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Abstract: The Quick UDP Internet Connections (QUIC) protocol provides advantages over tradi-
tional TCP, but its encryption functionality reduces the visibility for operators into network traffic.
Many studies deploy machine learning and deep learning algorithms on QUIC traffic classification.
However, standalone machine learning models are subject to overfitting and poor predictability in
complex network traffic environments. Deep learning on the other hand requires a huge dataset
and intensive parameter fine-tuning. On the contrary, ensemble techniques provide reliability, better
prediction, and robustness of the trained model, thereby reducing the chance of overfitting. In
this paper, we approach the QUIC network traffic classification problem by utilizing five different
ensemble machine learning techniques, namely: Random Forest, Extra Trees, Gradient Boosting Tree,
Extreme Gradient Boosting Tree, and Light Gradient Boosting Model. We used the publicly available
dataset with five different services such as Google Drive, YouTube, Google Docs, Google Search, and
Google Music. The models were trained using a different number of features on different scenarios
and evaluated using several performance metrics. The results show that Extreme Gradient Boosting
Tree and Light Gradient Boosting Model outperform the other models and achieve one of the highest
results among the state-of-the-art models found in the literature with a simpler model and features.

Keywords: QUIC traffic; traffic classification; machine learning; ensemble learning

1. Introduction

Network traffic classification plays an essential role in any network administration
system. It can be used in different areas, such as quality of services (QoS), intrusion
detection, and malware detection. Generally, different protocols are used for network
transportation, such as TLS/TCP or UDP protocols. However, with the rapid growth of
Internet users around the globe, some of these protocols may suffer from some limitations,
such as latency in TLS/TCP [1]. Therefore, alternative protocols were proposed in the
literature to overcome this limitation [2].

The QUIC protocol developed in 2012 by Google [3] is an alternative protocol that
improves the performance of web-based applications. It makes use of UDP, which allows
the connection to enhance the performance of many online applications by replacing the
TCP three-way handshake with a single UDP round-trip [4]. Moreover, the level of security
protection in QUIC is the same as the one provided by TLS 1.3. It is worth mentioning
that QUIC creates new challenges for information security practitioners in managing and
administering communication network functionalities that are very crucial for intrusion
detection, anomaly detection, malware detection, QoS provisioning, pricing, etc. [5].

Nowadays, the QUIC protocol is widely used on the Internet [3]. The traffic classi-
fication for such a protocol is important since the amount of traffic going through it is
increasing. This paper targeted the QUIC protocol since it is used in a lot of social media
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apps that are used by the public such as Instagram and Facebook [6]. Additionally, the main
objective to develop QUIC was to overcome the latency problems of other protocols [3].
This indicates that deeper analysis might be needed to test the security of that protocol. The
ability to reveal the service producing some traffic may threaten one of the main security
goals, which is confidentiality. For that purpose, we aim to test how confidential QUIC is
against machine learning techniques to identify secure traffic. In the past, network traffic
classification techniques were applied based on the TCP/UDP port numbers. However,
the QUIC protocol is more complex than the traditional network protocols, which means
the classical techniques may not be efficient for classifying traffic that uses this protocol.
Machine learning (ML) and deep learning (DL) techniques have proven their reliability and
robustness in many real-world problems. Therefore, it is efficient to utilize such techniques
in the QUIC traffic classification. However, one problem with classical ML is that they are
subjected to over-fitting. On the other hand, DL techniques require a large volume of data
to produce better results. For that purpose, a better approach is to train models that are
more robust than classical ML and do not require the same amount of data required as DL,
such as ensemble machine learning techniques.

In this paper, we examine the QUIC traffic classification using five ensemble machine
learning techniques, namely: Random Forest (RF), Extra Trees (ET), Gradient Boosting
Tree (GBT), Extreme Gradient Boosting Tree (XGBT), and Light Gradient Boosting Model
(LGBM). We use a publicly available dataset to experiment and validate our ensemble
models using four evaluation metrics: precision, recall, F1-score, and accuracy. The models
were trained using 15, 30, 40, 50, 60, 80, 100, and 120 packets as features. In addition to that,
the models were trained and tested using two different training and testing scenarios, i.e.,
holdout and cross-validation. Moreover, a comparative analysis of the models is conducted.
According to our exhaustive and extensive literature search and review, the study of
QUIC traffic classification using machine learning is very limited. Especially, award-
winning XGBT and LGBM are not explored in QUIC traffic classification. To the best of our
knowledge, this is the first of its kind that studies encrypted QUIC multiclass classification
using state-of-the-art award-winning machine learning techniques. In the literature, other
methods may need more requirements to achieve higher results, such as a greater amount
of data, more features, or more complex model architecture. These requirements may not
be available at some networks. On the other hand, our results are directly comparable with
the related works in the literature, achieving distinguishable results compared to [5,7,8],
and closely comparable results with [9,10] with much simplistic model architecture. The
highest accuracy and F1-score we achieved is 99.40%. We summarize the contribution as
follows: We investigated ensemble machine learning for QUIC traffic classification using a
different number of packets and fewer features. Our experimental results show that XGBT
and LGBM are the best models for encrypted traffic classification even considering very
few packets (15 packets). Additionally, we also investigated training and testing time and
model size. The training and testing time for LGBM is 69 s and 0.017 s, respectively, which
shows LGBM can be deployed in a real-time scenario. In comparison with other works in
the literature, our model shows the highest performance in terms of accuracy and F1-score.
Furthermore, we made our models available (https://drive.google.com/drive/folders/
1NkJCWY3F-j2CWDqKAJ4D5Pi4azV8zHBh?usp=share_link accessed on 20 February 2023),
and they can act benchmarks in inferencing on other data or in comparisons with other
techniques. The remainder of the paper is structured as follows. Section 2 provides a short
background on QUIC protocol. While Section 3 discusses the previous works related to
the topic followed by methodology in Section 4, Section 5 elaborates the details about the
experiments. While we discuss and analyze the experimental results in Section 6, before
concluding the paper in Section 7.

2. QUIC Protocol

Network traffic can be classified based on protocols (e.g., QUIC or TCP), traffic types
(e.g., voice, video, or text), applications (e.g., YouTube, Facebook, or Twitter), etc. [11].

https://drive.google.com/drive/folders/1NkJCWY3F-j2CWDqKAJ4D5Pi4azV8zHBh?usp=share_link
https://drive.google.com/drive/folders/1NkJCWY3F-j2CWDqKAJ4D5Pi4azV8zHBh?usp=share_link
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However, due to the encrypted traffic nature of QUIC, many of the proven network traffic
analysis tools such as Wireshark lose visibility or functionality. Moreover, this encryption
in QUIC makes classical traffic classification methods that use port numbers and payloads
as features ineffective for real-world applications. As outlined in [3], the web traffic is
currently increasing towards QUIC. Therefore, it is undeniable that most of such traffic
is legitimate, and we cannot, therefore, outright block traffic based on inefficient analysis
methods, which is likely to create more harm than benefits.

Based on the above discussion, it is important to study QUIC traffic classification
using ML techniques that produce learned models using available data accurately predict
unseen cases. There are many techniques, among which ensemble techniques are more
robust and efficient as they make the decision based on the combination of multiple single
models. As will be discussed in the related works, all the previous works found in the
literature tend to utilize deep learning, except [4]. However, their work was specified for
intrusion detection only, rather than traffic classification. Therefore, we are motivated to
investigate QUIC network traffic classification using ensemble ML techniques. To the best
of our knowledge, no work uses ensembles for QUIC traffic classification on this specific
dataset. As mentioned earlier, the DL techniques require a large volume of samples for
training. Since this work utilizes ensembles, we have achieved highly impressive results
using relatively few data samples.

Google’s QUIC protocol is becoming popular as a potential alternative to encrypted
services that use TCP, TLS, and HTTP/2 [3]. Recent global internet statistics show that
QUIC accounts for more than 30% in Europe, Africa, and the Middle East [6]. The QUIC
traffic was not limited to google services only, but other public social media apps, such
as Instagram or Facebook, are using QUIC as well [6]. This information indicates the
significance of QUIC around the globe and raises the need for security analysis for such a
widespread protocol. The main objective of introducing such a protocol was to upgrade the
performance of previous protocols and enhance the customers’ experience [3]. Additionally,
QUIC was built to address other protocol problems such as handshake delay, Head-of-line
blocking delay, and implementation entrenchment [3]. Experimental results showed how
QUIC can minimize the latency on different types of traffic whether they were handshakes
or media [3]. The QUIC protocol is a UDP-based encrypted protocol where it replaces
the three-way handshakes with a one-way round trip. The connection establishment in
QUIC starts with the client initiating a connection to the server. If the client connects for
the first time to the server, then one round trip time (1-RTT) is established, otherwise, if the
user tries to acquire access to a server with an already existing connection within a certain
time period, then 0-RTT is established [4]. The 1-RTT and 0-RTT can be summarized as
follows [4]:

1-RTT: First, the user (client) sends a blank hello message with a random connection
ID that is used to encrypt the message. Then, the server replies with a rejection message,
which includes the source address token (STK) and the server certificate (SCFG). In the
next step, on receiving the rejection message, the user checks the certificate and replies back
with another hello message that contains a nonce and the user’s Diffie–Hellman key values.
Finally, the encrypted connection is initiated, and the timeout period is specified for closing
the connection.

0-RTT: The 0-RTT starts when a client establishes a connection with a server that
has a previous connection with it and during the specified period of the idle_timeout.
The connection initiates from the user side by sending a hello message containing all the
required information. (i.e., STK, SCFG, new connection ID, and the client’s Diffie–Hellman
values). Next, the sent message is verified on the server side. If the verification is successful,
then the encrypted connection will be established. Otherwise, the server will reject the
connection, and 1-RTT is required again. Figure 1, which is adapted from [4], illustrates
both connection steps.
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server’s rejection message. Then, the user sends the actual hello message to establish the connection.
In 0-RTT, the client establishes the connection by sending the actual hello directly, without the empty
hello message.

QUIC traffic is currently widely used in most Google services, supported by most web
browsers, and is on the way to IETF standardization [12]. According to [3], around 7% of
Internet traffic is QUIC. Other advantages of QUIC traffic include its performance, security,
and stream multiplexing [3]. On the other hand, QUIC may suffer from some limitations.
For instance, it was found that the CPU utilization in QUIC was around 3.5 higher than
in TLS/TCP [3]. This could be due to the structure of QUIC and some operations that are
involved in the protocol, such as the cryptographic process, transferring UDP packets, and
keeping track of the internal states of QUIC [3].

3. Related Work

In this section, the literature related to the QUIC network traffic classification is
discussed.

One such research is the one conducted by V. Tong et al. [13], where a two-stages traffic
classification technique based on random forests and convolutional neural network (CNN)
was proposed. Experiments on different QUIC-based services showed that the proposed
technique achieves accuracy as high as 99%. S. Rezaei and X. Liu [8] proposed a multi-task
traffic classification technique based on CNN that predicts the bandwidth requirements,
flow duration, and traffic class. The proposed framework outperformed both single-task
and transfer learning approaches on ISCX and QUIC public datasets, achieving accuracy as
high as 90%. The same authors proposed a semi-supervised method based on CNN [5].
The experimental results showed that the technique is promising even when it is trained
on a small dataset (20 samples per class).

Another method was proposed by L. Al-bakhat and S. Almuhammadi [4] for intrusion
detection based on a fingerprinting method using Random Forests, Decision Trees, K-
Nearest Neighbors (KNN), Support Vector Machines (SVM), AdaBoost, and Multi-layer
Perceptron (MLP). Comparative analysis showed that KNN outperforms the others in all
the evaluation metrics achieving a score of 99.56%. On the other hand, I. Akbari et al. in [9]
proposed a feature engineering approach based on Long-Short term memory (LSTM) and
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CNN that is generalizable to encrypted data web protocols. The proposed model was
evaluated over QUIC traffic, where it achieved more than 99% accuracy.

Another work was proposed by Secchi et al. [7]. The authors developed SVM, KNN,
Random Forest, and neural network models for the task of encrypted traffic classification.
The proposed models were tested on QUIC traffic where they showed promising results,
as they all achieved more than 97% accuracy. Tawhid and Shahriar [10] proposed a self-
supervised approach for encrypted network traffic classification with few labeled data. The
proposed deep learning model achieved 98% on the QUIC dataset in terms of accuracy,
outperforming the baseline by 3%.

Other literature is also found in the domain, which targeted the network traffic clas-
sification but is not specific to QUIC traffic. For instance, Deep Packet [14] is a network
classification framework proposed based on CNN and stacked autoencoder (SAE). The
proposed model outperformed other state-of-the-art models on the “ISCX VPN-nonVPN”.
N. Williams et al. [15] studied the impact of feature selection in the traffic classification task
and conducted a comparative study on C4.5, Bayes Network, Naïve Bayes, and Naive Bayes
Trees. M. Lopez-Martin et al. [16] studied the network traffic classification on IoT devices by
combining both CNN and RNN. It was interesting to observe that the model performs well
even on a small subset of data (5–15 packets). Izadi et al. [17] proposed a method to distin-
guish between VPN and non-VPN encrypted traffic on the “ISCX VPN-non-VPN” dataset.
The method combines the ant-lion meta-heuristic algorithm (ALO), the self-organizing map
algorithm (SOM), and CNN for feature extraction and classification. Experimental results
showed an accuracy of 98% on the test data. Similar work was proposed in [18] on the same
dataset that combines data fusion methods and deep learning for traffic classification. In
this work, Deep Belief Network (DBN), CNN, and MLP were employed to classify network
traffic. Then, Bayesian decision fusion was used for the final results. The proposed method
achieved an accuracy of 97%. Sun et al. [19] approached the network traffic classification
problem by utilizing deep learning in the detection process. The features were extracted
from the aggregated packets in the same direction and then transformed into images to be
used in CNN. When tested over OpenVPN and ISCX-tor datasets, the proposed method
achieved 97.20% and 93.31%, respectively, outperforming other state-of-the-art approaches.
On the other hand, Liu et al. [20], proposed a multiclass imbalanced and concept drift
network traffic classification framework based on online active learning (MicFoal). Exper-
imental results showed that MicFoal is an efficient algorithm and performs better than
several state-of-the-art approaches.

From the above review of literature, it is noteworthy that there are a very limited
number of papers that focus on QUIC traffic classification using machine learning. Most of
the works are on deep learning techniques and only reference [4] used ML for intrusion
detection using QUIC traffic. Therefore, we can conclude that the ensemble techniques
are under-studied for encrypted classification in general and QUIC traffic classification in
specific. In the coming sections, more details about ensemble techniques and QUIC traffic
classification are entertained.

4. Methodology

To accomplish the proposed research, the following high-level methodological steps
are mechanized. The high-level steps are illustrated in Figure 2. From the raw traffic
data, features are extracted for a different number of packets and are, subsequently, fed
to different ensemble algorithms. It is worth mentioning that we trained all models in
both holdout and cross-validation setting to come up with reliable models with impressive
performance. The testing scores are analyzed and compared using four different evaluation
metrics.
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4.1. Ensemble Techniques

In ensemble ML techniques, the classification or regression decision is made by a group
of models rather than a single model. These ensemble models work on three methods:
bagging, stacking, and boosting [21,22]. Bagging is based on random sampling with
replacement, whereas boosting is based on sequential modeling. In other words, in the
bagging method, a subset of training samples is selected from the original samples with
replacement, and the final decision is based on majority voting [23]. In boosting technique,
the model converts a weak learner into a strong learner by sequentially creating models so
that the final model has the highest accuracy [24]. Stacked, or stacked generalization, is also
a common ensemble method where a combined trainable learner is formed from individual
learners. Individual learners are called first-level learners and the combined ones are called
meta-learners. Meta-learners can be used to identify which classifiers are reliable and which
are not. It is possible to use trainable combiners to identify which classifiers are most likely
to succeed in which region of the feature space and combine them accordingly [22]. To
visualize the three different methods, an illustration is given in Figure 3.
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Abstract: A crucial material comprising a pneumatic tire is rubber. In general, the tire, or more spe-
cifically, the hysteresis effects brought on by the deformation of the part made of rubber during the 
procedure, heat up the part. In addition, the tire temperature depends on several factors, including 
the inflation pressure, automobile loading, car speed, road tire, the environmental conditions, and 
the tire geometry. This work focuses on using simulations to calculate the temperature and gener-
ated heat flow distributions of a rolling tire with constant velocity using the finite element method. 
For the sake of simplicity, it is assumed that the only components of the tire are rubber, body-ply, 
bead wire, and the rim. While the other components are believed to be made of a linear elastic ma-
terial, the nonlinear mechanical behavior of the rubber is characterized by a Mooney–Rivlin model. 
Investigations are conducted into the combined effects of vehicle loads and inflation pressure. Hys-
teresis energy loss is used as a bridge to link the strain energy density to the heat source in rolling 
tires, and their temperature and heat flow distributions may be determined by steady-state thermal 
analysis. Thanks to the state-of-the-art computing method, the time required for connected 3D dy-
namic rolling tire simulations is reduced. The simulation outcomes demonstrate that the maximum 
temperature in this paper is attained with high weights, high velocities, and low inner inflated pres-
sures. Overall, the maximum temperature is increased with the rise of all three variables. Moreover, 
the rise of the friction coefficient between the tread and road surface moves the high-temperature 
area towards the tread/sidewall connection area. 
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Figure 3. Different ensemble methods.

4.1.1. Random Forest

It is the combination of single tree predictors that works on bagging techniques [23].
RF takes random records from the training set, and, for each set of samples, a respective
decision tree is built. In the end, the final output is taken from the results of each decision
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tree by taking a majority vote for the classification problem or averaging for the regression
problem. The working principle of RF is illustrated in Figure 4.
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4.1.2. Extra Trees

It is an ensemble technique where different sub-samples of data are fit using a ran-
domized decision tree and uses an averaging technique to calculate accuracy and avoid
over-learning. In Extra Trees, the trees are built based on a random subset of features
without replacement, and a split also is made based on random subsets of the feature at
every node. These are the two points that make it different from the random forest that
builds random trees with the replacement of features and splits based on the optimum
(best) split rather than random split.

4.1.3. Gradient Boosting Tree

The GBT is also an ensemble technique that uses a boosting method to improve
a decision tree (DT), with the concept of combining weak models into a single strong
consensus model. In GBT, the task of each tree is to reduce the error of the previous tree
rather than develop a new optimized tree. The final model aggregates the outcomes of the
previous step, thereby obtaining the notion of a stronger learner [25].

4.1.4. Extreme Gradient Boosting Tree

It is also based on the gradient boosting technique and was initially proposed in [26,27].
This ensemble became popular in all machine learning research areas due to its faster
training, convergence, and boosting performance. XGBT uses an elastic regularization
method (L1 and L2) to avoid overfitting, which, in turn, gives better performance.

4.1.5. Light Gradient Boosting Model

It was initially proposed by Microsoft [28] and has many of XGBT’s advantages. The
main difference lies in the way the trees are constructed; trees are grown level-wise in
XGBT, whereas, in LGBM, trees are grown leaf wise. Gradient-based One-Side Sampling
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(GOSS) and Exclusive Feature Bundling (EFB) are two major reasons that LGBM has faster
execution and higher accuracy [28].

4.2. Model Evaluation

The following four established metrics are used for model evaluations. Four terms are
used to define the evaluation metrics, which are true positive (TP), true negative (TN), false
positive (FP), and false negative (FN). TP in simple term is classifying the positive sample as
positive (for example, Google Music traffic as Google Music), TN is classifying the negative
sample as negative (all traffic other than Google Music), FP is falsely classifying as positive
samples (any of all other traffic as Google Music traffic), and FN is falsely classifying as
negative samples (Google Music traffic as any of all other traffic).

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 score = 2 × Precision × Recall
Precision + Recall

(4)

5. Experiments
5.1. Environment Setup

All the experiments were executed using three different environments: (i) ASUS i7-
6700HQ with a NVIDIA GEFORCE GTX 950M, (ii) Apple i5 MacBook Pro 2015, and (iii)
Google Collab. As the implementation platform, the Python programming language is
used.

5.2. Hyperparameters Selection

All the models were built using the default values for hyperparameters provided by
the scikit-learn package in Python. We aimed to create the models as simple as possible to
test if the simpler models can classify the traffic with high accuracy, and that is the purpose
of using the default parameters. The list of hyperparameters for all the models is listed
below, whereas the selected values for those parameters are mentioned in Table 1.

Table 1. Hyperparameters values for each model.

Model n_Estimators Criterion Max Depth Min Samples
Split

Min Samples
Leaf

RF 100 Gini None 2 1

ET 100 Gini None 2 1

GBT 100 friedman_mse 3 2 1

XGBT 100 friedman_mse 3 2 1

LGBM 100 friedman_mse 3 2 1

• n_estimators: Number of trees in the model.
• criterion: Quality measurement of the split.
• max_depth: Maximum depth of the tree.
• min_samples_split: Minimum number of samples required to split.
• min_samples_leaf: Minimum number of samples required for a leaf.
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5.3. Data Preparation

We used the data collected at the University of California at Davis [5] (https://drive.
google.com/drive/folders/1Pvev0hJ82usPh6dWDlz7Lv8L6h3JpWhE accessed on 16 April
2022) in [8], where five different types of QUIC traffic types were classified using machine
learning techniques in addition to bandwidth and duration. The encrypted traffic flows
were based on four Google services and one YouTube service, the details are shown in
Table 2. The data for each service was organized in different folders in a text file format,
where each text file data represents a single flow. In each text file again, there are multiple
two-way communication data consisting of a time-stamp, relative time (from the first
packet), and packet length. The data was preprocessed by applying the same method used
in [8]. We used the inter-arrival time, packet length, and direction of each packet as features
for the multi-class classification task. In more detail, for each packet, two features were
used; inter-arrival time and packet length combined with direction. Both packet length and
inter-arrival times were normalized using 1434 bytes and 1 s, respectively, as in [8]. Header
information, statistical features such as bandwidth and duration of flow, and payload can
be used as features. However, consideration of these as features required the observing of
the whole duration of flow, which is undesirable for online encrypted traffic classification.
Moreover, accuracy tends to be lower [11] when header information is used as features, and,
therefore, we opted for using the said two features in this study as a further exploration.

Table 2. No. of instances used for different traffic types.

Traffic Label Training Size Testing Size Sum

Google Drive 1 1434 100 1534

YouTube 2 877 100 977

Google Doc 3 1021 100 1121

Google Search 4 1715 100 1815

Google Music 5 392 100 492

Total 5439 500 5939

5.4. QUIC Traffic Classification

For the classification of five different QUIC encrypted traffic, we formulated the
problem as multi-class classification, with labels from 1 through 5, as shown in Table 2. For
each traffic type, 100 instances are kept for testing and the remaining are used for training.
For cross-validation, the test set is part of the training test.

To classify these five encrypted traffics, we deployed five ensemble techniques, namely:
RF, ET, GBT, XGB, and LGBM. For each technique, the default parameters were used based
on the findings of trial experiments on RF using a different number of estimators and other
important parameters. It is worth noting that the classification accuracy also increased
when the number of estimators was increased to 100. Therefore, for all models, we kept
the default parameters. Two different types of experiment scenarios (strategies) were
performed: the holdout method and the 10-fold cross-validation. In the holdout method,
the data was separated into train and test sets. In the 10-fold cross-validation method, the
data is partitioned into 10 subsets, and, in each fold, one subset is used for testing, and the
remaining 9 are used for training. For all machine learning algorithms, the sci-kit learn
library was used. QUIC traffic classification is an online application and delivering a quick
decision on traffic type is critical for many applications. As such, consideration of a large
number of packets requires a longer time to make traffic decisions, which is undesirable
in a real-time scenario. Therefore, we investigated the QUIC traffic classification problem
using 15 packets, and up to 120 packets, as inputs. More specifically, for all five techniques
we used a different number of packets; 15, 30, 40, 50, 60, 80, 100, and 120, for the reason
discussed in the preceding sentences and analyzed the classification results for better
insights.

https://drive.google.com/drive/folders/1Pvev0hJ82usPh6dWDlz7Lv8L6h3JpWhE
https://drive.google.com/drive/folders/1Pvev0hJ82usPh6dWDlz7Lv8L6h3JpWhE
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If we scan the scores given in Table 3, it can be observed that the highest accuracy
achieved for 30 feature-inputs (i.e., for 15 packets used as input features) was 92.31% when
the cross-validation was used. For the case of the holdout method, the highest accuracy
was 91.60%. The highest accuracy for both scenarios was achieved by LGBM. Moreover, for
both scenarios, the lowest scores were achieved by ET in terms of all metrics considered. It
is also noteworthy that the performance scores of RF and ET, XGBT, and LGBM were close
to each other in all evaluation metrics considered. The performance of GBT laid in-between
these two groups. The accuracy scores of the cross-validation scenario are higher than those
of the holdout scenario.

Table 3. Results on the test set with 15 packets as input.

Model Precision Recall F1-Score Accuracy 10-Fold Cross-
Validation Acc.

Training
Time (s)

RF 87.61 85.80 85.59 85.80 89.47 9.63

ET 86.67 85.40 85.24 85.40 86.43 3.59

GBT 88.30 87.40 87.37 87.40 89.96 58.01

XGBT 91.52 91.00 91.02 91.00 91.67 50.16

LGBM 91.94 91.60 91.61 91.60 92.31 22.7

From Table 4, it can easily be observed that the highest accuracy of 94.04% is achieved
by LGBM when 30 packets, i.e., 60 features, are used as input. The same performance trend
as in the previous discussion for all techniques is observed. It is worth mentioning that
there is a significant improvement in accuracy for the cross-validation method in the case
of XGBT and LGBM.

Table 4. Results on the test set with 30 packets as input.

Model Precision Recall F1-Score Accuracy 10-Fold Cross-
Validation Acc.

Training
Time (s)

RF 87.42 85.60 85.30 85.60 89.72 12.52

ET 85.39 84.20 84.00 84.20 86.45 6.53

GBT 88.70 87.80 87.76 87.80 90.22 117.76

XGBT 91.56 90.80 90.75 90.80 93.29 77.58

LGBM 92.15 91.40 91.34 91.40 94.04 29.70

The highest accuracy when using 40 packets as input is 93.80% for LGBM, as shown
in Table 5. This result was achieved when the model is trained using 10-fold stratified
cross-validation. The highest F1 score of 92.80 also is achieved by LGBM in the hold-out
scenario. As in previous experiments, the lowest accuracy is achieved by ET when trained
using the hold-out scenario.

Table 5. Results on the test set with 40 packets as input.

Model Precision Recall F1-Score Accuracy 10-Fold Cross-
Validation Acc.

Training
Time (s)

RF 86.92 85.20 84.95 85.20 89.70 13.94

ET 85.66 84.40 84.12 84.40 85.95 4.48

GBT 90.23 89.40 89.31 89.40 90.99 155.32

XGBT 93.07 92.20 92.17 92.20 93.20 105.12

LGBM 93.31 92.80 92.77 92.80 93.80 35.94
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With 100 features (i.e., 50 packets are used as input), Table 6 shows that the highest
scores of accuracy and F1 in the holdout scenario are 92.40 and 92.36, respectively, achieved
by LGBM. For the cross-validation training scenario, the highest accuracy is 94.04%, and
the lowest accuracy is 87.42% achieved, respectively, by LGBM and ET.

Table 6. Results on the test set with 50 packets as input.

Model Precision Recall F1-Score Accuracy 10-Fold Cross-
Validation Acc.

Training
Time (s)

RF 88.00 86.40 86.24 86.40 90.51 15.44

ET 85.52 84.60 84.36 84.60 87.42 5.09

GBT 89.02 88.20 88.12 88.20 91.21 199.23

XGBT 92.26 91.60 91.58 91.60 93.14 119.82

LGBM 92.79 92.40 92.36 92.40 94.04 41.13

The scores of all metrics for both training scenarios when using 60 packets’ features
as input are shown in Table 7. From the table, the highest and the lowest precision scores
are 94.03 and 84.55 for LGBM and ET, respectively. The highest accuracy is 94.80% for the
cross-validation scenario, which, again, is achieved by LGBM. It is emphasized that the
performance scores of ET in the holdout scenario decreased in this experiment, though the
cross-validation accuracy increased compared to previous experiments.

Table 7. Results on the test set with 60 packets as input.

Model Precision Recall F1-Score Accuracy 10-Fold Cross-
Validation Acc.

Training
Time (s)

RF 89.83 89.60 89.54 89.60 92.37 16.86

ET 84.55 84.40 84.22 84.40 88.86 7.06

GBT 90.92 90.60 90.55 90.60 92.41 239.78

XGBT 93.83 93.60 93.58 93.60 94.30 149.52

LGBM 94.03 93.80 93.77 93.80 94.80 49.70

The performance scores of all five techniques trained on both scenarios of holdout
and cross-validation using 80 and 100 packets are shown in Tables 8 and 9, respectively.
Significant improvement in performance in both RF and ET is observed, compared to
previous experiments. It is also interesting to mention that the performance of XGBT and
LGBM has almost no significant improvement in these sets of experiments.

Table 8. Results on the test set with 80 packets as input.

Model Precision Recall F1-Score Accuracy 10-Fold Cross-
Validation Acc.

Training
Time (s)

RF 91.06 90.60 90.57 90.60 93.11 18.35

ET 89.92 89.60 89.56 89.60 91.06 5.88

GBT 91.69 91.00 90.98 91.00 93.25 317.11

XGBT 93.32 92.80 92.79 92.80 94.80 174.21

LGBM 93.50 93.20 93.16 93.20 95.05 58.53
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Table 9. Results on the test set with 100 packets as input.

Model Precision Recall F1-Score Accuracy 10-Fold Cross-
Validation Acc.

Training
Time (s)

RF 92.91 92.40 92.39 92.40 93.82 20.30

ET 92.00 91.60 91.54 91.60 91.17 7.00

GBT 92.19 91.20 91.23 91.20 93.53 393.74

XGBT 93.84 93.20 93.16 93.20 95.07 202.63

LGBM 93.66 93.20 93.17 93.20 95.79 70.22

Table 10 tabulates the performance scores of all five ensemble techniques when using
120 packets as input features. It is interesting to observe the significant improvement
in all evaluation metrics for all techniques. This time, the highest accuracy of 99.40%
is achieved by LGBM in the holdout scenario. It should also be emphasized that the
performance scores of GBT, XGBT, and LGBM are the same for the holdout scenario, with
an insignificant difference in the case of cross-validation. These experiments’ lowest and
highest F1-scores are 96.78 and 99.40, respectively. For overall visualization of accuracy
scores for all experiments, please refer to Figure 5.
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Table 10. Results on test set 120 packets.

Model Precision Recall F1-Score Accuracy 10-Fold Cross-
Validation Acc.

Training
Time (s)

RF 96.93 96.80 96.78 96.80 98.24 14.67

ET 97.48 97.40 97.40 97.40 97.43 8.17

GBT 99.40 99.40 99.40 99.40 98.66 523.32

XGBT 99.40 99.40 99.40 99.40 98.92 156.47

LGBM 99.41 99.40 99.40 99.40 99.12 69.46

5.5. Time Cost and Model Size Comparison

The training cost of all ensemble models is captured and analyzed in addition to the
trained model size. Please note that the training time recorded in Tables 3–10 is captured
using a MacBook Pro 2015 model with 8 GB RAM on a Core i5. As a general trend, it is
observed that increasing the number of packets lengthens the training process. Among the
five ensemble models, ET takes the shortest raining time, whereas GBT takes the longest.
It is interesting to note that LGM has the third shortest training duration after ET and
RF with the highest performance. For the case of model size, GBT has the trained model
with the smallest size of 582 KB and ET has the largest trained model size of 15.9 MB. The
LGBM has a trained model size of 1.6 MB and XGBT has only 636 KB as its trained model
size. Furthermore, the prediction is monitored, and it is discovered that the testing time is
insignificant, with the RF model taking the shortest time of 0.0065 s and the ET ensemble
model taking the longest time of 0.025. LGBM takes 0.017 s to test 100 input samples. We
emphasize that training and testing times are affected by a variety of factors, including
hardware configuration, number of input instances, and features. Nonetheless, this analysis
provides an intuitive understanding of the training and testing time, as well as the size of
ensemble models.

5.6. Comparison with Other Works

QUIC traffic classification results of our GBT, XGBT, and LGBM are compared with
the other works available in the literature. For the comparison, to be more realistic and
fairer, we chose the work that closely matched our objective of QUIC traffic classification
and used the same dataset as we used. Additionally, we considered the papers that
used accuracy as an evaluation metric to maintain the uniformity of the measurement.
It should be emphasized that we did not re-run (replicate) their experiments gain, but
the results were taken from each of their best-performing models. More details about
their evaluation methods can be read in the respective papers shown in Table 11. From
Table 11, it is observed that the classification accuracy of our work is either significant or
closely comparable with that of other related works in the literature. In particular, from the
confusion matrix of XGBT and LGBM, it is interesting to note that only three samples are
misclassified from among five classes overall, where each class has 100 samples. In detail,
out of each of the 100 testing samples from Google Drive and Google Music traffic, LGBM
misclassified only 2 samples and one sample, respectively. In contrast, for all the other
three traffics, classification accuracy is 100%. The same trend is observed for the case of
XGBT, but with misclassification traffic in Google Drive and YouTube. The overall highest
accuracy and F1-score are 99.40% each. One advantage of this approach is its simplicity
since it only requires the packets captured from the traffic as input and does not require
any additional feature extraction. The next section is rendered for performance sensitivity
analysis of different ensemble techniques in light of the number of packets used and the
training scenario used.
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Table 11. Comparison between the proposed work and others in the literature.

Ref. Year Dataset Algorithms Main Objective Score

[9] 2022 Orange’20, UC Davis
QUIC [5]

CNN and Stacked
LSTM

Encrypted web
traffic classification

99.37%
(Acc.)

[10] 2022
Orange’20,
UC Davis QUIC [5],
ISCX

ResNet34 Encrypted network
traffic classification

99.24%
(Acc.)

[8] 2020 UC Davis
QUIC [5] CNN Network traffic

classification
90.00%
(Acc.)

Proposed work UC Davis
QUIC [5]

RF, ET GBT, XGBT,
LGBM

Encrypted traffic
classification

99.40
(Acc.)

6. Discussion

In this section, the performance sensitivity of different techniques is analyzed based
on the number of packets used for training each model. As such, we consider both the
holdout training method and the cross-validation method. Please note that the sensitivity
analysis is based on only the accuracy metric. The details are visualized in Figures 5–7.
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If we first analyze the performance sensitivity of the RF algorithm in light of the
number of packets used, it is observed that RF can classify QUIC traffic almost with the
same accuracy for input packets 15, 30, and 40. This observation is about the holdout
strategy and the same observation is also true for cross-validation scenarios. These trends
can be visualized in Figures 6 and 7. When more than 50 packets are used as input features,
the classification accuracy remarkably increases. In the case of ET, the classification trend is
slightly different; for the holdout strategy, the classification accuracy almost remains stable
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till 60 packets, and, after that significant increase is observed, and in the cross-validation
scenario, classification accuracy increases with 40 packets afterward. GBT can classify
QUIC traffic with varying accuracy depending on the number of packets. This behavior is
seen up to 60 packets and, after that, classification accuracy increases as seen in Figure 6.
However, when cross-validation is used for training, GBT shows trending classification
accuracy as seen in Figure 7. Additionally, it should be noted that RF and GBT are going
shoulder-to-shoulder in the cross-validation strategy, which shows the robustness of the
cross-validation training strategy in QUIC traffic classification.

For XGBT and LGBM, in both holdout and cross-validation scenarios, the scores of
accuracies are very close and show similar trending as seen in Figures 6 and 7. As seen in
these two figures, these techniques are less sensitive to input packets (features) compared to
other techniques for both training strategies. More specifically, the performance sensitivity
is less, concerning the number of input features for XGBT and LGBM in the case of cross-
validation scenarios.

One of the reasons that XGBT and LGBM outperform the others is the fact that they are
built as a boosting technique. While bagging and stacking try to enhance the predictions
by fitting multiple models at the same time without a difference between the models, the
boosting technique involves fitting the models sequentially such that the next model will
be more enhanced than the previous model. Therefore, the final output is more robust since
it was tuned by multiple previous models. For that reason, we can see that GBT, which
is a boosting technique as well, outperforms both RF and ET in all the experiments. The
second reason is that both XGBT and LGBM are designed in a more regularized way to
control over-fitting. In more specific terms, XGBT uses the elastic regularization technique,
i.e., it uses both L1 and L2 regularization, whereas LGBM uses Gradient-Based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB) for performance boosting. For that
purpose, we can see that both perform better than GBT. These reasons also are contributing
points to the situation that the performance remains robust and comparatively higher than
other competing algorithms, even if a relatively less number of packets (input features) are
used. This can be observed in Figure 5.

As an overall impression, among five ensemble techniques experimented with for
QUIC traffic classification in this work, LGBM and XGBT show promising performance
in terms of all metrics. In extreme feature requirement situations, classification accuracy
lies above 99%, and, in less-feature requirement situations, accuracy is above an acceptable
range such as 91%. Moreover, they are less sensitive to feature requirements and faster
than all other algorithms. Therefore, it is safe to mention that LGBM and XGBT are the
right choices for deploying a real-world online application for multi-class QUIC traffic
classification because they can be trained using a small number of features as 15 packets.

7. Conclusions

In this paper, five different ensemble machine learning models were investigated for
the QUIC traffic classification, namely, Random Forest, Extra Trees, Gradient Boosting Tree,
Extreme Gradient Boosting Tree, and Light Gradient Boosting Model. The models were
trained using 15, 30, 40, 50, 60, 80, 100, and 120 packets as features on two different training
and testing scenarios, i.e., holdout, and 10-fold cross-validation. From the experimental
results and analysis, it was found that the LGBM outperforms the others achieving more
than 99% in terms of accuracy, precision, recall, and F-1 score. In addition to that, it was
found that LGBM and XGBT can be trained using a small number of features such as 15
packets and still achieve a performance score of about 92%. The models were compared
to other state-of-the-art models found in the literature, and achieved the highest results,
using only the traffic packets as a feature. These results indicate that ensemble learning
techniques, especially LGBM and XGBT, can reveal the service from generated traffic and
be a possible choice for deploying in real-world online application.

For future work, a replication study might be conducted on a larger dataset with more
QUIC services. In addition, other models could be tested and compared to the proposed
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models in this research. Finally, a prediction tool based on the proposed models could
be produced for the industry. Moreover, automatic hyperparameter optimization can be
applied to further investigate the performance of ensemble models.

Author Contributions: Conceptualization, S.A., M.A. and A.A.; methodology, M.A. and A.A.; soft-
ware, M.A. and A.A.; validation, S.A., A.A. and M.A.; formal analysis, S.A., M.A. and A.A.; investiga-
tion, S.A.; resources, S.A., M.A. and A.A.; data curation, M.A. and A.A.; writing, S.A, M.A. and A.A.;
writing, review and editing, S.A., A.A. and M.A.; visualization, S.A., M.A. and A.A.; supervision,
S.A.; project administration, S.A. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data used in this paper is available at [5].

Acknowledgments: The authors would like to acknowledge King Fahd University for supporting
this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kumar, P.; Dezfouli, B. Implementation and analysis of QUIC FOR MQTT. Comput. Netw. 2019, 150, 28–45. [CrossRef]
2. Erman, J.; Gopalakrishnan, V.; Jana, R.; Ramakrishnan, K.K. Towards a spdy’ier mobile web? IEEE/ACM Trans. Netw. 2015, 23,

2010–2023. [CrossRef]
3. Langley, A.; Riddoch, A.; Wilk, A.; Vicente, A.; Krasic, C.; Zhang, D.; Yang, F.; Kouranov, F.; Swett, I.; Iyengar, J.; et al. The quic

transport protocol: Design and internet-scale deployment. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, Los Angeles, CA, USA, 21–25 August 2017; pp. 183–196.

4. Al-Bakhat, L.; Almuhammadi, S. Intrusion detection on Quic Traffic: A machine learning approach. In Proceedings of the 2022
7th International Conference on Data Science and Machine Learning Applications (CDMA), Riyadh, Saudi Arabia, 1–3 March
2022. [CrossRef]

5. Rezaei, S.; Liu, X. How to achieve high classification accuracy with just a few labels: A semi-supervised approach using sampled
packets. arXiv 2020, arXiv:1812.09761v2.

6. Sandvine. Global Internet Phenomena Report. 2022. Available online: https://www.sandvine.com/global-internet-phenomena-
report-2022 (accessed on 20 February 2023).

7. Secchi, R.; Cassara, P.; Gotta, A. Exploring machine learning for classification of QUIC flows over satellite. In Proceedings of the
ICC 2022-IEEE International Conference on Communications, Seoul, Republic of Korea, 16–20 May 2022. [CrossRef]

8. Rezaei, S.; Liu, X. Multitask Learning for Network Traffic Classification. In Proceedings of the 2020 29th International Conference
on Computer Communications and Networks (ICCCN), Honolulu, HI, USA, 3–6 August 2020. [CrossRef]

9. Akbari, I.; Salahuddin, M.A.; Ven, L.; Limam, N.; Boutaba, R.; Mathieu, B.; Moteau, S.; Tuffin, S. Traffic classification in an
increasingly encrypted web. Commun. ACM 2022, 65, 75–83. [CrossRef]

10. Towhid, M.S.; Shahriar, N. Encrypted network traffic classification using self-supervised learning. In Proceedings of the 2022
IEEE 8th International Conference on Network Softwarization (NetSoft), Milan, Italy, 27 June–1 July 2022. [CrossRef]

11. Rezaei, S.; Liu, X. Deep learning for encrypted traffic classification: An overview. IEEE Commun. Mag. 2019, 57, 76–81. [CrossRef]
12. Iyengar, J.; Thomson, M. QUIC: A UDP-Based Multiplexed and Secure Transport. In RFC 9000. 2021. Available online:

https://datatracker.ietf.org/doc/rfc9000/ (accessed on 20 February 2023).
13. Tong, V.; Tran, H.A.; Souihi, S.; Mellouk, A. A novel quic traffic classifier based on convolutional neural networks. In Proceedings

of the 2018 IEEE Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab Emirates, 9–13 December 2018.
[CrossRef]

14. Lotfollahi, M.; Jafari Siavoshani, M.; Shirali Hossein Zade, R.; Saberian, M. Deep packet: A novel approach for encrypted traffic
516classification using Deep Learning. Soft Comput. 2019, 24, 1999–2012. [CrossRef]

15. Williams, N.; Zander, S.; Armitage, G. A preliminary performance comparison of five machine learning algorithms for practical
IP traffic flow classification. ACM SIGCOMM Comput. Commun. Rev. 2006, 36, 5–16. [CrossRef]

16. Lopez-Martin, M.; Carro, B.; Sanchez-Esguevillas, A.; Lloret, J. Network traffic classifier with convolutional and recurrent neural
networks for internet of things. IEEE Access 2017, 5, 18042–18050. [CrossRef]

17. Izadi, S.; Ahmadi, M.; Nikbazm, R. Network traffic classification using convolutional neural network and ant-lion optimization.
Comput. Electr. Eng. 2022, 101, 108024. [CrossRef]

18. Izadi, S.; Ahmadi, M.; Rajabzadeh, A. Network traffic classification using Deep Learning Networks and bayesian data fusion. J.
Netw. Syst. Manag. 2022, 30, 25. [CrossRef]

19. Sun, W.; Zhang, Y.; Li, J.; Sun, C.; Zhang, S. A deep learning-based encrypted VPN traffic classification method using packet block
image. Electronics 2022, 12, 115. [CrossRef]

http://doi.org/10.1016/j.comnet.2018.12.012
http://doi.org/10.1109/TNET.2015.2462737
http://doi.org/10.1109/cdma54072.2022.00037
https://www.sandvine.com/global-internet-phenomena-report-2022
https://www.sandvine.com/global-internet-phenomena-report-2022
http://doi.org/10.1109/icc45855.2022.9838463
http://doi.org/10.1109/icccn49398.2020.9209652
http://doi.org/10.1145/3559439
http://doi.org/10.1109/netsoft54395.2022.9844044
http://doi.org/10.1109/MCOM.2019.1800819
https://datatracker.ietf.org/doc/rfc9000/
http://doi.org/10.1109/glocom.2018.8647128
http://doi.org/10.1007/s00500-019-04030-2
http://doi.org/10.1145/1163593.1163596
http://doi.org/10.1109/ACCESS.2017.2747560
http://doi.org/10.1016/j.compeleceng.2022.108024
http://doi.org/10.1007/s10922-021-09639-z
http://doi.org/10.3390/electronics12010115


Appl. Sci. 2023, 13, 4725 17 of 17

20. Liu, W.; Zhu, C.; Ding, Z.; Zhang, H.; Liu, Q. Multiclass imbalanced and Concept Drift Network traffic classification framework
based on online active learning. Eng. Appl. Artif. Intell. 2022, 117, 105607. [CrossRef]

21. Bühlmann, P. Bagging, boosting and ensemble methods. In Handbook of Computational Statistics; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 985–1022.

22. Zhang, C.; Ma, Y. Ensemble Machine Learning: Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2012.
23. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
24. Schapire, R.E. The boosting approach to machine learning: An overview. In Nonlinear Estimation and Classification; Springer: New

York, NY, USA, 2003; pp. 149–171.
25. Chen, J.; Huang, H.; Cohn, A.G.; Zhang, D.; Zhou, M. Machine learning-based classification of rock discontinuity trace: SMOTE

oversampling integrated with GBT ensemble learning. Int. J. Min. Sci. Technol. 2022, 32, 309–322. [CrossRef]
26. Chen, T.; He, T. Higgs boson discovery with boosted trees. In Proceedings of the NIPS 2014 Workshop on High-Energy Physics

and Machine Learning, Montreal, QC, Canada, 13 December 2014; pp. 69–80.
27. Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD’16), San Francisco, CA, USA, 13–17 August 2016; Volume 785,
p. 794.

28. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision
tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3149–3157.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.engappai.2022.105607
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.ijmst.2021.08.004

	Introduction 
	QUIC Protocol 
	Related Work 
	Methodology 
	Ensemble Techniques 
	Random Forest 
	Extra Trees 
	Gradient Boosting Tree 
	Extreme Gradient Boosting Tree 
	Light Gradient Boosting Model 

	Model Evaluation 

	Experiments 
	Environment Setup 
	Hyperparameters Selection 
	Data Preparation 
	QUIC Traffic Classification 
	Time Cost and Model Size Comparison 
	Comparison with Other Works 

	Discussion 
	Conclusions 
	References

