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Abstract: Unlike the high imaging radiation dose of computed tomography (CT), cone-beam CT
(CBCT) has smaller radiation dose and presents less harm to patients. Therefore, CBCT is often used
for target delineation, dose planning, and postoperative evaluation in the image-guided radiotherapy
(IGRT) of various cancers. In the process of IGRT, CBCT images usually need to be collected multiple
times in a radiotherapy stage for postoperative evaluation. The effectiveness of radiotherapy is
measured by comparing and analyzing the registered CBCT and the source CT image obtained
before radiotherapy. Hence, the registration of CBCT and CT is the most important step in IGRT.
CBCT images usually have poor visual effects due to the small imaging dose used, which adversely
affects the registration performance. In this paper, we propose a novel adaptive visual saliency
feature enhancement method for CBCT in IGRT. Firstly, we denoised CBCT images using a structural
similarity based low-rank approximation model (SSLRA) and then enhanced the denoised results
with a visual saliency feature enhancement (VSFE)-based method. Experimental results show that
the enhancement performance of the proposed method is superior to the comparison enhancement
algorithms in visual objective comparison. In addition, the extended experiments prove that the
proposed enhancement method can improve the registration accuracy of CBCT and CT images,
demonstrating their application prospects in IGRT-based cancer treatment.

Keywords: cone beam CT; feature enhancement; low-rank approximation; image-guided radiotherapy

1. Introduction

The purpose of radiotherapy is to deliver a planned radiation dose to a delineated
cancerous region to kill cancer cells while preserving the surrounding normal structures
and leaving tissues unharmed [1–3]. It is very difficult to accurately radiate the target
region and ensure the surrounding normal areas are not damaged [4,5]. Image-guided
radiotherapy (IGRT) is a new cancer treatment technology in which images are used
to guide the whole radiation process including position guidance, pre-operative and
postoperative analysis [6–8]. The key step of IGRT is to collect and analyze CT and CBCT
images of the target area. High-quality CT images only need to be collected a few times for
diagnosis and treatment planning, and CBCT images need to be collected many times for
patient positioning guidance during the radiotherapy. CBCT imaging is used to replace CT
imaging as much as possible to reduce the harm caused by the high dose of CT to patients.
When IGRT-based treatment is implemented, some image technologies need to be used
to supervise and guide the whole treatment process. Due to this process often requiring
multiple acquisitions and analyses of images, CBCT, with its lower imaging dose, is usually
used as the guidance image to reduce the harm to the patient [9,10]. In IGRT, the most
important step is to analyze the position information between the CBCT image and the
delineated CT images; that is, the radiologist needs to register and align the CBCT and the
CT images.

As shown in Figure 1, CBCT images usually have low contrast and visual quality due
to their small imaging dose compared with CT images. Compared with CT, CBCT has
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a small imaging dose, which means that its imaging is more susceptible to interference
from environments such as a strong magnetic field, resulting in more noise in the CBCT
image. The degradation of CBCT will reduce image contrast and increase the ambiguity of
structures of important regions, which makes it unable to play its due role in IGRT [11].
Huang et al. proved that the accuracy of radiotherapy can be improved by using CBCT
enhancement technology in IGRT [12]. Thus, it has become a new research topic to use
image enhancement technology to improve the quality of CBCT.
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Figure 1. Examples of unregistered CBCT (the first row) and CT (the second row) images.

In recent decades, different types of efficient methods have been proposed for image
enhancement [13–15], such as the well-known histogram equalization (HE) method [16],
dark channel prior (DCP) method [17], signal scale retinex (SSR) method [18], multiscale
retinex with color restoration (MSRCR) method [19], semi-decoupled decomposition (SSD)
method [20], and statistical methods with image processing concepts (SMIPC) [21]. Among
them, HE is a classical image enhancement algorithm, which mainly improve the visual
quality by calculating and adjusting the distribution of pixel values and increasing the gray
level difference of the input image. The DCP method assumes that the image is degraded
during the imaging process and then calculates a transmission map to estimate the degra-
dation to enhance the degraded image. The DCP method has better performance in foggy
image enhancement. SSR and MSRCR are typical methods based on retinex theory. SSR is a
single-scale retinex algorithm, which achieves enhancement by establishing an illumination
reflection model in the imaging process and performing high-frequency enhancement
processing on the reflected component. MSRCR is a multi-SSR-based algorithm with a
color restoration factor to adjust the contrast of the input image and improve the color
information. SSD is a Gaussian total variation model performing retinex decomposition in
a semi-decoupled fashion for simultaneous brightness enhancement and noise suppression.
SMIPC-based methods enhance the contrast of medical images using statistical methods
with image processing concepts. Although the above enhancement methods have their
own advantages for different types of images, most of them ignore an important point
for medical image enhancement, especially for CBCT images: the medical images may
contain noise due to the interference of the surrounding environment [22]. Based on this
motivation, we propose an adaptive visual saliency feature enhancement method of CBCT
for image-guided radiotherapy, which takes the denoising process into account to overcome
the influence of potential noise on the enhancement results. First, we propose a structural
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similarity-based low-rank approximation model (SSLRA) to construct the source CBCT
images to denoise the noise that may exist. Low-rank approximation (LRA) is an exten-
sion of singular value decomposition (SVD) in machine learning. Unlike in our previous
work [23], we propose an unsupervised adaptive denoising model based on structural
similarity considering the characteristics of CBCT images. Then, we propose a visual
saliency feature-based enhancement (VSFE) method to enhance the important regions in
CBCT images.

The main contributions of this work are as follows: (1) A novel unsupervised adaptive
denoising model called a structural similarity-based low-rank approximation (SSLRA)
model is proposed for CBCT images. (2) A visual saliency feature enhancement (VSFE)
method is proposed, in which more salient and important regions of CBCT can be enhanced.
(3) By analyzing the support for subsequent registration tasks of CBCT and CT, we prove
that the proposed method can effectively improve the registration performance, indicating
its application prospects in IGRT.

The rest of this paper is organized as follows. Section 2 describes the proposed method
in detail. Experimental results and analyses are presented in Section 3. Section 4 discusses
the application of our work in IGRT. Section 5 gives the conclusion of our work.

2. Materials and Methods

We propose a novel adaptive visual saliency feature enhancement of CBCT for image-
guided radiotherapy in this section. As shown in Figure 2, the proposed method consists
of two steps: structural similarity-based low-rank approximation for denoising, and the
visual saliency feature enhancement for improving detail.
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SSLRA denotes the proposed structural similarity-based low-rank approximation algorithm and
VSFE denotes the proposed visual saliency feature based enhancement algorithm.

2.1. Structural Similarity-Based Low-Rank Approximation

Based on the singular value decomposition (SVD) algorithm [24–27], we propose a
structural similarity-based low-rank approximation method (SSLRA) to reconstruct the in-
put CBCT images so as to denoise the source image. The decomposition and reconstruction
of the SVD of an image X with size m× n can be expressed as:

X = U ∑ VT (1)

where X ∈ Rm×n, U ∈ Rm×m, ∑ ∈ Rm×n, and V ∈ Rn×n; the columns of the m × n
matrix U are the left singular vectors; and the rows of the n× n matrix VT contain the
elements of the right singular vectors. ∑ is the diagonal matrix, where ∑ = (∑n, 0) and
∑n = diag(σ1, · · · , σn). In addition, σk > 0 if 1 ≤ k ≤ r and σk = 0 if r + 1 ≤ k ≤ n, where
r is the rank of X. Using Equation (1), the source image can be computed by three matrices.
Then, the image X can be reconstructed by:

X = σ1u1vT
1 + σ2u2vT

2 + · · ·+ σrurvT
r (2)
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where u and v are the left singular vectors and right singular vectors in U and V, respec-
tively, and σ is the singular value in ∑.

The reconstruction result Xp of different features can be obtained by:

Xp =
p

∑
i=1

σiuivT
i (3)

where 1 ≤ p ≤ r. When p = r, the full rank reconstruction result is Xp = X. That is, the
denoised Xp can be estimated from X by solving:

Xp = argmin
Z
‖X− Z‖2

F s.t. rank(Z) = k (4)

where rank(·) denotes the rank of the given data.
Equation (4) can be solved by the theorem of Eckart–Young–Mirsky. That is, for the

given matrix A with k < r = rank(A), the truncated matrix can be expressed by:

Ak =
k

∑
i=1

σiuivT
i (5)

Next, for any given matrix B with rank k, the minimal error can be computed with Ak:

min
rank(B)=k

= ‖A− B‖2 = ‖A−Ak‖2 = σk+1 (6)

The above Equations shows that Ak can be as the optimal solution of A in the Frobenius
norms sense. That is, Equation (6) can be computed by:

min
rank(B)=k

= ‖A− B‖F = ‖A−Ak‖F =
r

∑
i=k+1

√
σ2

i (7)

By an optimal rank, the reconstruction result can be denoised with high imaging
quality and more detailed information.

The proposed SSLRA are summarized in Algorithm 1, in which SS(·) is defined as:

SS(I, J) = ((2µIµJ + C1)(2σI J + C2))/((µ2
I + µ2

J + C1)(σ
2
I + σ2

J + C2)) (8)

where µI , µJ are the local means of image I and J. σI , σJ and σI J are the standard deviations
and cross-covariance of I and J. Wmc(Ip) can be computed by:

Wmc(Ip) = 2‖∇U‖2H(U) (9)

where ∇ is the gradient operator. Equation (9) is derived from total variation (TV) regular-
ization. For an image U, the mean curvature of U is:

H(U) =
1
2
∇ · ∇U
‖∇U‖2

=
U2

xUyy − 2UxUyUxy + U2
yUxx

2(U2
x + U2

y)
3
2

(10)

More details about Equation (10) can be found in our previous work [17].
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Algorithm 1 Structural similarity based low-rank approximation (SSLRA)

Input: CBCT image I
Output: Denoised image ID
1. for k = 1 to r do
2. Compute S(k) = SS(I, Ik −Wmc(Ik))
3. Compute R(k) = ∂S(k)/∂k, 1 ≤ k ≤ r
4. while R(k) 6= 0 do
5. Update Ik, R(k)

end while
6. end for

7. Ropt =

{
k, i f R(k) = 0 for the first time
r, otherwise

8. Reconstruct by Equation (3) with Ropt
9. return: ID

Two examples of SSLRA are given in Figure 3. Figure 3a is the source CBCT image,
and Figure 3b,c are the normalized curves of S(p) and R(p), respectively. Figure 3d is the
reconstructed image, and Figure 3e is the difference image between Figure 3a,d. From
the difference image, it can be found that the proposed SSLRA method suppresses some
discrete noise points during the reconstruction process. This is necessary for the next step
of detail enhancement, and denoising using the proposed SSLRA first will avoid enhancing
the noise that may exist in these source CBCT images.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 15 
 

 
2 2

3
2 2 22

21( )
2 2( )

x yy x y xy y xx

x y

U U U U U U UUH U
U

U U

− +∇= ∇ ⋅ =
∇

+  
(10)

More details about Equation (10) can be found in our previous work [17]. 
Algorithm 1 Structural similarity based low-rank approximation (SSLRA) 
Input: CBCT image I  

Output: Denoised image DI  
1. for 1=k  to r  do 

2.    Compute ( ) ( , ( ))k mc kS k SS I I W I= −   

3.    Compute ( ) ( ) /R k S k k= ∂ ∂ , 1 ≤ ≤k r  

4.    while ( ) 0≠R k  do 

5.       Update kI , ( )Rk  
end while 

6. end for 

7. 

( ) 0 for the first time
,          otherwise                     opt

k if
R

r
=

= 


， R k

 
8. Reconstruct by Equation (3) with optR  

9. return: DI  

Two examples of SSLRA are given in Figure 3. Figure 3a is the source CBCT image, 

and Figure 3b,c are the normalized curves of ( )S p  and ( )R p , respectively. Figure 3d is 
the reconstructed image, and Figure 3e is the difference image between Figure 3a,d. From 
the difference image, it can be found that the proposed SSLRA method suppresses some 
discrete noise points during the reconstruction process. This is necessary for the next step 
of detail enhancement, and denoising using the proposed SSLRA first will avoid 
enhancing the noise that may exist in these source CBCT images. 

 

Figure 3. Illustration of SSLRA. (a) Source CBCT images. (b) Normalized curves of ( )S k . (c) 

Normalized curves of ( )Rk . (d) Reconstructed images. (e) Difference maps between (a,d). 

2.2. Visual Saliency Feature-Based Enhancement 
Visual saliency detection is used to make the region of our interest stand out more 

from its neighbors and surrounding pixels [28]. Some existing visual saliency detection 

Figure 3. Illustration of SSLRA. (a) Source CBCT images. (b) Normalized curves of S(k). (c) Normal-
ized curves of R(k). (d) Reconstructed images. (e) Difference maps between (a,d).

2.2. Visual Saliency Feature-Based Enhancement

Visual saliency detection is used to make the region of our interest stand out more
from its neighbors and surrounding pixels [28]. Some existing visual saliency detection
methods highlight the edges and textures of the entire salient region. The saliency map can
be obtained by computing the Euclidean distance in CIELab color space as follows:

S(i, j) =
∥∥∥Iµ − I f (i, j)

∥∥∥ (11)

where Iµ is the average pixels of the input image in CIELab color space and S(i, j) is the
computed significance value at (i, j). I f (i, j) is the corresponding pixel in the Gaussian
blurred image of the input image, and ‖·‖ denotes the L2 norm. However, these methods
compute the difference between the average pixels of the entire input image and its cor-
responding blurred version and often fail to maintain good performance when the input
image has a noisy background or the imaging scene is large. Achanta et al. [29] proposed
a maximum symmetric surround-based saliency detection method. For an input image
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with size m× n, the symmetric surround saliency value at the given pixel SSS(i, j) can be
computed as:

SSS(i, j) =
∥∥∥Iµ(i, j)− I f (i, j)

∥∥∥ (12)

where Iµ(i, j) is the average pixels of the sub-image centered at pixel (i, j) in CIELab color
space and computed as:

Iµ(i, j) =
1
A

i+io

∑
x=i−io

j+jo

∑
y=j−jo

I(x, y) (13)

where io, jo is the local window size, and the area A of the sub-image is determined by:

A = (2io + 1)(2jo + 1). (14)

When the visual saliency detection results are obtained by Equation (12), the salient
region of the input image will be stretched and enhanced, as shown in Figure 4.

In the proposed VSFE algorithm, the saliency detection result from Equation (12) will
be used as the visual saliency decision map for further detail enhancement. The visual
saliency enhancement can be computed by:

IVSE = IR + αSSS(IR) · IR (15)

where α is the enhancing weight parameter, IR is the reconstructed result by the SSLRA,
and SSS(IR) is the visual saliency map of IR.

Some examples of IVSE are given in Figure 5c. Compared with the reconstructed
results in Figure 5b, the contrast of the visual saliency enhancement images is higher and
the important regions are easier to observe.
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It can be found that IVSE only enhances the salient features, and in the next step, we
perform the overall detail enhancement on the images to further improve their quality.
To enhance detail, the mutually guided image filter (MuGIF) method is adopted in the
proposed VSFE algorithm. The MuGIF can be used to extract the relative structure of two
images and the structure information of a single image [30–32]. The related structure of T
and R of MuGIF is defined as:

R(T,R) = ∑
i

∑
d∈{h,v}

|∇dTi|
|∇dRi|

(16)
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whereR(T,R) is the structure discrepancy of T and R. In Equation (16), the penalty term
|∇dTi| can be used to control the strength of the computed related structures. The solution
of Equation (16) can be converted to:

argminT,R αtR̃(T,R, εt, εr)+βt‖T-T0‖2
2

+αrR̃(P,T, εr, εt)+βr‖R-R0‖2
2

(17)

where αt, αr, βt, and βr are the non-negative constants which are used to balance the
corresponding terms. ‖·‖2 represents the l2 norm. The l2 norm in the above equation can
be used to avoid the trivial solution through constraining T and R not to widely deviate
from the input T0 and R0, respectively. The filtered image T can be obtained by solving:

argmint
αt

βt
tT( ∑

d∈{h,v}
DT

d Q(k)
d P(k)

d Dd)t + ‖t-t0‖2
2 (18)

where (k) expresses the kth computing of iteration. Qd, Pd, Dd are the initialization parame-
ters of the MuGIF. The detail map of the input CBCT image is computed by:

Id = IVSE − T(IVSE) (19)

The final enhanced result is determined by:

IE(i, j) = IVSE(i, j) + Id(i, j) (20)
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Figure 5. Examples of Enhancement. (a) Source CBCT image. (b) ID of (a). (c) IVSE of (a). (d) Final
enhanced result of (a). (e) Id. (f) Difference map between (a,d).

Figure 5e gives the detail map Id, which mainly contains the structural and textural
information. Figure 5f is the difference map between the input CBCT image and the
enhanced CBCT image, showing that the salient region and the imaging region of the input
image are enhanced with details and textures.

3. Experiments and Analysis
3.1. Dataset and Experimental Setting

The experimental data are shown in Figure 6, and all of them are acquired from the
Affiliated Hospital of Yunnan University, decrypted, and anonymized. Both CBCT and CT
images are acquired for each sample of the same patient. The CBCT images were obtained
by linac (XVI, Elekta Solutions AB, Stockholm, Sweden), and the corresponding CT images
were acquired by Philips Brilliance Big Bore CT equipment, with a slice thickness of 3 mm.
All images in our experiment were resized to 256 × 256 pixels. For this work, we have
acquired CBCT and CT image sequences of three patients, totaling 120 pairs of images.
Since there is little difference between the different sequence images of the same patient,
four sections with large differences were selected as experimental data for analysis.
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To illustrate the superior performance of the proposed enhancement algorithm, six
classical and effective enhancement algorithms are used for comparison in our experiment,
including the multi-scale retinex (MSR) method [33], the multi-scale retinex with color
restoration (MSRCR) method [19], the dark channel prior (DCP) method [17], the color
balance and fusion (CBF) method [34], the robust retinex model (RRM) [35], and statistical
methods with image processing concepts (SMIPC) [21]. For quantitative evaluation, the
enhancement performance was summarized with four imaging quality evaluation metrics:
average gradient (AG) [36], spatial frequency (SF) [37], edge intensity (EI) [38], and human
visual system inspired quality measures (UIQM) [39]. Among them, AG represents the
gradient information, and the higher the gradient value, the higher the structural contrast
of the image. SF denotes the frequency information, and a higher SF value represents the
more image information and abundant imaging frequency. EI is used to measure the edge
intensity of a given image; the higher the EI value, the sharper and clearer the texture of the
edge is. UIQM is an often-used image evaluation metric based on the human visual system
for measuring the color, clarity, and contrast of the given image. We also use the structural
similarity index measure (SSIM) values [40] before and after registration of CBCT and CT
images to objectively measure the registration performance. The larger these metrics, the
better the quality of the enhanced images. In the experiments, all the codes are used in the
version provided by the corresponding authors, and the parameters are set the same as
the authors. All the experiments are performed under the Matlab R2020a, on a PC with an
AMD Ryzen 7, 16 G RAM, and a 3.2 GHz processor.

3.2. Subjective Comparison and Analysis

The visual comparison of different enhancement algorithms is shown in Figures 7–10.
Figure 7a is the source CBCT image, and Figure 7b is the image enhanced by MSR,
which shows that the brightness of the source image is improved but with low contrast.
Figure 7c,f,g show similar enhanced results with improved brightness but lacking in de-
tails. The DCP method improves the contrast of the source image, but does not enhance
the details. As shown in Figure 7e, the CBF-based method shows good detail, but it still
contains some noise. Compared with these methods, the proposed method shows better
visual effects with higher contrast and richer detail, and the important regions are more
significant.

Another three sets of experiments are shown in Figures 8–10. As can be seen from the
enlarged regions and the yellow arrows in Figure 8, it is difficult to directly observe the
presence of skeletal information at this position from the enlarged region in Figure 8a. The
enhancement results of the comparison methods also did not improve the visual contrast
in this region, but the skeletal information can be clearly observed in our result, which
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means our results outperform the comparison algorithms in terms of detail, contrast, and
visualization effect.
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The same conclusion can also be obtained in Figures 9 and 10. Especially in the
enalrged region in Figure 10, our results provide a much clearer organizational structural
and edge infromation, which is very helpful for disease diagnosis and treatment. Through
comparison, it can be found that the rigidity informaiton in our results is more significant,
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the tissue edge in our results is clearer, and the contrast of the texture structure is also better
than that of the comparison algorithms. The observation effect is greatly improved by our
enhancement method, proving that our method can effectively enhance the CBCT images.

3.3. Quantitative Analysis

Tables 1–4 show the evaluation metrics of different methods on Pair 1 to Pair 4. The best
results in these tables are highlighted in bold and the second-best results are highlighted in
bold and italic. The proposed enhancement algorithm gives the best values of AG and EI
on three image pairs and four of the second-best values of SF on all images. The average
evaluation metrics on all the testing images of different methods are given in Figure 11. The
proposed algorithm gives the best scores for AG and EI and the second-best scores for SF
and UIQM. This means the enhancement results of the proposed algorithm contain more
detailed texture and gradient information and are more consistent with the human visual
system. The evaluation metrics in Tables 1–4 also prove the superiority of the proposed
method, which is consistent with the conclusion obtained by the visual comparison.

Table 1. Quantitative metrics of different methods on pair 1.

Method AG SF EI UIQM

MSR 4.4690 14.3406 41.3963 1.7695
MSRCR 4.3526 14.3373 40.4904 1.7174

DCP 3.0656 9.4439 27.2513 1.8540
CBF 3.7935 11.6488 30.5138 2.1783
RRM 5.4507 18.6302 48.4082 2.0375

SMIPC 4.7708 15.2181 43.5509 1.7413
Proposed 5.8681 16.1921 53.3944 1.9741

Table 2. Quantitative metrics of different methods on pair 2.

Method AG SF EI UIQM

MSR 4.5997 14.8567 43.1076 1.7329
MSRCR 4.4881 14.8235 42.2025 1.6932

DCP 3.0383 9.3338 27.2469 1.8556
CBF 4.0720 12.3792 32.8049 2.2907
RRM 5.5267 18.9434 49.7821 1.9529

SMIPC 4.8789 15.6855 45.0936 1.7019
Proposed 5.9509 16.1871 54.7970 2.0232

Table 3. Quantitative metrics of different methods on pair 3.

Method AG SF EI UIQM

MSR 3.6001 12.5238 33.6119 1.4794
MSRCR 3.4437 12.2078 32.3220 1.4792

DCP 2.3504 8.0239 20.6858 1.6847
CBF 3.5567 11.7906 28.6938 2.0258
RRM 5.0072 18.7826 44.6839 1.6157

SMIPC 4.0578 13.9605 36.8604 1.4853
Proposed 5.2918 15.1418 48.3878 1.8852
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Table 4. Quantitative metrics of different methods on pair 4.

Method AG SF EI UIQM

MSR 4.2137 12.2069 38.8824 1.8911
MSRCR 3.9836 11.6625 36.8797 1.8193

DCP 2.4708 8.1086 21.4251 2.2053
CBF 3.3751 9.5269 28.0610 2.1004
RRM 6.4005 19.8617 56.1125 2.2311

SMIPC 4.7916 13.7912 43.5426 1.9177
Proposed 6.0518 15.3863 54.7559 2.1374
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4. Support for CBCT and CT Registration in IGRT

In this section, the registration results between the source CBCT and CT images and
between the CBCT images enhanced using different enhanced algorithms and CT images
are compared and analyzed. In this experiment, all the registration results are obtained by
the same registration model [39]. In addition to visual analysis, we also give the SSIM values
before and after the registration of these images to objectively measure the registration
performance.

As shown in Figure 12, Figure 12a is the unregistered source CBCT and CT images.
The SSIM value of the source images is 0.5532, and it can be seen from Figure 12a that the
imaging position and size of the source CBCT and CT images are different. Figure 11b
is the registration result by the source CBCT and CT, and the SSIM value is 0.7184 if the
CBCT image is used directly for the registration task. In the enlarged image, the edge
regions are not exactly aligned in Figure 12b. Except for the CBF enhancement method, the
registration accuracy was improved after CBCT images were enhanced by other methods.
For example, in Figure 12c, the SSIM value is 0.7486 by registering the MSR-enhanced
CBCT and CT images, which shows improved accuracy of non-enhanced CBCT and CT
registration. In other words, the enhancement of CBCT images is helpful to improve the
registration accuracy of CBCT and CT, which is very critical and meaningful for IGRT.

From the yellow arrows, it can be seen that our method’s results have the highest
registration accuracy and achieve the best SSIM value of 0.7729. In the enlarged image,
it can be seen that the proposed method outperforms the comparison methods in the
registration accuracy of the edge regions. This is because the proposed method enhances
the saliency features, which plays a key role in the registration process. In addition,
since the proposed method includes the denoising step, the noise points on the edges of
image that may affect the registration were filtered out, which also helps to improve the
registration accuracy.
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(a) Source CBCT and CT images. (b) Registration results of source CBCT and CT images. (c) Registra-
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SMIPC-enhanced CBCT and CT. (i) Registration results of CBCT and CT enhanced by our method.

5. Conclusions

We propose a novel adaptive visual saliency feature enhancement algorithm of CBCT
images for IGRT in this paper. Firstly, to overcome the influence of the potential noise on
the image enhancement and registration, we propose a structural similarity-based low-rank
approximation (SSLRA) model. SSLRA can effectively enhance the structure and gradient
information of the source image while denoising it. To improve the detail in important
regions, we propose a visual saliency feature enhancement (VSFE) method. The main
advantage of our VSFE method is that the saliency regions are enhanced first rather than
enhancing the whole image directly; in this way, the problem of insufficient visual contrast
caused by manipulating the whole image is avoided. Experimental results show that the
SSIM value can be increased by 0.2197 using the proposed CBCT enhancement method. It
also proves that the proposed algorithm outperforms other enhancement algorithms both
in visual and objective evaluations for CBCT images. In addition, it is worth noting that
the proposed method is more able to support the registration task of CBCT and CT images
in IGRT, which is very critical and meaningful for IGRT tasks.
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