the Adam optimizer
and a look-back period of 5 days. The comparisons of true and predicted close prices of
the DAX, DOW, and S&P500 indices between different input features for one-time-step
prediction are provided in Figures 6–8, respectively.

Figure 6. Comparison of true and predicted close prices of the DAX index between different input
features for one-time-step prediction over the period from 24 October 2014 through 31 December 2019.

Figure 7. Comparison of true and predicted close prices of the DOW index between different input
features for one-time-step prediction over the period from 1 January 2000 through 31 December 2019.

Figure 8. Comparison of true and predicted close prices of the S&P500 index between different input
features for one-time-step prediction over the period from 1 January 2000 through 31 December 2019.

Appl. Sci. 2023, 13, 4644 16 of 26

4.3. Multi-Time-Step Prediction Comparisons between Proposed and Benchmark Models

In this subsection, we evaluated the performance of the proposed models with various
look-back periods and provided the experimental results to predict multi-time-step ahead
for the three stock market indices. The look-back periods of 5, 21, and 42 days and the
look-ahead period of five days were adopted for each period. The proposed and benchmark
models were implemented as described in previous sections. The Adam optimizer and
OHLV features were used for all methods in Table 6.

Table 6 compares the proposed and benchmark models in terms of different look-back
periods for five-time-step prediction, where the best performance results are marked in
bold for each stock market index, period, and metric.

From the table, the proposed models outperformed the benchmarks in 66.7% and 66.7%
of cases for the period from 1 January 2000 through 31 December 2019; in 22.2% and 11.1%
of cases for the period from 1 January 2017 through 31 December 2019, before the COVID-19
pandemic; and in 55.6% and 55.6% of cases for the period from 1 January 2019 through 31
December 2021, after the COVID-19 pandemic in terms of MSE and MAE, respectively.

For long-term predictions, the MSE and MAE were not as good as for short-term
predictions. Specifically, the results showed that the errors grew with the increase in
prediction steps, highlighting that long-term predictions are more challenging than short-
term ones. Nonetheless, the ensemble model still outperformed conventional benchmark
models in long-term predictions.

Table 6. Comparison of five-time-step prediction between proposed and benchmark models.

Look-Back
Metric Model

2000–2019 1 2017–2019 2019–2021

Period DAX DOW S&P500 DAX DOW S&P500 DAX DOW S&P500

5 days

MSE

RNN 0.0561 0.3050 0.2887 0.0421 0.3856 0.3378 0.4136 0.4975 0.4463
LSTM 0.1153 0.4377 0.4247 0.0901 0.5388 0.4804 0.5686 0.6558 0.5995
GRU 0.0034 0.0012 0.0023 0.0045 0.0031 0.0031 0.0011 0.0030 0.0015

WaveNet 0.0383 0.3106 0.2995 0.0218 0.3857 0.3240 0.4604 0.5215 0.4606
CNN-LSTM 0.0070 0.0529 0.0865 0.0361 0.0070 0.0699 0.0737 0.1186 0.1112
GRU-CNN 0.0023 0.0153 0.0049 0.0042 0.0299 0.0359 0.0153 0.0147 0.0261
Ensemble 0.0041 0.0037 0.0037 0.0036 0.0070 0.0053 0.0013 0.0021 0.0009

MAE

RNN 0.2228 0.5325 0.5223 0.1854 0.6141 0.5702 0.6407 0.7033 0.6650
LSTM 0.3285 0.6469 0.6411 0.2837 0.7294 0.6856 0.7527 0.8090 0.7723
GRU 0.0459 0.0285 0.0407 0.0561 0.0388 0.0479 0.0348 0.0309 0.0224

WaveNet 0.1732 0.5355 0.5319 0.1251 0.6155 0.5606 0.6766 0.7212 0.6762
CNN-LSTM 0.0695 0.2155 0.2896 0.1582 0.0687 0.2522 0.2685 0.3423 0.3303
GRU-CNN 0.0374 0.1141 0.0631 0.0526 0.1649 0.1791 0.1195 0.1173 0.1585
Ensemble 0.0524 0.0522 0.0498 0.0460 0.0743 0.0645 0.0289 0.0394 0.0230

21 days

MSE

RNN 0.1692 0.5765 0.5631 0.1083 0.6957 0.6176 0.7504 0.8649 0.7967
LSTM 0.1127 0.3921 0.3816 0.0734 0.4769 0.4226 0.5105 0.5959 0.5468
GRU 0.0023 0.0022 0.0015 0.0026 0.0036 0.0042 0.0016 0.0034 0.0141

WaveNet 0.0409 0.3148 0.3031 0.0227 0.3970 0.3374 0.4482 0.5305 0.4756
CNN-LSTM 0.0199 0.1772 0.0423 0.0432 0.0444 0.0973 0.0472 0.1140 0.0839
GRU-CNN 0.0030 0.0278 0.0087 0.0092 0.0173 0.0217 0.0029 0.0071 0.0361
Ensemble 0.0022 0.0017 0.0019 0.0048 0.0050 0.0094 0.0015 0.0012 0.0009

MAE

RNN 0.4009 0.7440 0.7396 0.3095 0.8297 0.7794 0.8650 0.9293 0.8911
LSTM 0.3263 0.6129 0.6083 0.2530 0.6863 0.6437 0.7132 0.7713 0.7380
GRU 0.0364 0.0403 0.0330 0.0438 0.0520 0.0540 0.0350 0.0510 0.1154

WaveNet 0.1832 0.5405 0.5361 0.1264 0.6247 0.5727 0.6679 0.7275 0.6877
CNN-LSTM 0.1318 0.4034 0.1973 0.1794 0.2017 0.3030 0.2148 0.3363 0.2865
GRU-CNN 0.0429 0.1471 0.0832 0.0842 0.1213 0.1379 0.0476 0.0787 0.1876
Ensemble 0.0363 0.0348 0.0364 0.0545 0.0614 0.0834 0.0309 0.0288 0.0252

42 days

MSE

RNN 0.1562 0.5930 0.5795 0.1045 0.7432 0.6845 0.7360 0.8848 0.8377
LSTM 0.1144 0.4016 0.3910 0.0849 0.5090 0.4690 0.4994 0.6070 0.5733
GRU 0.0030 0.0038 0.0024 0.0040 0.0023 0.0046 0.0013 0.0011 0.0017

WaveNet 0.0445 0.3203 0.3080 0.0242 0.3983 0.3445 0.4413 0.5374 0.4911
CNN-LSTM 0.0079 0.0388 0.0654 0.0294 0.0296 0.0064 0.0709 0.2007 0.0598
GRU-CNN 0.0047 0.0305 0.0060 0.0099 0.0318 0.0274 0.0357 0.0860 0.0462
Ensemble 0.0023 0.0021 0.0011 0.0037 0.0269 0.0164 0.0022 0.0012 0.0011

MAE

RNN 0.3823 0.7552 0.7505 0.2935 0.8560 0.8179 0.8567 0.9399 0.9137
LSTM 0.3301 0.6209 0.6160 0.2717 0.7075 0.6758 0.7055 0.7783 0.7556
GRU 0.0432 0.0551 0.0435 0.0393 0.0609 0.0674 0.0264 0.0262 0.0338

WaveNe 0.1948 0.5469 0.5416 0.1274 0.6247 0.5773 0.6625 0.7322 0.6991
CNN-LSTM 0.0719 0.1861 0.2465 0.1268 0.1606 0.0684 0.2631 0.4461 0.2399
GRU-CNN 0.0569 0.1594 0.0666 0.0901 0.1609 0.1542 0.1841 0.2913 0.2123
Ensemble 0.0378 0.0390 0.0276 0.0468 0.1495 0.1132 0.0337 0.0289 0.0262

1 The period from 24 October 2014 through 31 December 2019 for the DAX.

Appl. Sci. 2023, 13, 4644 17 of 26

We evaluated the performance of the proposed models with four different features
and two different optimizers.

The average MSE and MAE for the use of different features and optimizers of the
proposed models over the three periods are shown in Tables 7 and 8, where the best
performance results are marked in bold for each stock market index, a look-back period,
and optimizer.

For multi-time-step prediction, in terms of the average MSE over the three periods,
Table 7 confirms that the CNN-LSTM, GRU-CNN, and ensemble models with the intro-
duced medium feature outperformed the other models in 66.7%, 83.3%, and 83.3% of cases
with the DAX dataset; 66.7%, 66.7%, and 50% of cases with the DOW dataset; and 66.7%,
50%, and 83.3% of cases with the S&P500 dataset.

Further, for multi-time-step prediction, in terms of the average MAE over the three
periods, Table 8 shows that the CNN-LSTM, GRU-CNN, and ensemble models with the
novel medium feature outperformed the other models in 83.3%, 100%, and 83.3% of cases
with the DAX dataset; 66.7%, 100%, and 66.7% of cases with the DOW dataset; and 66.7%,
50%, and 83.3% of cases with the S&P500 dataset.

Table 7. Comparison of different optimizers and features in terms of average MSE over the three
periods for five-time-step prediction.

Look-Back
Optimizer Feature

CNN-LSTM GRU-CNN Ensemble

Period DAX DOW S&P500 DAX DOW S&P500 DAX DOW S&P500

5 days

Adam

MV 0.0293 0.0573 0.0636 0.0085 0.0099 0.0160 0.0532 0.2397 0.0048
MVC 0.0149 0.0531 0.1266 0.0038 0.0229 0.0128 0.0028 0.0084 0.0120
OHLV 0.0389 0.0595 0.0892 0.0073 0.0200 0.0223 0.0030 0.0043 0.0033

OHLMVC 0.0523 0.0945 0.0803 0.0058 0.0227 0.0155 0.0024 0.0051 0.0029

RMSProp

MV 0.0255 0.0848 0.0340 0.0036 0.0146 0.0263 0.0033 0.0074 0.0052
MVC 0.0184 0.0333 0.0926 0.0034 0.0186 0.0269 0.0031 0.0141 0.0065
OHLV 0.0131 0.0372 0.0507 0.0038 0.0022 0.0201 0.0033 0.0037 0.0068

OHLMVC 0.0167 0.0720 0.0803 0.0031 0.0253 0.0322 0.0027 0.0044 0.0050

21 days

Adam

MV 0.0443 0.0541 0.1509 0.0395 0.0273 0.0106 0.0030 0.0052 0.1904
MVC 0.1774 0.1768 0.2014 0.0066 0.0107 0.0217 0.0036 0.0077 0.0040
OHLV 0.0368 0.1119 0.0745 0.0050 0.0174 0.0222 0.0028 0.0026 0.0041

OHLMVC 0.0990 0.1957 0.1828 0.0044 0.0182 0.0105 0.0027 0.0026 0.0025

RMSProp

MV 0.2070 0.1048 0.0475 0.0243 0.0205 0.0517 0.0026 0.0102 0.0059
MVC 0.0811 0.0669 0.0804 0.0125 0.0154 0.0519 0.0042 0.0154 0.0124
OHLV 0.1223 0.0316 0.1723 0.0147 0.0152 0.0543 0.0044 0.2354 0.0062

OHLMVC 0.0640 0.1376 0.1346 0.0264 0.0189 0.0496 0.0376 0.0035 0.0089

42 days

Adam

MV 0.0327 0.2019 0.1374 0.0532 0.0477 0.0562 0.0031 0.0065 0.0046
MVC 0.0640 0.0928 0.0850 0.0115 0.0443 0.0320 0.0062 0.2501 0.0075
OHLV 0.0360 0.0897 0.0439 0.0168 0.0494 0.0265 0.0027 0.0101 0.0062

OHLMVC 0.0756 0.1798 0.1960 0.0079 0.0355 0.0455 0.0028 0.0045 0.0093

RMSProp

MV 0.0506 0.2216 0.1771 0.0111 0.0486 0.0392 0.0036 0.0156 0.0093
MVC 0.1086 0.4098 0.1259 0.0084 0.0418 0.0648 0.0033 0.3016 0.0125
OHLV 0.1241 0.3247 0.1819 0.0052 0.0471 0.0301 0.2476 0.0065 0.0042

OHLMVC 0.0904 0.1509 0.0706 0.0055 0.0453 0.0621 0.0030 0.0043 0.0086

In addition, the proposed models were trained for 1500 epochs with the Adam opti-
mizer and OHLV features to achieve higher performance than that of the model as described
in Section 3.2.4. Figures 9–11 compare the actual and predicted close prices of the DAX,
DOW, and S&P500 indices, respectively, with respect to the different look-back periods.
In Figures 9–11, the left, middle, and right plots correspond to the look-back periods of
5, 21, and 42 days, respectively. The look-back period and stock market index also evidently
affect the model performance.

Appl. Sci. 2023, 13, 4644 18 of 26

Table 8. Comparison of different optimizers and features in terms of average MAE over the three
periods for five-time-step prediction.

Look-Back
Optimizer Feature

CNN-LSTM GRU-CNN Ensemble

Period DAX DOW S&P500 DAX DOW S&P500 DAX DOW S&P500

5 days

Adam

MV 0.1349 0.1894 0.2386 0.0786 0.0920 0.1012 0.1561 0.3217 0.0551
MVC 0.0963 0.2239 0.3409 0.0528 0.1421 0.1017 0.0409 0.0781 0.0832
OHLV 0.1654 0.2088 0.2907 0.0698 0.1321 0.1336 0.0424 0.0553 0.0457

OHLMVC 0.1963 0.2775 0.2648 0.0631 0.1414 0.1085 0.0376 0.0572 0.0427

RMSProp

MV 0.1277 0.2466 0.1705 0.0476 0.1098 0.1520 0.0448 0.0698 0.0569
MVC 0.1008 0.1616 0.2727 0.0472 0.1208 0.1544 0.0429 0.1027 0.0606
OHLV 0.0868 0.1747 0.1881 0.0525 0.1397 0.1304 0.0447 0.0493 0.0620

OHLMVC 0.1114 0.2308 0.2130 0.0434 0.1452 0.1567 0.0400 0.0531 0.0560

21 days

Adam

MV 0.1697 0.1928 0.3751 0.0828 0.1555 0.0897 0.0414 0.0603 0.2791
MVC 0.2673 0.4012 0.4062 0.0699 0.0929 0.1394 0.0457 0.0770 0.0484
OHLV 0.1753 0.3138 0.2623 0.0582 0.1157 0.1363 0.0406 0.0417 0.0483

OHLMVC 0.2692 0.4271 0.4016 0.0546 0.1249 0.0928 0.0396 0.0412 0.0350

RMSProp

MV 0.3389 0.2637 0.1844 0.1218 0.1333 0.1993 0.0424 0.0859 0.0633
MVC 0.2507 0.2386 0.2320 0.0980 0.0982 0.2102 0.0535 0.1073 0.0969
OHLV 0.2850 0.1612 0.3277 0.0990 0.1096 0.2077 0.0547 0.3192 0.0671

OHLMVC 0.1878 0.3017 0.3532 0.1293 0.1242 0.2014 0.1280 0.0476 0.0810

42 days

Adam

MV 0.1471 0.4368 0.3548 0.1859 0.2023 0.1943 0.0415 0.0648 0.0476
MVC 0.1884 0.2731 0.2670 0.0921 0.1885 0.1613 0.0616 0.3178 0.0592
OHLV 0.1539 0.2643 0.1849 0.1104 0.2039 0.1443 0.0394 0.0725 0.0557

OHLMVC 0.2555 0.3332 0.3816 0.0785 0.1707 0.1935 0.0406 0.0543 0.0753

RMSProp

MV 0.2048 0.4303 0.3616 0.0904 0.2019 0.1691 0.0473 0.1037 0.0786
MVC 0.2602 0.5322 0.2999 0.0744 0.1889 0.2186 0.0445 0.3711 0.0873
OHLV 0.2904 0.5606 0.3259 0.0628 0.2044 0.1510 0.3172 0.0683 0.0493

OHLMVC 0.2310 0.3181 0.2358 0.0622 0.1973 0.2204 0.0417 0.0531 0.0657

Figure 9. Comparison of true and predicted close prices of the DAX index between different look-back
periods for five-time-step prediction over the period from 24 October 2014 through 31 December 2019.

Figure 10. Comparison of true and predicted close prices of the DOW index between different
look-back periods for five-time-step prediction over the period from 1 January 2000 through 31
December 2019.

Appl. Sci. 2023, 13, 4644 19 of 26

Figure 11. Comparison of true and predicted close prices of the S&P500 index between different
look-back periods for five-time-step prediction over the period from 1 January 2000 through 31
December 2019.

Moreover, the proposed models were trained for 1500 epochs with the Adam optimizer
and a look-back period of 5 days. The comparisons of true and predicted close prices of
the DAX, DOW, and S&P500 indices between different input features for five-time-step
prediction are provided in Figures 12–14, respectively.

Figure 12. Comparison of true and predicted close prices of the DAX index between different input
features for five-time-step prediction over the period from 24 October 2014 through 31 December 2019.

Figure 13. Comparison of true and predicted close prices of the DOW index between different input
features for five-time-step prediction over the period from 1 January 2000 through 31 December 2019.

Figure 14. Comparison of true and predicted close prices of the S&P500 index between different input
features for five-time-step prediction over the period from 1 January 2000 through 31 December 2019.

Appl. Sci. 2023, 13, 4644 20 of 26

5. Discussion

Various deep-learning techniques have been applied extensively in the field of finance
for stock market prediction, portfolio optimization, risk management, and trading strategies.
Although forecasting stock market indices with noisy data is a complex and challenging
process, it significantly affects the appropriate timing of buying or selling investment assets
for investors as they reduce the risk, which is one of the most valuable areas in finance.

Combining multiple deep-learning models results in a better performance [48]. We
proposed to integrate RNNs, namely, CNN-LSTM, GRU-CNN, and ensemble models.
The proposed models were evaluated to forecast the one-time-step and multi-time-step
closing prices of stock market indices using various stock market indices, look-back periods,
optimizers, features, and the learning rate.

The experimental results revealed that the proposed models that combine variants
of RNNs outperformed the traditional machine learning models, such as RNN, LSTM,
GRU, and WaveNet in most cases. In particular, the ensemble model produced significant
results for one-time-step forecasting. Moreover, compared with the performance of previous
studies that used open, high, and low prices and trading volume of stock market indices
as features, that of our models improved by incorporating the proposed novel feature,
which is the average of the high and low prices. Furthermore, our models with MV features
provided favorable results in numerous cases. Notably, reducing the number of features
could be interpreted as circumventing the overfitting.

The performance of the proposed and benchmark models with the Adam optimizer
and OHLV features over three periods were evaluated to predict one-time-step and five-
time-step using look-back periods of 5, 21, and 42 days as provided in Tables 3 and 6,
respectively. The comparisons of the average MSE and MAE over three periods for dif-
ferent look-back and look-ahead periods are provided in Figures 15 and 16, respectively.
An overall comparison between the ensemble model and other models in Figures 15 and 16
indicates that the ensemble model significantly outperformed the other models.

Figure 15. Comparison of the average MSE over three periods for different look-back and look-
ahead periods using RNN, LSTM, GRU, WaveNet, CNN-LSTM, GRU-CNN, and ensemble with
OHLV features.

In addition, the performance of the proposed and benchmark models over three
periods were evaluated to compare the impact of four different input features (i.e., MV,
MVC, OHLV, and OHLMVC) for one-time-step and five-time-step predictions with three
look-back periods and two optimizers as described in Section 3.2. The comparisons of the
average MSE and MAE of the proposed and benchmark models over all periods, optimizers,
look-back, and look-ahead periods are provided in Figures 17 and 18, respectively. The
proposed models outperform the benchmark models and the performance of our models
improves by incorporating the proposed medium feature.

Appl. Sci. 2023, 13, 4644 21 of 26

Figure 16. Comparison of the average MAE over three periods for different look-back and look-ahead
periods using RNN, LSTM, GRU, WaveNet, CNN-LSTM, GRU-CNN, and ensemble with OHLV
features.

Figure 17. Comparison of the average MSE of all models using MV, MVC, OHLV, and OHLMVC.

Figure 18. Comparison of the average MAE of all models using MV, MVC, OHLV, and OHLMVC.

During the course of this study, the Russia–Ukraine crisis escalated on 24 February
2022. Additional experiments were conducted to examine the impact of this crisis on each
stock market index for the period from 1 January 2021 through 15 February 2023.

We evaluated the performance of the proposed and benchmark models to predict
one-time-step and five-time-step ahead with various look-back periods of 5, 21, and 42 days
as one week, one month, and two months, respectively. The architectures of the proposed
and benchmark models have been described in Sections 3.1 and 4.1, respectively.

Appl. Sci. 2023, 13, 4644 22 of 26

The proposed and benchmark models were implemented with 50 epochs, an early stop-
ping patience of 10, a batch size of 32, a learning rate of 0.0005, the Adam optimizer, the ReLU
activation function, and OHLV features. The network weights and biases were initialized
with the Glorot-Xavier uniform method and zeros, respectively. The proposed and benchmark
models were trained with the Huber loss function and MSE loss function, respectively.

Table 9 compares our models with the benchmark models for the different look-back
periods for one-time-step and five-time-step predictions, where the best performance results
are marked in bold for each stock market index, period, and metric. Table 9 indicates that
the proposed models improved the benchmarks in several cases and that the ensemble
model significantly outperformed the other models.

Table 9. Comparison of one-time-step and five-time-step predictions between proposed and bench-
mark models for the period from 1 January 2021 through 15 February 2023.

Look-Back
Metric Model

One-Time-Step Prediction Five-Time-Step Prediction

Period DAX DOW S&P500 DAX DOW S&P500

5 days

MSE

RNN 0.1738 0.3059 0.1043 0.0250 0.0219 0.1122
LSTM 0.1735 0.3060 0.1043 0.0058 0.0076 0.0064
GRU 0.1735 0.3060 0.1043 0.0081 0.0187 0.0058

WaveNet 0.4870 0.3120 0.5712 0.0477 0.1230 0.0177
CNN-LSTM 0.1435 0.0560 0.0988 0.0831 0.0447 0.0912
GRU-CNN 0.0370 0.3060 0.0053 0.0101 0.0166 0.0090
Ensemble 0.0017 0.0051 0.0027 0.0126 0.0122 0.0057

MAE

RNN 0.3738 0.5163 0.2934 0.1468 0.1266 0.3053
LSTM 0.3726 0.5165 0.2934 0.0593 0.0640 0.0585
GRU 0.3727 0.5164 0.2934 0.0802 0.1251 0.0629

WaveNet 0.6741 0.5185 0.7456 0.1925 0.3177 0.1110
CNN-LSTM 0.3440 0.1587 0.2864 0.2345 0.1551 0.2666
GRU-CNN 0.1733 0.5165 0.0557 0.0901 0.1139 0.0739
Ensemble 0.0345 0.0628 0.0420 0.1025 0.0968 0.0605

21 days

MSE

RNN 0.1787 0.3315 0.0995 0.1917 0.3485 0.1081
LSTM 0.1785 0.3315 0.0995 0.0133 0.0070 0.0060
GRU 0.1785 0.3315 0.0995 0.0126 0.0155 0.0056

WaveNet 0.4126 0.2232 0.5259 0.0526 0.1446 0.0177
CNN-LSTM 0.0805 0.0225 0.0680 0.0399 0.0127 0.0595
GRU-CNN 0.0159 0.0307 0.0058 0.0245 0.0127 0.0079
Ensemble 0.0018 0.0128 0.0026 0.0115 0.0124 0.0059

MAE

RNN 0.3947 0.5588 0.2950 0.4151 0.5807 0.3127
LSTM 0.3940 0.5588 0.2950 0.1019 0.0645 0.0625
GRU 0.3940 0.5587 0.2950 0.1032 0.1121 0.0634

WaveNet 0.6244 0.4501 0.7168 0.2015 0.3605 0.1094
CNN-LSTM 0.2490 0.1076 0.2367 0.1460 0.0808 0.2231
GRU-CNN 0.1133 0.1626 0.0634 0.1429 0.0994 0.0678
Ensemble 0.0358 0.1027 0.0402 0.0966 0.0980 0.0650

42 days

MSE

RNN 0.2434 0.4011 0.1446 0.0481 0.0071 0.1150
LSTM 0.2434 0.4011 0.1446 0.0071 0.0040 0.0066
GRU 0.2434 0.4011 0.1446 0.0079 0.0122 0.0044

WaveNet 0.3106 0.1505 0.4595 0.0685 0.1746 0.0215
CNN-LSTM 0.0435 0.0027 0.0433 0.0115 0.0033 0.0597
GRU-CNN 0.0425 0.4011 0.0092 0.0351 0.0261 0.0075
Ensemble 0.0028 0.0057 0.0024 0.0092 0.0079 0.0083

MAE

RNN 0.4857 0.6314 0.3694 0.2009 0.0693 0.3288
LSTM 0.4857 0.6314 0.3694 0.0668 0.0517 0.0643
GRU 0.4857 0.6314 0.3694 0.0768 0.0985 0.0548

WaveNet 0.5511 0.3843 0.6730 0.2488 0.4143 0.1246
CNN-LSTM 0.1961 0.0456 0.1878 0.0847 0.0472 0.2295
GRU-CNN 0.2030 0.6314 0.0878 0.1805 0.1358 0.0711
Ensemble 0.0476 0.0693 0.0414 0.0846 0.0771 0.0778

Appl. Sci. 2023, 13, 4644 23 of 26

Further, compared with other forecasting methods in other fields, the proposed frame-
work herein can be applied to forecasting time-series data, such as energy consumption, oil
price, gas concentration, air quality, and river flow. Moreover, the performance of forecast-
ing can be improved by combining different types of RNN-based models and constructing
a portfolio using predicted stock market prices in future studies.

6. Conclusions

In this paper, we proposed three RNN-based hybrid models, namely CNN-LSTM,
GRU-CNN, and ensemble models, to make one-time-step and multi-time-step predictions
of the closing price of three stock market indices in different financial markets. We evaluated
and compared the performance of the proposed models with conventional benchmarks (i.e.,
RNN, LSTM, GRU, and WaveNet) over three different periods: a long period of more than
15 years and two short periods of three years before and after the COVID-19 pandemic.
The proposed models significantly outperformed the benchmark models by achieving high
predictive performance for various sizes of look-back and look-ahead periods in terms of
MSE and MAE. Moreover, we found that the proposed ensemble model was comparable to
the GRU, which performed well among benchmarks and outperformed the benchmarks in
many cases.

Additionally, we introduced a novel feature, medium, which is the average of high
and low prices, and evaluated the performance of the proposed models with four different
features and two different optimizers. The results indicated that incorporating the novel
feature improved model performance. Overall, our experiments verified that the proposed
models outperformed the benchmark models in many cases and that incorporating the
medium feature improved their performance.

Author Contributions: Conceptualization, H.S. and H.C.; methodology, H.S. and H.C.; software,
H.S. and H.C.; validation, H.S. and H.C.; formal analysis, H.S. and H.C.; writing—original draft
preparation, H.S. and H.C.; writing—review and editing, H.S.; supervision, H.S.; project administra-
tion, H.S.; funding acquisition, H.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MSIT, Korea)
(No. NRF-2020R1G1A1A01006808).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data used in this study was obtained using the FinanceDataReader
open-source library.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

Adam Adaptive Moment Estimation
ANN Artificial Neural Network
ARIMA Autoregressive Integrated Moving Average
ARMA Autoregressive and Moving Average
CNN Convolutional Neural Network
DAX Deutscher Aktienindex
DOW Dow Jones Industrial Average
GAN Generative Adversarial Network
GRU Gated Recurrent Unit
LSTM Long Short Term Memory
MAE Mean Absolute Error
MLP Multilayer Perceptron

Appl. Sci. 2023, 13, 4644 24 of 26

MSE Mean Squared Error
ReLU Rectified Linear Unit
RMSProp Root Mean Square Propagation
RNN Recurrent Neural Network
S&P500 Standard and Poor’s 500

References
1. Tan, T.; Quek, C.; Ng, G. Brain-inspired genetic complementary learning for stock market prediction. In Proceedings of the IEEE

Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; Volume 3, pp. 2653–2660. [CrossRef]
2. Wang, J.Z.; Wang, J.J.; Zhang, Z.G.; Guo, S.P. Forecasting stock indices with back propagation neural network. Expert Syst. Appl.

2011, 38, 14346–14355. [CrossRef]
3. Fama, E.F. The behavior of stock market prices. J. Bus. 1965, 38, 34–105. [CrossRef]
4. Zhang, X.; Liang, X.; Zhiyuli, A.; Zhang, S.; Xu, R.; Wu, B. AT-LSTM: An Attention-based LSTM Model for Financial Time Series

Prediction. IOP Conf. Ser. Mater. Sci. Eng. 2019, 569, 052037. [CrossRef]
5. Shields, R.; Zein, S.A.E.; Brunet, N.V. An Analysis on the NASDAQ’s Potential for Sustainable Investment Practices during the

Financial Shock from COVID-19. Sustainability 2021, 13, 3748. [CrossRef]
6. Daradkeh, M.K. A Hybrid Data Analytics Framework with Sentiment Convergence and Multi-Feature Fusion for Stock Trend

Prediction. Electronics 2022, 11, 250. [CrossRef]
7. Abrishami, S.; Turek, M.; Choudhury, A.R.; Kumar, P. Enhancing Profit by Predicting Stock Prices using Deep Neural Networks.

In Proceedings of the IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA, 4–6
November 2019; pp. 1551–1556.

8. Aggarwal, S.; Aggarwal, S. Deep Investment in Financial Markets using Deep Learning Models. Int. J. Comput. Appl. 2017,
162, 40–43. [CrossRef]

9. Graves, A.; Rahman Mohamed, A.; Hinton, G. Speech Recognition With Deep Recurrent Neural Networks. In Proceedings
of the IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013;
pp. 6645–6649.

10. Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.; Zemel, R.; Bengio, Y. Show, Attend and Tell: Neural Image
Caption Generation with Visual Attention. In Proceedings of the 32nd International Conference on Machine Learning, Lille,
France, 7–9 July 2015; Volume 37, pp. 2048–2057.

11. Zhu, Y.; Groth, O.; Bernstein, M.S.; Li, F. Visual7W: Grounded Question Answering in Images. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 4995–5004.

12. Ren, B. The use of machine translation algorithm based on residual and LSTM neural network in translation teaching. PLoS ONE
2020, 15, e0240663. [CrossRef] [PubMed]

13. Bhandari, H.N.; Rimal, B.; Pokhrel, N.R.; Rimal, R.; Dahal, K.R.; Khatri, R.K. Predicting stock market index using LSTM. Mach.
Learn. Appl. 2022, 9, 100320. [CrossRef]

14. Walczak, S.; Cerpa, N. Artificial Neural Networks. In Encyclopedia of Physical Science and Technology, 3rd ed.; Academic Press: New
York, NY, USA, 2003; pp. 631–645. [CrossRef]

15. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536.
[CrossRef]

16. Mcculloch, W.; Pitts, W. A Logical Calculus of Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 1943, 5, 115–133.
[CrossRef]

17. Minsky, M.; Papert, S. Perceptrons: An Introduction to Computational Geometry; MIT Press: Cambridge, MA, USA, 1969.
18. Popescu, M.C.; Balas, V.E.; Perescu-Popescu, L.; Mastorakis, N. Multilayer Perceptron and Neural Networks. WSEAS Trans.

Circuits Syst. 2009, 8, 579–588.
19. Lecun, Y.; Bengio, Y. Convolutional Networks for Images, Speech, and Time-Series; MIT Press: Cambridge, MA, USA, 1997.
20. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of

the 25th International Conference on Neural Information Processing Systems, NIPS’12, Lake Tahoe, NV, USA, 3–6 December 2012;
Curran Associates Inc.: Red Hook, NY, USA, 2012; Volume 1, pp. 1097–1105.

21. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference for
Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.

22. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the 27th International
Conference on Machine Learning (ICML), Haifa, Israel, 21–24 June 2010; pp. 807–814.

23. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

24. Bao, W.; Yue, J.; Rao, Y. A deep learning framework for financial time series using stacked autoencoders and long-short term
memory. PLoS ONE 2017, 12, e0180944. [CrossRef]

25. Rumelhart, D.E.; McClelland, J.L. Learning Internal Representations by Error Propagation. In Parallel Distributed Processing:
Explorations in the Microstructure of Cognition: Foundations; MIT Press: Cambridge, MA, USA, 1987; pp. 318–362.

26. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]

http://doi.org/10.1109/CEC.2005.1555027
http://dx.doi.org/10.1016/j.eswa.2011.04.222
http://dx.doi.org/10.1086/294743
http://dx.doi.org/10.1088/1757-899X/569/5/052037
http://dx.doi.org/10.3390/su13073748
http://dx.doi.org/10.3390/electronics11020250
http://dx.doi.org/10.5120/ijca2017913283
http://dx.doi.org/10.1371/journal.pone.0240663
http://www.ncbi.nlm.nih.gov/pubmed/33211704
http://dx.doi.org/10.1016/j.mlwa.2022.100320
http://dx.doi.org/10.1016/B0-12-227410-5/00837-1
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1371/journal.pone.0180944
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276

Appl. Sci. 2023, 13, 4644 25 of 26

27. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw.
1994, 5, 157–166. [CrossRef]

28. Cho, K.; van Merriënboer, B.; Bahdanau, D.; Bengio, Y. On the Properties of Neural Machine Translation: Encoder–Decoder
Approaches. In Proceedings of the SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha,
Qatar, 25 October 2014; Association for Computational Linguistics: Cedarville, OH, USA, 2014; pp. 103–111.

29. Shen, G.; Tan, Q.; Zhang, H.; Zeng, P.; Xu, J. Deep Learning with Gated Recurrent Unit Networks for Financial Sequence
Predictions. Procedia Comput. Sci. 2018, 131, 895–903.

30. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
In Proceedings of the NIPS 2014 Workshop on Deep Learning, Montreal, QC, Canada, 13 December 2014.

31. Kaiser, L.; Sutskever, I. Neural GPUs Learn Algorithms. In Proceedings of the 4th International Conference on Learning
Representations, ICLR, San Juan, PR, USA, 2–4 May 2016.

32. Yin, W.; Kann, K.; Yu, M.; Schütze, H. Comparative Study of CNN and RNN for Natural Language Processing. arXiv 2017,
arXiv:1702.01923.

33. Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations
using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Association for Computational Linguistics: Doha,
Qatar, 2014; pp. 1724–1734.

34. Nguyen, T.T.; Yoon, S. A Novel Approach to Short-Term Stock Price Movement Prediction using Transfer Learning. Appl. Sci.
2019, 9, 4745. . [CrossRef]

35. Kamal, I.M.; Bae, H.; Sunghyun, S.; Yun, H. DERN: Deep Ensemble Learning Model for Short- and Long-Term Prediction of
Baltic Dry Index. Appl. Sci. 2020, 10, 1504. [CrossRef]

36. Ta, V.D.; Liu, C.M.; Tadesse, D.A. Portfolio Optimization-Based Stock Prediction Using Long-Short Term Memory Network in
Quantitative Trading. Appl. Sci. 2020, 10, 437. [CrossRef]

37. Rouf, N.; Malik, M.B.; Arif, T.; Sharma, S.; Singh, S.; Aich, S.; Kim, H.C. Stock Market Prediction Using Machine Learning
Techniques: A Decade Survey on Methodologies, Recent Developments, and Future Directions. Electronics 2021, 10, 2717.
[CrossRef]

38. Aldhyani, T.H.H.; Alzahrani, A. Framework for Predicting and Modeling Stock Market Prices Based on Deep Learning Algorithms.
Electronics 2022, 11, 3149. [CrossRef]

39. Lin, Y.L.; Lai, C.J.; Pai, P.F. Using Deep Learning Techniques in Forecasting Stock Markets by Hybrid Data with Multilingual
Sentiment Analysis. Electronics 2022, 11, 3513. [CrossRef]

40. Chen, J.F.; Chen, W.L.; Huang, C.P.; Huang, S.H.; Chen, A.P. Financial Time-Series Data Analysis Using Deep Convolutional
Neural Networks. In Proceedings of the 7th International Conference on Cloud Computing and Big Data (CCBD), Macau, China,
16–18 November 2016; pp. 87–92. [CrossRef]

41. Sezer, O.B.; Ozbayoglu, A.M. Algorithmic financial trading with deep convolutional neural networks: Time series to image
conversion approach. Appl. Soft Comput. 2018, 70, 525–538. [CrossRef]

42. Gross, W.; Lange, S.; Bödecker, J.; Blum, M. Predicting Time Series with Space-Time Convolutional and Recurrent Neural
Networks. In Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning, Bruges, Belgium, 26–28 April 2017; pp. 26–28.

43. Fischer, T.; Krauss, C. Deep learning with long short-term memory networks for financial market predictions. Eur. J. Oper. Res.
2018, 270, 654–669. [CrossRef]

44. Dutta, A.; Kumar, S.; Basu, M. A Gated Recurrent Unit Approach to Bitcoin Price Prediction. J. Risk Financ. Manag. 2020, 13, 23.
[CrossRef]

45. Heaton, J.; Polson, N.; Witte, J. Deep Learning for Finance: Deep Portfolios. Appl. Stoch. Model. Bus. Ind. 2016, 33, 3–12. [CrossRef]
46. Ilyas, Q.M.; Iqbal, K.; Ijaz, S.; Mehmood, A.; Bhatia, S. A Hybrid Model to Predict Stock Closing Price Using Novel Features and a

Fully Modified Hodrick–Prescott Filter. Electronics 2022, 11, 3588. [CrossRef]
47. Livieris, I.E.; Pintelas, E.; Pintelas, P. A CNN-LSTM model for gold price time-series forecasting. Neural Comput. Appl. 2019,

32, 17351–17360. [CrossRef]
48. Livieris, I.E.; Pintelas, E.; Stavroyiannis, S.; Pintelas, P. Ensemble Deep Learning Models for Forecasting Cryptocurrency

Time-Series. Algorithms 2020, 13, 121. [CrossRef]
49. Zhang, K.; Zhong, G.; Dong, J.; Wang, S.; Wang, Y. Stock Market Prediction Based on Generative Adversarial Network. Procedia

Comput. Sci. 2018, 147, 400–406. [CrossRef]
50. Leung, M.F.; Wang, J.; Che, H. Cardinality-constrained portfolio selection via two-timescale duplex neurodynamic optimization.

Neural Netw. 2022, 153, 399–410. [CrossRef] [PubMed]
51. Troiano, L.; Villa, E.M.; Loia, V. Replicating a Trading Strategy by Means of LSTM for Financial Industry Applications. IEEE Trans.

Ind. Inform. 2018, 14, 3226–3234. [CrossRef]
52. Chalvatzis, C.; Hristu-Varsakelis, D. High-performance stock index trading: Making effective use of a deep LSTM neural network.

arXiv 2019, arXiv:1902.03125.
53. Park, S.; Song, H.; Lee, S. Linear programing models for portfolio optimization using a benchmark. Eur. J. Financ. 2019, 25, 435–457.

[CrossRef]

http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.3390/app9224745
http://dx.doi.org/10.3390/app10041504
http://dx.doi.org/10.3390/app10020437
http://dx.doi.org/10.3390/electronics10212717
http://dx.doi.org/10.3390/electronics11193149
http://dx.doi.org/10.3390/electronics11213513
http://dx.doi.org/10.1109/CCBD.2016.027
http://dx.doi.org/10.1016/j.asoc.2018.04.024
http://dx.doi.org/10.1016/j.ejor.2017.11.054
http://dx.doi.org/10.3390/jrfm13020023
http://dx.doi.org/10.1002/asmb.2209
http://dx.doi.org/10.3390/electronics11213588
http://dx.doi.org/10.1007/s00521-020-04867-x
http://dx.doi.org/10.3390/a13050121
http://dx.doi.org/10.1016/j.procs.2019.01.256
http://dx.doi.org/10.1016/j.neunet.2022.06.023
http://www.ncbi.nlm.nih.gov/pubmed/35797801
http://dx.doi.org/10.1109/TII.2018.2811377
http://dx.doi.org/10.1080/1351847X.2018.1536070

Appl. Sci. 2023, 13, 4644 26 of 26

54. Lee, S.I.; Yoo, S.J. Threshold-based portfolio: The role of the threshold and its applications. J. Supercomput. 2020, 76, 8040–8057.
[CrossRef]

55. Sen, J.; Dutta, A.; Mehtab, S. Stock Portfolio Optimization Using a Deep Learning LSTM Model. In Proceedings of the IEEE
Mysore Sub Section International Conference, Hassan, India, 24–25 October 2021; pp. 263–271.

56. McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference,
Austin, TX, USA, 28 June– 3 July 2010; pp. 56–61.

57. Granger, C.W.J. Strategies for Modelling Nonlinear Time-Series Relationships. Econ. Rec. 1993, 69, 233–238. [CrossRef]
58. Python Core Team. Python: A Dynamic, Open Source Programming Language. Python Software Foundation. 2019. Available

online: https://www.python.org (accessed on 18 December 2022).
59. Keras. 2015. Available online: https://keras.io (accessed on 18 December 2022).
60. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. arXiv 2015, arXiv:1603.04467.
61. van der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci.

Eng. 2011, 13, 22–30. [CrossRef]
62. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg,

V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
63. Huber, P.J. Robust Estimation of a Location Parameter. Ann. Math. Stat. 1964, 35, 73–101. [CrossRef]
64. Ku, J.; Mozifian, M.; Lee, J.; Harakeh, A.; Waslander, S.L. Joint 3D Proposal Generation and Object Detection from View

Aggregation. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid,
Spain, 1–5 October 2018; pp. 1–8. [CrossRef]

65. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the 13th
International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; Volume 9, pp. 249–256.

66. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent Neural Network Regularization. arXiv 2014, arXiv:1409.2329.
67. Gal, Y.; Ghahramani, Z. A Theoretically Grounded Application of Dropout in Recurrent Neural Networks. In Advances in Neural

Information Processing Systems; Lee, D., Sugiyama, M., Luxburg, U., Guyon, I., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook,
NY, USA, 2016; Volume 29.

68. Yao, Y.; Rosasco, L.; Caponnetto, A. On Early Stopping in Gradient Descent Learning. Constr. Approx. 2007, 26, 289–315. [CrossRef]
69. Tieleman, T.; Hinton, G. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA

Neural Netw. Mach. Learn. 2012, 4, 26–31.
70. van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.W.; Kavukcuoglu, K.

WaveNet: A Generative Model for Raw Audio. In Proceedings of the 9th ISCA Speech Synthesis Workshop, Sunnyvale, CA, USA,
13–15 September 2016; p. 125.

71. van den Oord, A.; Kalchbrenner, N.; Espeholt, L.; Koray K.; Vinyals, O.; Graves, A. Conditional Image Generation with PixelCNN
Decoders. In Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2016; Volume 29.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11227-018-2577-1
http://dx.doi.org/10.1111/j.1475-4932.1993.tb02103.x
https://www.python.org
https://keras.io
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1214/aoms/1177703732
http://dx.doi.org/10.1109/IROS.2018.8594049
http://dx.doi.org/10.1007/s00365-006-0663-2

	Introduction
	Background and Related Work
	Deep-Learning Background
	ANN
	MLP
	CNN
	RNN
	LSTM
	GRU

	Related Work

	Materials and Methods
	Proposed Models
	Proposed CNN-LSTM Model
	Proposed GRU-CNN Model
	Proposed Ensemble Model

	Implementation Details
	Dataset
	Generation of the Inputs and Outputs Using the Sliding Window Technique
	Software and Hardware
	Experimental Setting
	Predictive Performance Metrics

	Experimental Results
	Benchmark Models
	One-Time-Step Prediction Comparisons between Proposed and Benchmark Models
	Multi-Time-Step Prediction Comparisons between Proposed and Benchmark Models

	Discussion
	Conclusions
	References

