Estimation of Stride Length, Foot Clearance, and Foot Progression Angle Using UWB Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hardware Description
2.2. Participants and Test Method
2.3. Calculation of Gait Parameters Using UWB
2.3.1. UWB Sensor Offset Compensation
- Before the treadmill gait experiment, the participants wore shoes equipped with UWB sensors and walked on the treadmill for 5 min. In this experiment, the signal strength and distance data measured by the UWB sensor according to the gait cycle before offset compensation was measured, and the location of the motion capture marker next to the UWB sensor was acquired.
- The function that compensates for the offset of the sensor consists of SVR, which is composed of the signal strength and distance data measured using the UWB sensor, and the target variable Y, which is composed of the motion capture marker data. The composed dataset D is expressed by Equation (1). The UWB distance data used in the dataset were obtained after applying a third-order Savitzky–Golay filter [38].
- To distinguish different classes using input data, the target variable should be mapped to the domain of a higher dimension, and the hyperplane is expressed as a shape space vector with mapping to the shape space Z. The linear decision function composed of the weight vector and the bias vector pair is as follows:
- Weight and bias can be estimated by minimizing the Euclidean norm. The minimization equation composed of cost function C and slack variable is as follows:
- Equation (3) solves this issue using positive Lagrange multipliers. The corresponding equations are as follows:
- Finally, the kernel function was used to map the data space to the shape space. In addition, a linear kernel is used to compensate for the offset of the data acquired from the UWB sensor. Previous research results [42] can be referred to for further details on the SVR.
2.3.2. Foot Trajectory Estimation
2.3.3. Stride Length Estimation
2.3.4. Foot Clearance Estimation
2.3.5. Foot Progression Angle Estimation
3. Results
3.1. Sensor Offset Compensation
3.2. Results for Gait Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pirker, W.; Katzenschlager, R. Gait disorders in adults and the elderly: A clinical guide. Wien. Klin. Wochenschr. 2017, 129, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Rubino, F.A. Gait disorders. Neurologist 2002, 8, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Maki, B.E. Gait changes in older adults: Predictors of falls or indicators of fear? J. Am. Geriatr. Soc. 1997, 45, 313–320. [Google Scholar] [CrossRef]
- Ng, K.D.; Mehdizadeh, S.; Iaboni, A.; Mansfield, A.; Flint, A.; Taati, B. Measuring gait variables using computer vision to assess mobility and fall risk in older adults with dementia. IEEE J. Transl. Eng. Health Med. 2020, 8, 2100609. [Google Scholar] [CrossRef] [PubMed]
- Barrett, R.S.; Mills, P.M.; Begg, R.K. A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking. Gait Posture 2010, 32, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Simic, M.; Wrigley, T.V.; Hinman, R.S.; Hunt, M.A.; Bennell, K.L. Altering foot progression angle in people with medial knee osteoarthritis: The effects of varying toe-in and toe-out angles are mediated by pain and malalignment. Osteoarthr. Cartil. 2013, 21, 1272–1280. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, D.J.; Hubley-Kozey, C.L.; Deluzio, K.J.; Stanish, W.D.; Dunbar, M. Foot progression angle and the knee adduction moment: A cross-sectional investigation in knee osteoarthritis. Osteoarthr. Cartil. 2008, 16, 883–889. [Google Scholar] [CrossRef]
- Wang, S.; Mo, S.; Chung, R.C.K.; Shull, P.B.; Ribeiro, D.C.; Cheung, R.T.H. How foot progression angle affects knee adduction moment and angular impulse in patients with and without medial knee osteoarthritis: A meta-analysis. Arthritis Care Res. 2021, 73, 1763–1776. [Google Scholar] [CrossRef]
- Jamari, J.; Ammarullah, M.I.; Santoso, G.; Sugiharto, S.; Supriyono, T.; Permana, M.S.; van der Heide, E. Adopted walking condition for computational simulation approach on bearing of hip joint prosthesis: Review over the past 30 years. Heliyon 2022, 8, e12050. [Google Scholar] [CrossRef]
- Karatsidis, A.; Richards, R.E.; Konrath, J.M.; van den Noort, J.C.; Schepers, H.M.; Bellusci, G.; Harlaar, J.; Veltink, P.H. Validation of wearable visual feedback for retraining foot progression angle using inertial sensors and an augmented reality headset. J. Neuroeng. Rehabil. 2018, 15, 78. [Google Scholar] [CrossRef]
- Begg, R.; Galea, M.P.; James, L.; Sparrow, W.A.T.; Levinger, P.; Khan, F.; Said, C.M. Real-time foot clearance biofeedback to assist gait rehabilitation following stroke: A randomized controlled trial protocol. Trials 2019, 20, 317. [Google Scholar] [CrossRef] [PubMed]
- Jacob, S.A. Real-Time Minimum Foot Clearance Estimation Using a Wearable Biofeedback System to Prevent Trip-Related Falls. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2022. [Google Scholar]
- Kaźmierczak, K.; Wareńczak-Pawlicka, A.; Miedzyblocki, M.; Lisiński, P. Effect of treadmill training with visual biofeedback on selected gait parameters in subacute hemiparetic stroke patients. Int. J. Environ. Res. Public Health 2022, 19, 16925. [Google Scholar] [CrossRef] [PubMed]
- Sui, J.D.; Chang, T.S. IMU based deep stride length estimation with self-supervised learning. IEEE Sens. J. 2021, 21, 7380–7387. [Google Scholar] [CrossRef]
- Singh, P.; Esposito, M.; Barrons, Z.; Clermont, C.A.; Wannop, J.; Stefanyshyn, D. Measuring gait velocity and stride length with an ultrawide bandwidth local positioning system and an inertial measurement unit. Sensors 2021, 21, 2896. [Google Scholar] [CrossRef]
- Fusca, M.; Negrini, F.; Perego, P.; Magoni, L.; Molteni, F.; Andreoni, G. Validation of a wearable IMU system for gait analysis: Protocol and application to a new system. Appl. Sci. 2018, 8, 1167. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y.; Li, Q.; Liu, T.; Yi, J. IMU-based gait normalcy index calculation for clinical evaluation of impaired gait. IEEE J. Biomed. Health Inform. 2021, 25, 3–12. [Google Scholar] [CrossRef]
- Yang, S.; Laudanski, A.; Li, Q. Inertial sensors in estimating walking speed and inclination: An evaluation of sensor error models. Med. Biol. Eng. Comput. 2012, 50, 383–393. [Google Scholar] [CrossRef]
- Han, Y.C.; Wong, K.I.; Murray, I. Gait phase detection for normal and abnormal gaits using IMU. IEEE Sens. J. 2019, 19, 3439–3448. [Google Scholar] [CrossRef]
- Perez-Ibarra, J.C.; Siqueira, A.A.; Krebs, H.I. Real-time identification of gait events in impaired subjects using a single-IMU foot-mount device. IEEE Sens. J. 2019, 20, 2616–2624. [Google Scholar] [CrossRef]
- Sarshar, M.; Polturi, S.; Schega, L. Gait phase estimation by using LSTM in IMU-based gait analysis-Proof of concept. Sensors 2021, 21, 5749. [Google Scholar] [CrossRef]
- Fan, B.; Li, Q.; Tan, T.; Kang, P.; Shull, P.B. Effects of IMU sensor-to-segment misalignment and orientation error on 3D knee joint angle estimation. IEEE Sens. J. 2021, 22, 2543–2552. [Google Scholar] [CrossRef]
- Zjhajehzadeh, S.; Park, E.J. A novel biomechanical model-aided IMU/UWB fusion for magnetometer free lower body motion capture. IEEE Trans. Syst. Man Cybern. 2016, 47, 927–938. [Google Scholar] [CrossRef]
- Benoussaad, M.; Sijobert, B.; Mombaur, K.; Coste, C.A. Robust foot clearance estimation based on the integration of foot-mounted IMU acceleration data. Sensors 2015, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Arami, A.; Raymond, N.S.; Aminian, K. An Accurate Wearable Foot Clearance Estimation System: Toward a Real-Time Measurement System. IEEE Sens. J. 2017, 17, 2542–2549. [Google Scholar] [CrossRef]
- Delfi, G.; Al Bochi, A.; Dutta, T. A scoping review on minimum foot clearance measurement: Sensing modalities. Int. J. Environ. Res. Public Health 2021, 18, 10848. [Google Scholar] [CrossRef]
- Weenk, D.; Roetenberg, D.; van Beijnum, B.J.J.; Hermens, H.J.; Veltink, P.H. Ambulatory estimation of relative foot positions by fusing ultrasound and inertial sensor data. IEEE Trans. Neural. Syst. Rehabil. Eng. 2014, 23, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Sabatini, A.M. Quaternion-based strap-down integration method for applications of inertial sensing to gait analysis. Med. Biol. Eng. Comput. 2005, 43, 94–101. [Google Scholar] [CrossRef]
- Huang, Y.; Jirattigalachote, W.; Cutkosky, M.R.; Zhu, X.; Shull, P.B. Novel foot progression angle algorithm estimation via foot-worn, magneto-inertial sensing. IEEE Trans. Biomed. Eng. 2016, 63, 2278–2285. [Google Scholar] [CrossRef]
- De Vries, W.H.K.; Veeger, H.E.J.; Baten, C.T.M.; Van Der Helm, F.C.T. Magnetic distortion in motion labs, implications for validating inertial magnetic sensors. Gait Posture 2009, 29, 535–541. [Google Scholar] [CrossRef]
- Wouda, F.J.; Jaspar, S.L.J.O.; Harlaar, J.; van Beijnum, B.F.; Veltink, P.H. Foot progression angle estimation using a single foot-worn inertial sensor. J. Neuroeng. Rehabil. 2021, 18, 37. [Google Scholar] [CrossRef]
- Elsanhoury, M.; Makela, P.; Koljonen, J.; Valisuo, P.; Shamsuzzoha, A.; Mantere, T.; Elmusrati, M.; Kuusniemi, H. Precision Positioning for Smart Logistics Using Ultra-Wideband Technology-Based Indoor Navigation: A Review. IEEE Access 2022, 10, 44413–44445. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, X.; Zhao, C. UWB/INS integrated pedestrian positioning for robust indoor environments. IEEE Sens. J. 2020, 20, 14401–14409. [Google Scholar] [CrossRef]
- Gaetano, D.; McEvoy, P.; Ammann, M.J.; Brannigan, C.; Keating, L.; Horgan, F. On-body fidelity factor for footwear antennas over different ground materials. In Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, The Netherlands, 6–11 April 2014; pp. 1410–1414. [Google Scholar] [CrossRef]
- MacGougan, G.; O’Keefe, K.; Klukas, R. Ultra-wideband ranging precision and accuracy. Meas. Sci. Technol. 2009, 20, 095105. [Google Scholar] [CrossRef]
- Shaban, H.A.; Abou El-Nasr, M.; Buehrer, R.M. Toward a highly accurate ambulatory system for clinical gait analysis via UWB radios. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 284–291. [Google Scholar] [CrossRef]
- Qi, Y.; Soh, C.B.; Gunawan, E.; Low, K.S.; Maskooki, A. A novel approach to joint flexion/extension angles measurement based on wearable UWB radios. IEEE J. Biomed. Health Inform. 2014, 18, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.; Shi, M.; Tan, V.Y.F.; Wang, Y. Mobile gait analysis using foot-mounted UWB sensors. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2019, 3, 1–22. [Google Scholar] [CrossRef]
- Zhang, C.; Bao, X.; Wei, Q.; Ma, Q.; Yang, Y.; Wang, Q. A Kalman filter for UWB positioning in LOS/NLOS scenario. In Proceedings of the 4th International Conference on Ubiquitous Positioning, Indoor Navigation and Location Based Services (UPINLBS), Shanghai, China, 2–4 November 2016. [Google Scholar]
- Smaoui, N. Improving Angle and Time Estimation for Concurrent Ultra-Wideband Localization through Transmitter-Side Techniques. Ph.D. Dissertation, University of Houston, Houston, TX, USA, 2021. [Google Scholar]
- Su, T.; Ling, H. On modeling mutual coupling in antenna arrays using the coupling matrix. Microw. Opt. Technol. Lett. 2001, 28, 231–237. [Google Scholar] [CrossRef]
- Smola, A.J.; Scholkopf, B. Learning with Kernels; GMD-Forschungszentrum Informationstechnik: Berlin, Germany, 1998; Volume 4. [Google Scholar]
- Uchitomi, H.; Hirobe, Y.; Miyake, Y. Three-dimensional continuous gait trajectory estimation using single shank-worn inertial measurement units and clinical walk test application. Sci. Rep. 2022, 12, 5368. [Google Scholar] [CrossRef]
- Hori, K.; Mao, Y.; Ono, Y.; Ora, H.; Hirobe, Y.; Sawada, H.; Inaba, A.; Orimo, S.; Miyake, Y. Inertial Measurement Unit-Based Estimation of Foot Trajectory for Clinical Gait Analysis. Front. Physiol. 2019, 10, 1530. [Google Scholar] [CrossRef]
- Fan, B.; Li, Q.; Liu, T. Accurate foot clearance estimation during level and uneven ground walking using inertial sensors. Meas. Sci. Technol. 2020, 31, 055106. [Google Scholar] [CrossRef]
- Huang, C.; Fukushi, K.; Wang, Z.; Nihey, F.; Kajitani, H.; Nakahara, K. An algorithm for real time minimum toe clearance estimation from signal of in-shoe motion sensor. In Proceedings of the 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Jalisco, Mexico, 26 July 2021; pp. 6775–6778. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to humans or property resulting from any concepts, methods, instructions, or products referred to in the content. |
Subject Group | Male | Female |
---|---|---|
Number of participants | 5 | 5 |
Age (years) | 32.2 ± 3.7 | 28.0 ± 4.5 |
Height (m) | 1.75 ± 0.04 | 1.61 ± 0.06 |
Weight (kg) | 71.0 ± 6.1 | 49.6 ± 6.0 |
Subject | Stride Length (mm) | Foot Clearance (mm) | Foot Progression Angle (°) | ||||||
---|---|---|---|---|---|---|---|---|---|
2.0 km/h | 3.0 km/h | 4.0 km/h | 2.0 km/h | 3.0 km/h | 4.0 km/h | 2.0 km/h | 3.0 km/h | 4.0 km/h | |
Sb01 | 40.67 ± 24.61 | 34.63 ± 25.87 | 26.48 ± 46.72 | 8.46 ± 1.84 | 8.17 ± 1.32 | 7.89 ± 1.52 | 1.34 ± 3.26 | 2.10 ± 2.16 | 1.50 ± 1.98 |
Sb02 | 43.09 ± 23.14 | 47.90 ± 24.78 | 51.82 ± 19.81 | 8.23 ± 1.71 | 7.82 ± 2.11 | 8.63 ± 1.46 | 1.58 ± 1.87 | 1.54 ± 1.01 | 2.95 ± 1.33 |
Sb03 | 46.48 ± 22.77 | 47.84 ± 25.72 | 50.01 ± 20.36 | 8.22 ± 1.76 | 6.28 ± 1.92 | 6.65 ± 1.92 | 3.12 ± 1.32 | 3.26 ± 1.92 | 4.09 ± 0.95 |
Sb04 | 43.94 ± 25.26 | 47.13 ± 39.08 | 40.92 ± 13.35 | 8.91 ± 2.06 | 8.41 ± 1.82 | 7.24 ± 1.89 | 2.42 ± 0.24 | 3.31 ± 0.35 | 3.24 ± 0.17 |
Sb05 | 45.17 ± 33.04 | 47.49 ± 26.57 | 46.14 ± 25.28 | 6.04 ± 2.00 | 7.10 ± 2.77 | 6.45 ± 4.88 | 2.00 ± 0.32 | 2.14 ± 0.41 | 2.19 ± 0.31 |
Sb06 | 46.10 ± 34.59 | 55.94 ± 23.99 | 52.23 ± 19.17 | 8.68 ± 1.25 | 7.72 ± 0.95 | 7.88 ± 0.94 | 2.68 ± 1.24 | 2.60 ± 0.78 | 3.06 ± 0.89 |
Sb07 | 44.23 ± 21.50 | 38.96 ± 15.70 | 29.77 ± 43.56 | 5.63 ± 1.45 | 5.74 ± 1.63 | 6.28 ± 1.67 | 3.22 ± 0.21 | 3.14 ± 1.18 | 3.31 ± 1.17 |
Sb08 | 45.58 ± 10.66 | 48.94 ± 12.61 | 52.47 ± 11.21 | 8.40 ± 0.82 | 8.27 ± 1.30 | 8.51 ± 1.35 | 4.16 ± 0.43 | 4.23 ± 1.42 | 4.70 ± 0.33 |
Sb09 | 46.68 ± 10.78 | 46.39 ± 18.79 | 44.26 ± 20.32 | 7.82 ± 2.71 | 6.33 ± 3.40 | 7.43 ± 1.09 | 1.80 ± 1.99 | 2.60 ± 1.41 | 2.00 ± 1.14 |
Sb10 | 47.97 ± 19.05 | 52.13 ± 19.80 | 49.87 ± 8.09 | 8.07 ± 2.01 | 8.78 ± 3.34 | 7.71 ± 2.15 | 2.49 ± 0.54 | 3.17 ± 0.68 | 2.78 ± 0.43 |
Average | 45.13 ± 21.99 | 46.99 ± 22.34 | 45.40 ± 24.83 | 7.80 ± 1.88 | 7.45 ± 3.17 | 7.54 ± 2.27 | 2.53 ± 1.54 | 2.86 ± 1.33 | 3.12 ± 1.31 |
45.84 ± 23.10 | 7.60 ± 2.50 | 2.82 ± 1.42 |
Gait Parameter | Researcher | Difference of Motion Capture |
---|---|---|
Stride length | KIST | 45.84 mm |
Uchitomi et al. [43] | 54 mm | |
Hori et al. [44] | −27 mm | |
Foot clearance | KIST | 7.60 mm |
Fan et al. [45] | 4.2 mm (Heel)/13.1 mm (Toe) | |
Huang et al. [46] | 7.0 mm/2.7 mm (Toe) | |
Foot progression angle | KIST | 2.82° |
Wouda et al. [31] | 2.6° | |
Huang et al. [29] | 2.5° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.S.; Lee, B.; Park, S.; Kim, C.H. Estimation of Stride Length, Foot Clearance, and Foot Progression Angle Using UWB Sensors. Appl. Sci. 2023, 13, 4801. https://doi.org/10.3390/app13084801
Park JS, Lee B, Park S, Kim CH. Estimation of Stride Length, Foot Clearance, and Foot Progression Angle Using UWB Sensors. Applied Sciences. 2023; 13(8):4801. https://doi.org/10.3390/app13084801
Chicago/Turabian StylePark, Ji Su, Bohyun Lee, Shinsuk Park, and Choong Hyun Kim. 2023. "Estimation of Stride Length, Foot Clearance, and Foot Progression Angle Using UWB Sensors" Applied Sciences 13, no. 8: 4801. https://doi.org/10.3390/app13084801
APA StylePark, J. S., Lee, B., Park, S., & Kim, C. H. (2023). Estimation of Stride Length, Foot Clearance, and Foot Progression Angle Using UWB Sensors. Applied Sciences, 13(8), 4801. https://doi.org/10.3390/app13084801