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Abstract: Speech emotion recognition (SER) is the process of predicting human emotions from
audio signals using artificial intelligence (AI) techniques. SER technologies have a wide range
of applications in areas such as psychology, medicine, education, and entertainment. Extracting
relevant features from audio signals is a crucial task in the SER process to correctly identify emotions.
Several studies on SER have employed short-time features such as Mel frequency cepstral coefficients
(MFCCs), due to their efficiency in capturing the periodic nature of audio signals. However, these
features are limited in their ability to correctly identify emotion representations. To solve this issue,
this research combined MFCCs and time-domain features (MFCCT) to enhance the performance of
SER systems. The proposed hybrid features were given to a convolutional neural network (CNN) to
build the SER model. The hybrid MFCCT features together with CNN outperformed both MFCCs
and time-domain (t-domain) features on the Emo-DB, SAVEE, and RAVDESS datasets by achieving
an accuracy of 97%, 93%, and 92% respectively . Additionally, CNN achieved better performance
compared to the machine learning (ML) classifiers that were recently used in SER. The proposed
features have the potential to be widely utilized to several types of SER datasets for identifying
emotions.

Keywords: speech emotion recognition; feature fusion; MFCCs; time-domain; convolutional neural
networks

1. Introduction

Speech is the natural and widespread method of human communication and carries
both paralinguistic and linguistic information. The linguistic information includes the
context and language of the speech, while paralinguistic information includes the gender,
emotions, age, and other unique attributes of the human. Several studies have shown
that audio signals can be a simple mean to establish a connection between machines and
humans [1]. Nonetheless, this involves the machine becoming familiar with the human
voice so that the machine can predict the emotion, similar to humans. This has led to a
growing interest in the area of SER, which involves identifying the emotions of speakers
from their voices.

SER is a crucial area of research that has various applications in the field of call
centers [2,3], human–computer interaction (HCI) [4], automatic translation systems, driving
a vehicle [5,6], and in healthcare, where patient emotional states are identified through
voice, and necessary facilities are provided [7,8]. However, as individuals have different
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speaking styles, and cultural backgrounds, the selection of relevant acoustic features
becomes complex and challenging. Currently, voice features used for SER are categorized
into spectral, continuous (formants, energy, pitch), Teager Energy Operator, and qualitative
(voice quality) features [9]. Nevertheless, these expert-driven acoustic features typically
rely on the experience of area experts, representing low-level features that are not helpful
for recognizing emotions in complex situations. In summary, the major drawbacks of
expert-extracted features are:

• The ability to recognize emotional declines in complex situations, such as inter-speaker
differences, variations in expressions, and environmental factors [10];

• The expert-driven features require significant time, money, and human expertise in
order to train ML classifiers to enhance the efficiency [11];

• Currently, there is no established algorithm available to extract the ideal features to
identify emotions [12].

In order to address the challenges mentioned above, it is necessary to implement
effective techniques that can extract emotionally relevant and significant features for SER.
To this end, various studies have proposed techniques that involve automatic feature
extraction from voice signals. For example, a study [13] utilized a single-layer CNN
to derive automatic feature, while another study [14] implemented a CNN with two
convolutional layers (CLs) followed by a Long Short-term Memory (LSTM) layer for
a SER system. However, shallow architectures such as single-layer and double-layer
CNNs may not be able to learn salient features. In Ref. [15], a deep CNN was utilized to
derive the discriminative frequency features by employing a rectangular filter along with a
customized pooling technique for the SER. The suggested deep CNN was trained on the
derived features from audio data.

In this study, a novel approach for SER is proposed, which combines the MFCCs and
time-domain features derived from each audio signal in dataset. The proposed approach
consists of four main components: (1) data collection (2) feature extraction, (3) model
training, and (4) prediction, as shown in Figure 1 . In the feature extraction stage, the
traditional features including MFCCs, and time-domain are extracted. In the feature
fusion stage, the extracted features are concatenated. In the final stage, a CNN model that
comprises three 1D CLs, following an activation, dropout, and max-pooling layers, as well
as a fully connected (FC) layer, is used for SER. To estimate the performance of methodology,
three publicly datasets: Emo-DB, Surrey Audio-Visual Expressed Emotion (SAVEE), and
The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) were
employed. It is worth noting that the expression of emotion varies among different speakers
due to factors such as gender, cultural background, and accent. The proposed method
achieved better recognition performance for SER. In summary, the main contributions of
this research include an algorithm for extracting emotionally relevant and robust features by
combining frequency and time-domain (MFCCT) for SER and implemented a lightweight
CNN that obtained improved recognition results over the baseline SER methods.

Figure 1. An illustration of the SER process using conventional approaches.
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The rest of the paper is organized as follows. Section 2 provides a brief overview of
related work on SER, including feature extractions and classification approaches. Section 3
describes the proposed approach in detail, including feature extraction, feature fusion,
classification, and evaluation parameters. Section 4 provides the experimental results and
discussion, and Section 5 concludes this paper.

2. Related Work

The categorization of SER systems in the literature involves two main stages. The
initial stage is to derive a suitable and unique feature from the audio signals, while the
second stage is to select the classifier that can accurately identify emotions. A brief overview
of both stages for SER is provided in the following subsections.

2.1. Feature Extraction

Two approaches are widely used in the literature to derive features from audio signals.
The first approach involves dividing the signal into voice frames of a specific duration
and extract low-level features from each single frame. The features used for SER are
generally categorized into four categories: linguistic, contextual, acoustic, and hybrid.
Acoustic features are the most popular and effective features used in SER. These comprise
voice quality features (jitter, shimmer, first three formants, and harmonic to noise ratio),
prosodic features (pitch, loudness, and duration), as well as spectral features (MFCCs) [9].
Ref. [16] extracted 6 distinct acoustic features, namely energy, amplitude energy, log energy,
formants, pitch, 10-order Linear Predication Cepstral Coefficients (LPCCs), and 12-order
MFCCs from each frame. Afterwards, the Hidden Markov Model (HMM) was used
to identify emotions, which obtained an accuracy of 76.1% on the Beihang University
Mandarin dataset.

Recently, the use of Deep Learning (DL) architectures for SER has gained interest
due to the rapid development in computational technology and challenges faced by tradi-
tional ML algorithms in handling large datasets. For this, Akçay and Oğuz [17] provided
a comprehensive review on SER and highlighted three effective approaches to identify
emotions. The review further reported the importance of employing optimized classifi-
cation algorithms to enhance the robustness of SER system. In another study, Jahangir
et al. [9] reviewed DL techniques with characteristics, pros, and cons. This study also
classified DL techniques into discriminative (Recurrent Neural Network, CNN), generative
(Deep Belief Network, restricted Boltzmann machine, and deep autoencoders), and hybrid
techniques. Additionally, the authors investigated the optimization of DL methods for SER.
Ref. [18] proposed a method to derive multimodal feature representations using multiple
CNNs. The reported method derived suitable features, including two-dimensional log
Mel-spectrograms, and three-dimensional temporal dynamics from voice. The multiple
CNNs (1D, 2D, and 3D) were trained separately, and finally a fusion based on scores fusion
was performed to identify emotions. The study achieved a weighted accuracy of 35.7%
on AFEW5.0, and 44.1% on BAUM-1 datasets. In another study [19] a DL technique was
proposed for emotion prediction from audio files. The technique involved preprocessing
raw signals to derive features such as energy, pitch, and MFCCs followed by the selec-
tion of relevant features using a feature selection method. A CNN model was trained
for classification. The proposed technique achieved an accuracy of 93.8% on the Emo-DB
dataset, outperforming the baseline k-NN classifier’s accuracy of 92.3%. Ref. [20] presented
a novel SER framework that employed ID CNN and combined five features (Chromagram,
MFCCs, Mel-Spectrogram, Tonnetz, and Contrast) as the input. The model was evaluated
on IEMOCAP, RAVDESS, and EMO-DB datasets and achieved good accuracy. To improve
the accuracy and reduce computational cost and processing time, Ref. [21] proposed a
novel SER method. The study obtained a useful sequence from signals using the K-means
clustering algorithm and generated spectrograms using the Short-time Fourier transform
(STFT) method. A ResNet CNN model was then utilized to extract relevant features from
spectrograms, which were given to the BiLSTM model to predict the emotions. The pro-
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posed technique achieved 77.0% accuracy for the RAVDESS dataset, 72.3% for IEMOCAP,
and 85.6% for EMO-DB.

Badshah, et al. [22] reported a CNN-based model to automatically derive features from
audio files and identify emotions. The authors generated spectrograms with a 50% overlap
from signals and trained two CNNs with different kernel sizes and pooling techniques
on resized spectrograms. The results indicated that rectangular kernel and max-pool
operations are the most efficient techniques for SER. Ref. [23] presented a technique to
combine handcrafted and automatic features. The method was evaluated on well-known
datasets, including IEMOCAP, EMO-DB, and RADVES. Initially, acoustic features and
spectrograms were derived from audio files. Then, data enhancement was used to create
additional training data. Next, deep features were derived from spectrogram images using
pre-trained SqueezeNet, VGG16, DenseNet201, ResNet18, ResNet50, and ResNet101 CNNs.
Finally, acoustic, and deep features were combined to get hybrid features, and linear SVM
was used to identify emotions. The authors achieved 85.4% accuracy for IEMOCAP, 90.1%
for EMO-DB, and 79.4% for RADVES dataset.

2.2. Classification Methods

Various ML classifiers have been utilized by researchers to predict emotions from
audio files. These classifiers include Multilayer Perceptron (MLP) [24], Random Forest
(RF) [25], Support Vector Machine (SVM), hidden Markov model (HMM) [26], Gaussian
mixture model (GMM), and k-NN. These classifiers are commonly employed for speech-
related problems such as emotion recognition [11,27,28], and speaker identification [29–31].
This study employed RF, J48, SVM, NB, and k-NN to recognize emotions.

3. Materials and Methods

In this section, the methodology (Figure 2) utilized for emotion recognition is elabo-
rated in detail. Initially, emotional audio files were collected for experimentation purposes.
Subsequently, various valuable features were obtained from these collected audio files to
create a vector called master feature vector (MFV). This MFV was then given to a CNN to
develop the SER model. To assess the performance of SER models, two metrics—AUROC
(Area Under the Receiver Operating Characteristics) and overall accuracy were employed.
Lastly, the performance of proposed SER model was evaluated by comparing it with ex-
isting SER baseline techniques, using a percentage split approach, where 80% of the data
was utilized to train the CNN model and the remaining 20% data was utilized to test the
model [32,33]. Existing research [34] have concluded that the optimum results are achieved
if 20 to 30% of the data is utilized for model testing and the remaining 70 to 80% of the data
is used to train the model. Further details regarding these methods are presented in the
following sections.

Figure 2. Proposed research methodology for SER.
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3.1. Datasets

EMO-DB: The proposed methodology begins by collecting publicly available datasets.
For this purpose, EMO-DB [35] was chosen as one of the datasets due to its widespread
usage in the area of SER. EMO-DB is a German database that contains 535 audios of
varying duration, recorded by 5 male and 5 female professional speakers. These audios
are categorized into seven emotions: anger, boredom, disgust, fear, happiness, neutrality,
and sadness. To ensure consistent speech quality, all audio files were recorded at a 16 kHz
sampling rate, saved in wav format, with mono-channel and 16 bits per sample. The
waveforms of the seven emotions are illustrated in Figure 3.

Figure 3. The waveforms representing each emotion in the EMO-DB dataset.

RAVDESS: RAVDESS [36] is the second dataset used in the experiments due to its
greater accessibility. This dataset includes 1440 audio files, recorded by 12 male and
12 female actors speaking English scripts with 8 different emotions: anger, calmness,
disgust, fear, neutrality, happiness, sadness, and surprise. All recorded audio files have a
48 kHz sample rate and a 16-bit resolution.

SAVEE: This study also utilized the SAVEE [37] dataset, which was recorded by 4 male
researchers and students at the Centre for Vision, Speech and Signal Processing (CVSSP),
University of Surrey. Each speaker was asked to speak 120 phonetically balanced English
sentences in 7 emotional categories: anger, disgust, fear, happy, neutrality, sad, and surprise.
This resulted in a total of 480 utterances.

3.2. Data Pre-Processing

The pre-processing of voice is an extremely important stage in systems that cannot
tolerate background noise or silence. Such systems include SER and speech recognition,
which require efficient extraction of features from audio files, where the majority of the
spoken part comprises emotion-related characteristics. To achieve this objective, this study
utilized silence removal and pre-emphasis techniques.

By increasing the power of high frequencies in speech signals and leaving low frequen-
cies unchanged, the pre-emphasis technique can enhance the signal-to-noise ratio. This is
achieved through the use of a high-pass filter called finite impulse response (FIR), which
enhances the high-frequency energy. Essentially, pre-emphasis enhances the high-frequency
components of speech signals using Equation (1).

H(z) = 1− αz−1, α = [1,−0.97] (1)

The use of FIR in pre-emphasis results in changes to the distribution of energy across
the frequencies, as well as alterations to the overall energy level, which can have a significant
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influence on the features associated to energy. In contrast, signal normalization utilizes
Equation (2) to ensure that voice signals are comparable, regardless of any variations in
magnitude.

SNi =
Si − µ

σ
(2)

The Si denotes the ith part of signal, while the mean and standard deviation of the
signal are represented by µ and σ, respectively. SNi refers to the normalized ith part of
the signal.

3.3. Feature Extraction

The recognition performance of the model is largely determined by the quality of
the feature set. Therefore, unsuitable features may lead to poor recognition results. In
the context of machine learning (ML), extracting a relevant feature set is a crucial task for
achieving reasonable recognition performance. Ref. [38] reported that feature extraction is
an important phase in ML, as the failure or success of the SER model largely depends on the
variability of features utilized in the recognition task. Recognition becomes accurate if the
derived features are highly correlated with the emotion class, while it becomes difficult and
inaccurate if the derived features do not strongly correlate with emotion. In SER, the quality
of the feature set greatly affects recognition performance. Therefore, useful features must
be extracted from collected audio files, which are suitable to learn recognition rules. Feature
extraction is an essential step in this process and requires significant effort and creativity. It
involves extracting suitable features from emotional audio files and transforming them into
an MFV. The MFV is then utilized by a ML or DL technique to develop a recognition system.
It is more challenging to derive features than classification due to its domain-specific nature.
In this paper, a new feature extraction technique was implemented to derive effective and
suitable features, called MFCCT features, from audio files for constructing an accurate SER
model. Details of the derived MFCCT features are presented in the following subsection.

The Proposed MFCCT Features

The hybrid features were derived from audio files into two steps: (1) extracting MFCC
features, and (2) fusion of time-domain and MFCC features.

(a) Extracting the MFCCs features

MFCCs features are derived to capture the vocal tract characteristics of an emotion.
The process of MFCCs feature extraction involves framing, windowing, the discrete Fourier
transform (DFT), taking the log of magnitude, frequency warping on Mel scale, and
applying discrete cosine transform (DCT). To prevent information loss, each utterance was
divided into frames of 25 ms with a 10 ms overlap between successive frames. The total
frames for single audio can be computed using Equation (3), while the number of samples
(N) can be calculated using Equation (4).

Total f rames =
Numbero f Samples(

Framestep
)
× (SampleRate)

(3)

N =
(

Framelength

)
× SampleRate (4)

Once the framing steps were completed, each individual frame underwent hamming
windowing to ensure that the edges of the frame were smoothed by Equation (5).

w(n) = 0.54− 0.46 cos
(

2πn
N − 1

)
, 0 ≤ n ≤ N (5)

where N represents the total samples per frame.
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Next, the magnitude spectrum of all frames was computed through DFT. These
magnitude spectrums were passed to the multiple Mel-filter banks, where Mel represents
the perceived frequency of ears. The Mel can be computed as:

Mel( f ) = 2595× log10

(
1 +

f
700

)
(6)

where f denotes the actual frequency and the Mel(f ) denotes the corresponding perceived
frequency.

To mimic the frequency perception of ears, frequency axis was warped through
Equation (6). The Mel-frequency warping with a triangular filter bank is commonly used
to achieve this. The Mel-spectrum was then obtained by multiplying all magnitude spectra
of triangular filters, X(k), as given below.

s(m) =
N−1

∑
k=0

[
|X(k)|2 × Hm(k)

]
; 0 ≤ m ≤ M− 1 (7)

where M represents the triangular filters. Hm(k) denotes the weight assigned to kth bin of
spectrum, which contributes to the mth output band. Mathematically it is written as:

Hm(k) =


0, k < f (m− 1)

2(k− f (m−1))
f (m)− f (m−1) , f (m− 1) ≤ k ≤ f (m)
2( f (m+1)−k)
f (m+1)− f (m)

, f (m) < k ≤ f (m + 1)
0, k > f (m + 1)

(8)

where m differs from 0 to M− 1.
Ultimately, the MFCCs features were derived by using the DCT to the log of the Mel

spectrum of each frame. This step was performed using Equation (9).

c(n) =
M−1

∑
m=0

log10

(
s(m) cos

(
πn(m− 0.5)

M

))
; n = 0, 1, 2, . . . , c− 1 (9)

where C represents the MFCCs.

(b) Extracting MFCCT Features

The MFCCT features were obtained through a process outlined in Algorithm 1. This
process comprised of three different steps. Firstly, binning method was used on the derived
MFCC features, with each bin comprising 1500 rows of each single column. This bin size
(1500) was selected as it attained improved accuracy. Secondly, 12 distinct time-domain
(t-domain) features, as shown in Table 1, were derived from all bins of the MFCCs feature.

In Algorithm 1, the extracted MFCCs feature are represented by the variable ‘matrix’,
which is in a matrix form. The ‘size’ variable shows the bin size (1500). The Algorithm 1
returns the final MFV for SER. The variables ‘rows’ and ‘cols’ represent the total rows and
columns of ‘matrix’. The ‘bins’ variable contains the total bins, while ‘n’ shows the MFCCT
features (12). Therefore, for each emotion, the ‘bins’ are multiplied by ‘n’ to get the number
of rows, and the columns of the matrix represents the number of audio files for a single
emotion.
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Table 1. List of time-domain features.

Label Time-Domain Features

MIN Minimum value of each bin
MAX Maximum value of each bin
Mn Mean value of each bin
Md Median of each bin
Mo Mode of each bin
STD Standard deviation of each bin
VAR Variance of each bin
COV Covariance of each bin
RMS Root mean square of each bin
Q1 25th percentile of each bin
Q2 50th percentile of each bin
Q3 75th percentile of each bin

Algorithm 1: Constructing the Master Feature Vector for CNN.

matrix ←

v11 · · · v1c
...

. . .
...

vr1 · · · vrc


rows×cols

bins← (rows/size)
n← 12
for i := 1 to cols do

initial ← 1
Φ← 1
for j := 1 to bins do

M̂← matrix[initial : j× size, i]
integer array [1. . .12]←
extract 12 features from M̂
for k := 12 to 1 do

MFV[Φ + n− k, i]← C[k]
end
Φ← Φ + n
initial ← initial + size

end
end
return MFV

3.4. Convolutional Neural Network Model

The proposed methodology for SER utilized a CNN model to process the derived
MFCCT features. The CNN model was employed due to its ability to generate a feature
map of the time series data, which can achieve enhanced performance on MFCCT features.
The derived features were used as input into the CL to produce local features from the
input. The CNN model was comprised of three 1D CLs, each followed by a dropout,
activation, and max-pool layers. The first (Conv1) layer received an array of features with
a 1-pixel stride, 64 filters, and a 5-size kernel, which is a critical parameter to fine-tune
the CNN model. The output of every neuron was activated using the activation function
called Rectifier Linear Unit (ReLU), followed by a dropout rate of 0.2. The ReLU accelerates
convergence and solves the issue of vanishing gradient, while the dropout layer reduces
the overfitting issue. The output of all neurons after using ReLU was given to a 1D max-
pool layer with a pooling size of 4, implementing batch normalization. The next CL was
comprised of 128 filters with 5-size kernel size and 1-pixel stride, followed by an activation,
0.2 dropout rate, and max-pool layer of same size. The final CL was comprised of 256 filters
with the same size of kernel and stride, followed by an activation, dropout, and flattening
layer to convert the CLs output into a 1D feature vector, utilized as input to the FC layer.
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The number of neurons in the FC layer were selected based on the number of emotion
classes in the dataset, integrating the global feature obtained from the preceding layers,
and generating a vector for SoftMax activation to predict emotions. The model used Adam
optimizer with a learning rate of 0.0001, 100 epochs, and a batch size of 16. The proposed
configuration of CNN with parameters is given in Table 2.

Table 2. Layer structure of the lightweight CNN model.

CNN Configuration

Conv_1 (5, @64), activation function = “ReLU”, Dropout Rate (0.2),
MaxPooling_1 (4), Conv_2 (5, @128), activation function= “ReLU”,
Dropout Rate (0.2), MaxPooling_2 (4), Conv (5, @256), activation

function= “ReLU”, Dropout Rate (0.2), Flatten, Dense (7 neurons),
Softmax (7 emotions)

Parameters: Adam Optimizer, 100 epochs , 0.0001 learning rate

3.5. Evaluation Metrics

The classification performance in all experiments was evaluated using weighted accu-
racy and AUCROC. The weighted accuracy is defined by the ratio of correctly recognized
audio files to the sum of all audio files for emotion recognition. Equation (10) provides the
mathematical expression of weighted accuracy [39].

Accuray =
1
N

N

∑
i=1

(
TP + TN

TP + TN + FP + FN

)
i

(10)

The AUROC is a commonly used metric in ML applications that requires imbalanced
datasets. It offers a comprehensive evaluation of classifier performance across all classes
and summarizes the ROC curve’s performance by calculating the area under it. A high
AUC value (close to 1) indicates good classifier performance, whereas a low value (less
than 0.5) indicates poor performance [40].

4. Experimental Results and Discussion

The performance of the constructed SER model was evaluated through an extensive
set of experiments and compared with baseline SER models. Five different experiments
were conducted to measure the performance of SER models using the proposed MFCCT
features. In the first experiment, the MFCCT features were derived from audio files and
fed to six different algorithms to construct the SER models. Six analyses were carried to
evaluate the performance of classifiers coupled with the MFCCT features. In the second
experiment, the performance of MFCCs and the t-domain feature was compared with the
MFCCT feature. In the third and fourth experiments, a different binning size and t-domain
were used to derive the MFCCT feature and get the best learning curve for DL architecture.
In the last experiment, the performance of the hybrid feature coupled with the CNN was
evaluated using three SER datasets to examine the effectiveness of the constructed SER
models. The results of these experiments are reported in the subsequent subsections.

4.1. Results of Experiment I

In this experiment, the derived MFCCT features were utilized as inputs for five distinct
ML classifiers, including k-NN, RF, J48, NB, and SVM, as well as a CNN. The weighted
accuracies of these classifiers for three datasets are demonstrated in Figure 4. The CNN
model outperformed the classifiers, obtaining a 97% weighted accuracy for the Emo-DB
dataset. Additionally, the CNN model for SER achieved 92.6% and 91.4% weighted accuracy
for the SAVEE and RAVDESS datasets, respectively. Among the other five ML classifiers,
an irregular pattern was observed in weighted accuracy. The SVM and RF classifiers for
SER achieved the highest weighted accuracy (80.7% and 86.9%) on the Emo-DB dataset SER
model, compared to other three ML classifiers. Moreover, the SER models for the SAVEE
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and RAVDESS, RF, and k-NN classifier achieved the highest weighted accuracy (74% and
54.1%, respectively) compared to the other four ML classifiers. In all the analysis, the NB
classifier achieved the lowest weighted accuracy.

Figure 4. Weighted accuracies of the classifiers for the three datasets.

In summary, the CNN model for SER demonstrated superior performance over the
other ML classifiers in achieving improved recognition accuracy using all datasets. Fur-
thermore, the ROC diagrams for the three datasets achieved through the CNN model are
presented in Figure 5. Figure 5a illustrates the ROC diagram for Emo-DB. The performance
of boredom and disgust emotions is slightly better than the anger emotion. This could
be because several analysis techniques, such as formant and pitch, are less precise for
high-pitch emotions as compared to the low-pitch emotions. Figure 5b illustrates the ROC
diagram for all 7 emotions, indicating acceptable recognition accuracy for all emotions.
Figure 5c shows the ROC diagram for all emotions in RAVDESS dataset, demonstrating
reasonable recognition accuracy for all emotions.

(a) (b)

(c)

Figure 5. ROC Curves of the (a) EMO-DB, (b) SAVEE, and (c) RAVDEES Models.
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4.2. Results of Experiment II

In this experiment, the performance of MFCCs and t-domain feature was compared to
MFCCT feature using the CNN model. To evaluate the performances of the MFCCT feature,
9 SER models were constructed (3 different feature sets × 3 different datasets). Figure 6
presents the results of all 9 SER models, where the MFCCT features achieved improved
weighted accuracy. In addition, the t-domain features showed the lowest weighted accuracy.
The MFCCT features achieved around 50% more weighted accuracy compared to the
MFCCs and t-domain features.

Figure 6. Performance comparison of MFCC, t-domain, and MFCCT.

4.3. Results of Experiment III

In this experiment, the weighted accuracy of MFCCT feature was compared at various
binning sizes. The SER models were evaluated by applying distinct binning sizes ranging
from 500 to 3000. The weighted accuracy of each binning size is presented in Table 3. The
results revealed that the binning size of 1500 obtained the highest weighted accuracy when
the proposed MFCCT feature was utilized. Beyond this bin size, the weighted accuracy
decreased gradually, with the lowest accuracy occurring at a binning size of 3000.

Table 3. Comparison of weighted accuracy (×100) at different binning sizes.

500 1000 1500 2000 2500 3000

EMO-DB 0.76 0.87 0.97 0.81 0.81 0.82
SAVEE 0.77 0.84 0.93 0.78 0.74 0.74

RAVDESS 0.72 0.81 0.92 0.73 0.64 0.76

4.4. Results of Experiment IV

This experiment evaluated the effectiveness of combining the different t-domain fea-
tures listed in Table 1 to derive MFCCT features. Initially, the first two t-domain features
from Table 1 were utilized to derive the MFCCT features. These t-domain features were
then increased to 4, 6, 8, 10, and 12. Thereafter, the 18 different SER models (Table 4)
were constructed to evaluate recognition accuracy across datasets. The table shows an
incremental pattern in recognition accuracy, with the highest weighted accuracy achieved
when 12 t-domain features were utilized to derive MFCCT features. Conversely, the low-
est recognition accuracy was achieved when MFCCT features were derived using only 2
t-domain features.
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Table 4. t-domain features used to obtain MFCCT features.

No of t-Domain
Features EMO-DB SAVEE RAVDESS

2 81.6 53.8 48.2
4 84.6 73.6 69.3
6 87.4 78.5 73.9
8 88.3 80.1 76.8
10 90.6 83.7 79.8
12 96.6% 92.6% 91.4%

4.5. Comparison with Baseline

To show the effectiveness and robustness of proposed features for SER, the perfor-
mance was compared with baseline methods using EMO-DB, SAVEE, and RAVDESS
datasets. A detailed overview of comparisons is provided in Table 5. As shown in the
table, the MFCCT feature coupled with the CNN model achieved better performance than
the baseline SER methods, which reveals the effectiveness of our approach. Nevertheless,
in some cases the recognition rate of our approach for a particular emotion is slightly less
than the existing SER methods. For example, the SER model for Emo-DB dataset in Ref. [1]
recognized the boredom with an accuracy of 95%, while the proposed SER model achieved
91% accuracy for boredom emotion in same dataset. However, the proposed approach
outperformed existing methods by achieving a weighted accuracy of 97% compared to 93%
of the baseline. The proposed method for SER recognized all emotions with higher accuracy,
less computation time, and is suitable for real-time. Therefore, it can be established that the
proposed approach is generic, more accurate, and reliable than the existing methods.

Table 5. Comparative analysis of the SER method and the baseline methods utilizing the EMO-DB,
SAVEE, and RAVDESS datasets.

Study Datasets
Accuracy (×100%) of Individual Emotion

A B C D F H N S U Avg

[20] EMO-DB 1.00 0.61 × 0.67 0.67 1.00 1.00 0.87 × 0.86
RAVDESS 0.92 × 0.57 0.72 0.76 0.68 0.75 0.52 0.80 0.71

[41]
EMO-DB 0.92 0.88 × 0.99 0.92 0.92 0.90 0.93 × 0.90
RAVDESS 0.80 × 0.90 0.71 0.74 0.65 0.68 0.66 0.67 0.73

SAVEE 0.90 × × 0.48 0.50 0.47 0.82 0.58 0.53 0.67

[19] EMO-DB 0.88 0.95 × 0.84 0.95 0.84 0.95 0.95 × 0.93

[1] EMO-DB 0.88 0.95 × 0.84 0.95 0.84 0.95 0.95 × 0.93

[21] EMO-DB 0.91 0.90 × 0.87 0.92 0.66 0.85 0.88 × 0.85
RAVDESS 0.95 × 0.95 0.86 0.91 0.43 0.50 0.61 0.95 0.77

Proposed model
EMO-DB 0.96 0.91 × 0.96 0.99 1.00 0.97 0.99 × 0.97
SAVEE 0.94 × × 0.90 0.91 0.95 0.95 0.94 0.93 0.93

RAVDESS 0.95 × 0.93 0.92 0.94 0.95 0.89 0.91 0.93 0.92

A = Anger, B = Boredom, C = Calm, D = Disgust, F = Fear, H = Happy, N = Neutral, S = Sad, U = Surprise.

4.6. Summary

In this study, the MFCCT features were proposed using a 1D CNN model for an
effective SER, utilizing the EMO-DB, SAVEE, and RAVDESS datasets. The results revealed
that the MFCCT feature coupled with 1D CNN can efficiently identify emotions from speech.
Furthermore, the results revealed that the MFCCT features, utilized as input to 1D CNN to
retrieve the high-level patterns, are more discriminative at obtaining enhanced performance
of the SER system. Several research studies have proposed various methods for SER
employing DL models and handcrafted features, but these methods are still not effective in
terms of size, computational time, and recognition accuracy [42,43]. This research adopted
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a novel method to address these issues through hybrid features (MFCCs and t-main)
and 1D CNN to extract high-level patterns from audio data. The proposed method for
each dataset recognized the emotions from audio signals with high accuracy. Secondly,
this research resolves the problem of computation time by employing a lightweight and
simple 1D CNN that used three CLs, two max-pool layers, three dropouts, and an FC layer
with softmax classifier to identify emotions from audio files. To show the effectiveness,
this research evaluated the efficiency of the proposed method with existing methods and
the results showed that the proposed method outperformed the baseline methods by
enhancing the number of accurately recognized instances. The potential reason for the
enhanced recognition rate is that this study combined both the f-domain and t-domain
representations of the audio signal to enhance the robustness, diversity, reliabilities, and to
increase the generalization of the proposed SER method.

5. Conclusions

SER is a complex task that includes two main challenges: feature extraction and
classification. This research proposed the novel fusion of MFCCs and t-domain features
coupled with a 1D CNN for emotion classification. The CNN model comprised three CLs,
two max-pooling layers, one flattening layer, and one FC dense layer. The use of a small
number of layers decreased the computation time and size. To evaluate the performance,
the proposed method employed three datasets: EMO-DB, SAVEE, and RAVDESS. The
accuracy of the CNN model using three datasets outperformed the baseline methods. The
proposed technique achieved an accuracy of 96.6% for the EMO-DB datasets, 92.6% for
the SAVEE dataset, and 91.4% for the RAVDESS dataset. Moreover, the proposed method
enhanced the accuracy by 10% for EMO-DB, 26% for SAVEE, and 21% for RAVDESS
datasets. This demonstrates the significance and robustness of the proposed method for
SER. A comparison analysis of SER methods based on DL approaches employing other
datasets is planned for future work. Furthermore, the implementation RNNs while using
optimum acoustic features can enhance the accuracy of the SER, since it offers high-level
acoustic features accurately.
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