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Abstract: Control mechanisms for biological treatment of wastewater treatment plants are mostly
based on PIDS. However, their performance is far from optimal due to the high non-linearity of
the biological and changing processes involved. Therefore, more advanced control techniques are
proposed in the literature (e.g., using artificial intelligence techniques). However, these new control
techniques have not been compared to the traditional approaches that are actually being used in
real plants. To this end, in this paper, we present a comparison of the PID control configurations
currently applied to control the dissolved oxygen concentration (in the active sludge process) against
a reinforcement learning agent. Our results show that it is possible to have a very competitive
operating cost budget when these innovative techniques are applied.
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1. Introduction

Wastewater treatment plants (WWTPs) are a very complex process operated to obtain
an effluent from the wastewater that can be returned to the water cycle with a minimal
impact on the environment. An efficient operation of WWTPs should also guarantee
minimization of the operational costs and the sludge production. The control systems used
to achieve these goals have a strong impact on the efficiency and operation of the WWTP.

A conventional WWTP is composed of different treatment stages and processes linked
to each other. Usually these treatment stages are as follows: pre-treatment, primary,
secondary and tertiary treatment [1]. In the pre-treatment stage, large debris is removed
from the raw wastewater. In the primary treatment stage, smaller particles such as the
settable solids and floatable materials from the effluent are removed. Secondary treatment
involves complex biological processes that are used to remove refractory solids, such as
sludge, that were not removed during primary treatment. Some WWTPs provide only
secondary treatment and when this treatment ends, the effluent is disinfected and released
to the environment. If the WWTP provides tertiary treatment process, once the secondary
effluent is transferred, additional unwanted constituents (for instance, phosphorus or
nitrogen) are removed to meet some regulatory requirements.

Sludge removed in the secondary treatment is further treated in a separate sludge
digestion process. This process is very important during the design and operation of all
WWTPs. It is fundamental to reduce its volume and to stabilize the organic materials.
Stabilized sludge can be better manipulated and a volume reduction implies a decrease in
the costs of pumping and storage.

Different types of biological WWTPs treatments can be found [2]. However, each
treatment can be classified as aerobic, anaerobic, or anoxic treatment depending on whether
oxygen is used or not. The most typical secondary wastewater treatment plant is the
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activated sludge process (ASP). It uses microbial degradation for the digestion of soluble
organic constituents within primarily treated effluent. In our paper, the BSM1 is used as
the benchmark scenario to implement the control strategies [3], as it is one of the most
popular in the literature for WWTPs. The plant layout represents the ASP, one of the most
demanding process in a WWTP with nitrification/denitrification stages [4]. It is composed
of activated sludge reactors in series, followed by a clarifier. The first two reactors are
non-aerated and the other three are aerobic tanks [3].

WWTPs operate by controlling the values of certain variables that are returned by
sensors located in the plant. In the ASP, several variables are considered [5–7]: dissolved
oxygen concentration, ammonia concentration, internal recycle flow rate, sludge recycle
flow rate or external carbon dosing. Among all these variables, dissolved oxygen concen-
tration (DO) is the one in charge of the most expensive cost of the plant [5,8]. In aerobic
treatment, blow oxygen is supplied in the aeration tank to speed up the degradation pro-
cess, which implies an important energy demand. Therefore, the DO content in the aeration
tank is an essential control test.

The most widely used approach to control different variables in WWTPs is PID con-
trollers [9–12]. However, due to the complexity of WWTP processes and the big differences
in external conditions, the performance of PIDs is not optimal [13], especially when op-
erational cost is a major concern [14]. More advanced control techniques have also been
proposed for WWTPs, such as model predictive control or fuzzy-logic control [15,16]. In
fact, artificial intelligence approaches such as artificial neural networks [17–21] or reinforce-
ment learning [22] have been applied in the last decade [23,24]. In addition, among artificial
intelligence techniques for industrial applications, deep learning techniques are increasing
in popularity. For example, recurrent neural networks are used to detect anomalies in
influent conditions [25]. Additionally, deep learning algorithms, namely, recurrent neural
network, long-short term memory and gated recurrent unit [26], are used to analyze and
predict water quality. Besides the control of variables in the plant, machine learning algo-
rithms are also used to develop soft sensors that predict values that are difficult to obtain
using physical sensors [27–30]. In addition, we also proposed a Reinforcement Learning
(RL) agent to control DO concentration in the active sludge process of a WWTP [8,31]
(in Table 1 some of current control approaches in WWTPs are summarized). However,
a recurrent finding in our search was a lack of comparison of novel techniques with cur-
rent approaches already working. In fact, as a first approach in a previous work [8], we
compared our RL agent against a PI cascade control, but we also proposed in that same
work that a more exhaustive search would be interesting. In [8] we have improved the
economic and environmental performance of the WWTPs using a RL approach. Using the
BSM1 improvements in the operating costs of the N-ammonia removal process have been
obtained. The proposed control scheme shows better performance than a manual plant
operator when disturbances affect the plant and savings in a year of a working BSM1 plant
are shown.

Table 1. Control approaches in WWTPs.

Reference Techniques Goal

[10,11] PIDs Control of DO concentration

[12]
PIDs and Control of DO and

fuzzy logic ammonium/nitrate
techniques concentration

[15] Genetic algorithm Control of nitrogen and
optimization ammonia concentration

[16] Fuzzy control Control of nitrogen and
ammonia concentration

[17,21] Artificial Neural Networks Control of nitrogen
and/or DO concentration
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Table 1. Cont.

Reference Techniques Goal

[18] Recurrent Neural Networks Control of phosphorus
concentration

[19] Artificial Neural Networks
Prediction of effluent

biochemical oxygen demand
and the effluent total nitrogen

[22] Reinforcement Learning

Optimal control
of hydraulic retention

time and internal
recycling ratio in an

naerobic–anoxic–aerobic system

[25] Recurrent neural networks detect anomalies in
influent conditions

[26] Recurrent neural network, analyze and predict
long-short term memory water quality

[28,29]

predict the ammonium,
recurrent neural networks total nitrogen, and total

deep learning network phosphorus removal
efficiency

[30]

Machine learning techniques
(Support Vector Machine,

Decision Trees, Predict weather
Random Forest and conditions

Gaussian Naive Bayes,
k-nearest neighbors)

[31] Reinforcement learning Control DO concentration

In [9] a review that covers automatic control of continuous aeration systems is pre-
sented. The paper focuses on recent published research that describes different control
structures to control the DO concentration and the aerobic volume, with a special focus on
plants with nitrogen removal.

The main goal of this paper is to compare the RL agent with more complex PI-based
techniques; more specifically, those described in [9]. The advantages of using the RL agent
approach against the PID structures are shown: (i) the RL agent operates without knowing
the initial model, (ii) the RL agent outperforms all configurations of traditional PIDs, even
when the changing environment is more significant (for example, on weekends or during
storms) and (iii) a comparative study of the savings obtained is presented and it is shown
how the RL agent minimizes the costs.

The rest of the paper is organized as follows. In Section 2, we briefly describe the BSM1
simulation model. The PI-based techniques considered for comparison and an overview of
the proposed RL agent [8,31] are also presented in this section. In Section 3 we describe the
results and in Section 4, the conclusions are presented.

2. Materials and Methods

In this section, we begin with a brief description of the WWTP simulation model. Next,
we describe the control structures used in this paper for the comparison [9], as well as the
RL agent used.

2.1. WWTP Simulation Model

The comparison is made in the well-known BSM1 [32] simulation model. It defines
a plant layout incorporating an active sludge model, influent loads, test procedures and
evaluation criteria. A more in-depth description of BSM1 can be found in [8].



Appl. Sci. 2023, 13, 4752 4 of 19

The BSM1 model is initialized with a constant input into the influent for a period
of at least 100 days to obtain an stable plant [3]. Three different influents are defined as
initial conditions, each one representing a different atmospheric event, namely: dry (the dry
period), rain (rain events) and storm (storm events). Each of these influents is composed
of the data for two weeks of simulation. The data corresponding to the rain influent are
the same as in dry weather, but adding an episode of rain, and in the case of the storm
influent, adding two storm episodes, which are shorter, but of greater intensity than the
rain episode.

Figure 1 shows the influent chart with the different weather conditions in BSM1.

0 2 4 6 8 10 12 14
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20000

30000

40000

50000

60000

time [d]

Q
 [m

3/
d]

Inflow Q for each weather condition on first two weeks

steady
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Figure 1. Different weather conditions in the influent defined in BSM1: dry (yellow), rain (blue) and
storm (red).

2.2. Control Structures

Control structure design requires different decisions about the control system before
the controller design can be accomplished. It includes the selection of manipulated and
controlled variables, or the selection of control configuration and the control law. A critical
step is the control configuration selection to determine how to obtain the structure of the
overall controller that interconnects the variables; that is, how to pair the variables to
form control loops. This is a problem of a combinatorial nature, as the number of control
configurations increases quickly with the number of process variables. Normally, the
control structure will heavily depend on the process to be controlled [33].

The selection of a proper aeration control structure is a particularly complex task due
to the intrinsic complexity of the WWTPs systems. Its design and implementation must be
carried out properly so as not to compromise its potential for optimization. In this paper,
we consider the following five classic control structures for aeration control [9]: PI cascade
control structure, ammonium-based control: feedback control, ammonium-based control:
feedfordward–feedback control, advanced SISO and MIMO controllers and control of the
aerobic volume. Following notation in [9], we will refer to these configurations as A, B1, B2,
C and D, respectively.
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Each control structure presents a different level of complexity both in programming
and in sensors.

2.2.1. PI Cascade Control Structure

The most popular aeration control structure is a feedback controller, often set up in
a cascade. Figure 2 shows a PI cascade control structure. It defines two control loops, outer
and inner, in the aeration process of the tank and two PI controllers in its structure. The
internal loop controls the air flow rate and the external loop controls the dissolved oxygen.

Figure 2. PI cascade control structure.

WWTP is a non-linear process with increasing response times and a measured con-
trolled variable in the internal loop (air flow rate Qair). Air flow rate control and dissolved
oxygen (DO) control obtain benefit from a simple cascade control structure. The advantage
of the cascade control is that the inner loop compensates for the sensitivity and nonlinearity
of the plant in the closed loop, reducing the parameter perturbations in the outer loop. In
this structure, the DO set-point is decided by the operator.

2.2.2. Ammonium-Based Control: Feedback Control

The main difference between this strategy and the previous one is that the DO set-point
is calculated based on the measured ammonium concentrations in the outlet of the activated
sludge process or from a sensor included in the structure (see Figure 3). Consequently, we
now have a triple cascade controller. In this case, the operator must decide the set point of
the ammonium concentrations.

Figure 3. Ammonium-based control: feedback control.

2.2.3. Ammonium-Based Control: Feedforward–Feedback Control

An alternative structure with which to calculate the DO set-point is to add a feed-
forward control for improved disturbance rejection combined with feedback control, as
shown in Figure 4. The influent ammonium concentration and influent flow rate are the
main disturbances used by the feedforward control. This control allows to predict their
behavior and consequently modify the set point. In parallel, a feedback control is added in
the structure to tune the prediction made considering the true measurements.
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Figure 4. Ammonium-based control: feedforward-feedback control.

2.2.4. Advanced SISO and MIMO Controllers

Advanced control techniques use different model-based and optimal controllers.
Model-based controllers refer to those control algorithms which include a process model in
the control law. The model can be either based on a real simulated process or on a black-box.
Usually, the model is used to identify the output of the controller to obtain optimal behavior.
Figure 5 shows the control structure. There are two main differences from Figure 4. The
first is the treatment that the controller makes with the disturbance. The second refers to
the two new inputs in the first controller: a cost function to determine the optimal solution
and the constraints on the system. This control structure uses a MIMO controller, that
it is to say that each manipulated variable affects several controlled variables, causing
loop interactions.

Figure 5. Advanced SISO and MIMO controllers.

2.2.5. Control of the Aerobic Volume

Another possibility for control is to use a control structure such as the one shown in
Figure 6. This structure can operate in two different forms at the same time using a switch
to adjust the aeration intensity. The set point of the N-ammonia is compared with the real
one, and a rule is used as input to determine if aeration should be supplied in order to
obtain an operation closer to the ammonium set-point. Moreover, it allows us to obtain
energy savings and an improvement in the denitrification process.

Therefore, the volume of the plant is modified through the use of another tank due to
a condition. The rule is as follows: if the aeration of the last (aerobic) tank is at 100% for
24 h, then a new tank is added to the circuit. This new added tank operates at 100% while
activated. When the aeration of the last tank falls below 100%, the extra tank is removed
from the circuit.
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Figure 6. Control of the aerobic volume.

2.3. Reinforcement Learning

Reinforcement Learning (RL) is a machine learning area that trains an agent to perform
a task in an uncertain environment. To this end, it completes certain actions in order to
maximize reward over time.

2.3.1. Reinforcement Learning Elements

The main two elements in a RL system are the agents and the environment. The
agent is the tool that, based on rewards and punishments, makes decisions about the
environment. The world with which the agent interacts is called the environment. The RL
process is usually modeled as an iterative loop. When the RL agent receives a state from
the environment, it takes an action that moves the environment to a new state. Then, the
environment rewards the RL agent, which makes a new decision, repeating the RL loop
until the goal is reached or a maximized reward is achieved.

2.3.2. Reinforcement Learning Agent

A RL agent acts in an environment to change certain conditions. For each action in
each time step t, the agent obtains a reward. The goal of the RL agent is to optimize the
expected rewards, taking into account the conditions defined in the environment.

This environment is usually defined as a Markov decision process. Nevertheless, this
model is not mandatory. RL also supports model-free algorithms [34]. In these methods,
the agent has to obtain the model of the environment as well as the optimal policy. This
is the case for the RL agent defined in the BSM1 model, where the main objective of the
agent is to lower the operation cost (OC) of the plant as much as possible while keeping the
N-ammonia under 4 mg/L.

The RL agent receives the value of SNH and SO as inputs and, as outputs, the DO
set-point for tank 5 for each time step t. The control loop that sets the DO set-point with
the RL agent is shown in Figure 7.

Figure 7. Control loop using the RL agent. Reprinted/adapted with permission from Ref. [8].
Copyright 2016, Hernández-del-Olmo et al.
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The agent should optimize the value of OC selection between three possible DO set-
points for tank 5: 1.2 mg/L, 1.5 mg/L 1.85 mg/L. The operation cost OC for each time step
t is defined in [8] (see Equation (1)):

OC(t) = γ1(AE(t) + ME(t) + PE(t)) + γ2SP(t) + EF(t) (1)

where AE is the aeration energy (kWh), ME is the mixing energy (kWh), PE is the pumping
energy (kWh), SP is the sludge production for disposal (kg) and EF stands for the effluent
fines (e). Weights γ1 and γ2 are set in proportion to the weights in the operating cost
index defined in the benchmark BSM1. In the same way as Stare et al. [35], we consider
0.1 e/kWh. Hence, γ1 = 0.1 e/kWh, and γ2= 0.5 e/kg following closely [32] that considers
γ2 as five times γ1. OC considered by RL agent and how the values of AE, ME, PE and SP
are obtained are defined in [8]. The algorithm of the RL agent is shown in Algorithm 1.

Algorithm 1: RL agent pseudocode.
Setup:
γ = Time horizon
max_action = 2 // actions: {0,1,2}
DOmax = Set-point max
DOmin = Set-point min
DOstep = (DOmax − DOmin)/(max_action + 1)
Input:
s(t) = [NH4(t), O2(t)]// state of the environment
r(t) = −OC(t)// reward
Output:
DO : Real
Internal:
Q(s, a) : random initialization
a : action (0..max_action)
Algorithm Main:

Initialize Q(s,a)
while true do

// execute every 15 minutes
s(t) = [NH4(t), O2(t)]
a = next_action(Q, s)
DO = DOmin + a × DOstep
execute(DO)// now the plant has the control
r(t) = −OC(t)// the plant returns its reward
Q = update_Q(Q, s, a, r, γ)

end

Even though there are several approaches with which to achieve an adaptive behavior
using ML (see Section 1), most of them belong to a non-interactive way of learning. In fact,
the use of past data is always necessary to build an accurate ML model of the plant and
the influent. However, in our work, we focused on the RL approach because we wanted to
show an ML system that updates its model in run-time while it interacts with the plant [31].
In fact, the most distinct characteristic is that the RL agent keeps its own interaction with the
plant into the model. This approach has a lot of advantages, but the main one is that the
agent adapts to drifting characteristics of the influent and the plant in an autonomous way.

This agent acts as a new block in the BSM1 model, as shown in Figure 8.
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Figure 8. RL agent in BSM1.

The weather considered by the RL agent in the simulation is defined in the BSM1,
where it rains 20% of the time, there is a storm 10% of the time and the remaining 70% the
time is dry. The distribution is random. The climate is defined with a value of “0” for dry,
“1” for rain and “2” for storm.

2.4. Conditions of the Simulation

In the previous section, we showed the simulated WWTP and the climate pattern,
but here, we present this pattern again in more detail (see Figure 9). Figure 9 shows the
most significant climate periods to obtain a deeper insight of what happens in each control
approach. All simulations have been developed under the same weather conditions. So the
comparison between the different control configurations are more realistic.

It is worth noting that PIDs are configured, pre-programmed and optimized from the
very beginning. However, the RL agent starts with a blank model which is learned day
after day while trying to control the WWTP to the best possible extent. Moreover, PIDs
are optimized for each of the three possible weather conditions (dry, rainy and stormy),
and their configuration is changed to the best one for each condition. However, the RL
agent faces a somewhat more real situation because it learns from the WWTP without any
consideration, nor any information about the current weather condition. To sum up, we
will compare a real RL agent behavior against several ideally optimized PIDs.

In order to obtain insight into the PIDs and the RL agent behaviors, we will focus
on two main variables [8]: N-ammonia concentration in tank 5 (SNH) and total Operation
Cost (OC) of the plant (see Equation (1)). We will also focus on two phases of the RL agent:
the initial phase, in which the RL agent has learned something for the first time, and the
final phase, when the RL agent has already had the opportunity to learn by facing different
WWTP conditions. To this end, we will extract in Table 2 the six main periods we will
consider from Figure 9.
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Figure 9. Days on which the RL agent and the PIDs will be compared.

Table 2. Comparison periods.

Weather Condition Initial Phase Days Final Phase Days

dry 210–224 714–728

rain 196–210 588–602

storm 224–238 476–490

In order to obtain an initial understanding of what improves in the RL agent against
the PID behaviors, in the next section, we will first show of all the savings we achieved
using the RL agent.

3. Results

In this section, we will compare PIDs against the RL agent: we will show the pros and
cons of having an RL agent to control a WWTP, focusing on the biological stage, against the
widely used and tested PID approaches.

3.1. Operation Cost Savings

Figure 10 shows the saving obtained during the initial and the final 2 weeks (second
and third columns of Table 2) for each of the three weather conditions. We present three
groups of comparisons as follows. In black, configuration A (see Section 2.2.1); B1 in red (see
Section 2.2.2); [B2,C,D] in different degrees of blue (see Sections 2.2.3–2.2.5, respectively).
We can also find a summary of the RL improvement against each method in Table 3.
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Figure 10. Savings obtained using the RL agent (cumulated difference of Operation Costs).

Table 3. OC improvement percentage ( f inal−initial
initial × 100) of the RL agent against each control method

from the initial to the final stage (14 days cumulation sum).

Control Method Dry Rain Storm

A 126.29% 34.61% 235.6%
B1 937.97% 17.50% 37.45%
B2 64.38% 12.80% 33.64%
C 64.18% 12.76% 28.68%
D 64.32% 12.84% 28.77%

In concrete, looking at Figure 10, it can be appreciated that the RL has the A configura-
tion, the hardest one to overcome in every weather condition. On the opposite side, the
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blue group are clearly overcome by the RL agent since the onset of each weather condition.
Lastly, B1 configuration is in the middle.

We will start the comparison with the A and B1 configurations on dry weather. Re-
markably, this peaceful dry weather condition is the hardest one that the RL agent must
face. Let us obtain some insights to identify why.

In Figure 10, dry weather, the RL agent shows that the initial phase has a hard time
when it tries to control the plant with low OC, at least when compared to A and B1
configurations. However, notice that even though it behaves worse on weekdays, it is on
weekends when the agent makes use of its flexible and adaptive behavior to improve the
OC. This is a recurrent fact, as we will see in Sections 3.2 and 3.3. In fact, on the initial
phase, it ends with the 14 days overcoming the savings in all configurations except for A.
Nevertheless, once the RL agent has had the opportunity to learn (in the final phase), it
ends up positive after 2 weeks of dry condition against each configuration, even compared
with the most conservative A configuration.

Now, attending to Figure 10, for rainy and stormy weather conditions, the RL agent
overcomes every PID configuration from the very first time. Once again, the flexible and
adaptive behavior of the RL agent is noteworthy during these unmerciful weather conditions.

In order to gain more insight into the different behaviors and why the RL agent ends
up saving that much, we will see in detail the two main variables of the process: SNH
and OC.

3.2. N-Ammonia Concentration

Although the whole Activated Sludge Process is measured by the Operation Cost
(OC), first, we will look at the ammonia (SNH) signal in order to deeply understand the OC
measure (showed in the last Section 3.3). Notice first that OC (see Equation (1)) is a trade off
between the energy used (mostly the energy for blowing oxygen into the aerobic tanks) and
the Effluent Fines (mostly obtained because of high values of SNH at the effluent). Thus,
the greater the N-Ammonia concentration SNH at the effluent, the higher the payments in
fines at the WWTP.

In Figure 11, we show the SNH initial phase for each weather condition: second column
of Table 2. If we look at the dry weather condition in Figure 11, we see that the RL agent is
the worst in fines (too high ammonia) for each top of the graph. Clearly, the higher the SNH
concentration, the worse the fine. On the contrary, the B2, C and D groups are the PIDs
with the best behavior in N-ammonia. In the same Figure 11, for rainy weather, the RL is
a little better: it is the worst for some tops, but not all. In addition, for rainy weather, some
bottoms are better for RL. The results are similar for stormy weather.

Now, let us focus on the final phase, Figure 12, the third column of Table 2. Let us start
with dry weather. Comparing it with Figure 11, we see lower tops and lower bottoms in the
RL agent’s behavior; thus, it behaves better than the rest of the controls (except for some
tops that the agent cannot improve more). However, in rainy weather, the agent is one of
the worst (at least concerning the SNH behavior). Finally, we see an improvement in the
stormy weather, in which we can see lower tops and lower bottoms as well. In summation,
we see a light improvement for dry and stormy weather conditions in SNH behavior in the
final phase.

As a summary, let us say that N-ammonia concentration is only a part of the whole
picture, because saving energy is also important. In this section, we wanted to show in
detail that the RL agent can learn to sacrifice the effluent water cleaning in order to save
energy. In fact, the agent’s decision depends on the context, because its final objective is to
reduce the global operation cost in the WWTP.

Let us focus on this measure OC in the next subsection.
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Figure 11. SNH concentration for the initial phase.
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Figure 12. SNH concentration for the final phase.

3.3. Operation Cost

A final target of the control is the minimization of the Operation Cost (OC). In
Figure 13, we observe the dry weather condition in the initial phase (second column of
Table 2). The RL agent is shown to be the worst OC for the most of tops, but also the best
for the most of the bottoms (on many occasions, in combination with the A configuration).
The excellent behavior of the RL agent on weekends, when it can save a lot of OC, is also
relevant. If we look at Figure 11, dry weather, the RL agent minimally increases the SNH
without incurring high fines in order to save energy.
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Figure 13. Operation Cost OC for the initial phase.

In Figure 13, dry weather, the control configurations are ordered from better to worse
attending to the OC as follows: A, B1 and the set of B2, C and D. This order is the same if
configurations are sorted from less to greater attending SNH concentration (see Figure 11).
The RL agent has not been included into this list because its behavior is different. RL agent
behavior changes depending on tops and bottoms, weekday or weekend, etc.

Figure 13, rainy weather, shows better RL behavior in OC than we first expected just
looking at the SNH concentration (Figure 11). Although this fact is the most extreme for the
rainy weather condition, it also happens for the rest of them. Thus, in the RL configuration,
OC tops are higher than in the rest of the configurations and bottoms are always lower.
What is more, the RL agent excels on weekends for every weather condition for the final
phase (see Figure 14).
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4. Conclusions

The results of this paper show that it is possible to use an RL agent without an initial
model in the control of WWTPs. In fact, a better performance is shown compared with
the use of traditional PID configurations. This improvement is achieved because the RL
agent can use adaptive control strategies to follow the changes in the influent. In this way,
the behavior of the plant can be optimized to achieve its objective: minimizing the WWTP
operation cost. The cost function considers two factors: the fines due to high concentrations
of pollutants (mostly nitrogen from N-ammonia) and the energy consumption to supply
oxygen to the plant.
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In fact, the RL agent finds a balance between these opposing factors. In this way, it
often allows the pollutants to exceed their limit to save the large expense of reducing their
concentration. In addition, it can reduce the energy consumption of the blowers whenever
it observes a low concentration of SNH .

Although the so-called cold start problem is a challenge in the reinforcement learning
area, in this paper, we did not focus on it because we just wanted to compare the evolution
of the RL agent and compare different stages of the RL agent with the control methods.
However, we are conscious of this problem and we have already worked on it [31]. As a first
step, in order to observe the learning process of the agent, this work shows a simulation of
the functioning of the RL agent in comparison with traditional PID approaches, in different
weather conditions and how the agent can adapt to varying conditions. In general, the
RL agent behaves differently on tops and bottoms of influent pollution concentration. In
fact, on tops, the RL agent is more influenced by fines (because of the high concentration
of pollutants to the effluent) while, on bottoms, the agent is more guided by the energy
consumption. Finally, it is noteworthy that the RL agent performs especially well on week-
ends and in rainy and stormy weather conditions, where it greatly reduces consumption
compared to the PIDs configurations. That is, due to the adaptative behavior of the RL
agent, it can follow the changing environment better than the PIDs.

The results of this work show that RL technique can be applied with improvements as
an alternative to classical WWTP control solutions. However, we consider that there is still
a lack of application of this strategy in other areas, not only under simulation but also in
the real plant.

Finally, we would like to note the BSM1 limitations. In future, we want to work
on a more detailed model that, among other things, takes into account the inertia in
turbine/motors of the blowers. In this case, we will measure aspects such as load rejection
performance and see how this affects the OC, the different control methods and the RL
agent’s learning.
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