Generation of Typical Meteorological Sequences to Simulate Growth and Production of Biological Systems
Abstract
:1. Introduction
2. Methodology
2.1. Sandia National Laboratories Methodology
2.2. Case of Study
2.3. Applying the TMS Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
FRESNO-RIBATEJADA | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | |||||||||
Mean | Median | Std. Dev. | Mean | Median | Std. Dev. | Mean | Median | Std. Dev. | Mean | Median | Std. Dev. | |
Tmx | 16.36 | 16.20 | 4.83 | 28.55 | 29.41 | 4.38 | 17.34 | 16.75 | 6.09 | 8.73 | 8.62 | 2.91 |
Tmn | 5.55 | 5.25 | 3.43 | 15.67 | 16.13 | 3.29 | 8.11 | 8.22 | 4.54 | 0.68 | 0.27 | 2.97 |
Tme | 10.95 | 10.52 | 4.00 | 22.41 | 23.01 | 3.78 | 12.46 | 12.17 | 5.16 | 4.25 | 4.29 | 2.63 |
Trg | 10.81 | 10.94 | 3.45 | 12.88 | 13.30 | 2.46 | 9.24 | 9.45 | 3.37 | 8.05 | 7.96 | 3.10 |
PAR | 93.53 | 94.58 | 28.07 | 126.61 | 130.02 | 19.44 | 62.46 | 59.39 | 26.16 | 40.31 | 41.47 | 16.22 |
NSol | 13.05 | 13.13 | 1.04 | 14.35 | 14.59 | 0.58 | 10.91 | 10.85 | 1.02 | 9.62 | 9.39 | 0.55 |
RIOSEQUILLO | ||||||||||||
Spring | Summer | Autumn | Winter | |||||||||
Mean | Median | Std. Dev. | Mean | Median | Std. Dev. | Mean | Median | Std. Dev. | Mean | Median | Std. Dev. | |
Tmx | 15.21 | 14.99 | 4.76 | 27.06 | 27.75 | 4.44 | 16.23 | 15.69 | 6.02 | 7.80 | 7.73 | 2.95 |
Tmn | 4.22 | 4.05 | 3.39 | 13.84 | 14.18 | 3.22 | 6.83 | 6.99 | 4.40 | −0.24 | −0.57 | 2.99 |
Tme | 9.69 | 9.37 | 3.92 | 20.72 | 21.27 | 3.76 | 11.24 | 10.95 | 5.00 | 3.31 | 3.31 | 2.65 |
Trg | 10.99 | 11.00 | 3.59 | 13.22 | 13.61 | 2.71 | 9.39 | 9.44 | 3.56 | 8.03 | 7.93 | 3.12 |
PAR | 85.56 | 87.74 | 30.37 | 121.60 | 127.06 | 23.67 | 56.75 | 53.00 | 26.28 | 36.83 | 38.15 | 16.25 |
NSol | 13.07 | 13.15 | 1.05 | 14.38 | 14.62 | 0.58 | 10.89 | 10.83 | 1.04 | 9.59 | 9.36 | 0.56 |
VALDELAGUNA | ||||||||||||
Spring | Summer | Autumn | Winter | |||||||||
Mean | Median | Std. Dev. | Mean | Median | Std. Dev. | Mean | Median | Std. Dev. | Mean | Median | Std. Dev. | |
Tmx | 17.36 | 17.14 | 4.93 | 29.82 | 30.67 | 4.35 | 18.24 | 17.70 | 6.16 | 9.49 | 9.36 | 2.90 |
Tmn | 6.49 | 6.14 | 3.51 | 17.10 | 17.63 | 3.35 | 9.00 | 9.01 | 4.73 | 1.25 | 0.92 | 3.06 |
Tme | 11.92 | 11.43 | 4.09 | 23.76 | 24.35 | 3.80 | 13.37 | 12.99 | 5.32 | 4.92 | 5.00 | 2.66 |
Trg | 10.87 | 11.18 | 3.44 | 12.71 | 13.07 | 2.31 | 9.24 | 9.51 | 3.28 | 8.24 | 8.27 | 3.18 |
PAR | 94.36 | 95.49 | 27.66 | 127.23 | 130.60 | 18.73 | 63.75 | 60.96 | 25.94 | 41.55 | 42.45 | 15.88 |
NSol | 13.04 | 13.12 | 1.02 | 14.32 | 14.55 | 0.57 | 10.92 | 10.86 | 1.01 | 9.66 | 9.43 | 0.55 |
Site | Season | Year | Month | Day | Site | Season | Year | Month | Day |
---|---|---|---|---|---|---|---|---|---|
ARANJUEZ | Spring | 1994 | 03 | 20 | ORUSCO DE TAJUÑA | Spring | 2003 | 04 | 20 |
Summer | 1997 | 06 | 20 | Summer | 1995 | 06 | 19 | ||
Autumn | 1993 | 11 | 06 | Autumn | 1996 | 11 | 20 | ||
Winter | 1996 | 12 | 18 | Winter | 1992 | 12 | 18 | ||
BATRES | Spring | 1993 | 05 | 02 | PEZUELA DE LAS TORRES | Spring | 1993 | 05 | 02 |
Summer | 1991 | 06 | 19 | Summer | 1997 | 06 | 15 | ||
Autumn | 1996 | 10 | 19 | Autumn | 1996 | 09 | 08 | ||
Winter | 1996 | 12 | 14 | Winter | 1994 | 12 | 16 | ||
COLMENAREJO ESTE | Spring | 1998 | 04 | 09 | RIOSEQUILLO | Spring | 2002 | 04 | 09 |
Summer | 1994 | 06 | 16 | Summer | 1994 | 06 | 17 | ||
Autumn | 1996 | 09 | 20 | Autumn | 1994 | 10 | 13 | ||
Winter | 1996 | 12 | 18 | Winter | 2000 | 12 | 18 | ||
CONJUNTA DE GASCONES | Spring | 2003 | 04 | 19 | ROBLEDO | Spring | 1995 | 04 | 03 |
Summer | 1991 | 06 | 19 | Summer | 1991 | 06 | 19 | ||
Autumn | 1996 | 11 | 21 | Autumn | 1996 | 09 | 20 | ||
Winter | 1995 | 12 | 14 | Winter | 1996 | 12 | 15 | ||
ESTREMERA | Spring | 1993 | 03 | 17 | ROZAS DE PUERTO REAL | Spring | 1996 | 03 | 27 |
Summer | 1994 | 06 | 19 | Summer | 1998 | 06 | 19 | ||
Autumn | 1996 | 11 | 20 | Autumn | 2001 | 09 | 27 | ||
Winter | 1996 | 12 | 16 | Winter | 1996 | 12 | 15 | ||
FRESNO-RIBATEJADA | Spring | 2002 | 04 | 11 | SAN MARTIN NORESTE | Spring | 2001 | 05 | 18 |
Summer | 1991 | 06 | 19 | Summer | 2000 | 06 | 15 | ||
Autumn | 1996 | 09 | 08 | Autumn | 1999 | 10 | 11 | ||
Winter | 1995 | 12 | 14 | Winter | 1996 | 12 | 15 | ||
FUENTIDUEÑA | Spring | 2003 | 04 | 20 | SANTA Mª DE LA ALAMEDA | Spring | 1998 | 05 | 20 |
Summer | 1995 | 06 | 19 | Summer | 1994 | 06 | 16 | ||
Autumn | 1998 | 09 | 21 | Autumn | 1996 | 09 | 20 | ||
Winter | 1996 | 12 | 16 | Winter | 1996 | 12 | 15 | ||
LOZOYUELA | Spring | 2002 | 04 | 09 | TALAMANCA DEL JARAMA | Spring | 2003 | 04 | 19 |
Summer | 1997 | 06 | 20 | Summer | 1997 | 06 | 20 | ||
Autumn | 1996 | 09 | 20 | Autumn | 1996 | 09 | 20 | ||
Winter | 2000 | 12 | 18 | Winter | 1994 | 12 | 16 | ||
NAVALAFUENTE | Spring | 2003 | 04 | 19 | VALDELAGUNA | Spring | 1993 | 05 | 02 |
Summer | 1997 | 06 | 20 | Summer | 1997 | 06 | 20 | ||
Autumn | 1994 | 10 | 13 | Autumn | 1998 | 09 | 21 | ||
Winter | 1996 | 12 | 16 | Winter | 1992 | 12 | 18 |
References
- Domínguez, A.; Martínez-Romero, A.; Leite, K.N.; Tarjuelo, J.M.; de Juan, J.A.; López-Urrea, R. Combination of Typical Meteorological Year with Regulated Deficit Irrigation to Improve the Profitability of Garlic Growing in Central Spain. Agric. Water Manag. 2013, 130, 154–167. [Google Scholar] [CrossRef]
- Garfí, M.; Flores, L.; Ferrer, I. Life Cycle Assessment of Wastewater Treatment Systems for Small Communities: Activated Sludge, Constructed Wetlands and High Rate Algal Ponds. J. Clean. Prod. 2017, 161, 211–219. [Google Scholar] [CrossRef]
- López-Sánchez, A.; Silva-Gálvez, A.L.; Aguilar-Juárez, Ó.; Senés-Guerrero, C.; Orozco-Nunnelly, D.A.; Carrillo-Nieves, D.; Gradilla-Hernández, M.S. Microalgae-Based Livestock Wastewater Treatment (MbWT) as a Circular Bioeconomy Approach: Enhancement of Biomass Productivity, Pollutant Removal and High-Value Compound Production. J. Environ. Manag. 2022, 308, 114612. [Google Scholar] [CrossRef] [PubMed]
- Acién, F.G.; Gómez-Serrano, C.; Morales-Amaral, M.M.; Fernández-Sevilla, J.M.; Molina-Grima, E. Water Treatment Using Microalgae: How Realistic a Contribution Might It Be to Significant Urban Wastewater Treatment. Appl. Microbiol. Biotechnol. 2016, 100, 9013–9022. [Google Scholar] [CrossRef] [PubMed]
- Robles, Á.; Capson-Tojo, G.; Galès, A.; Ruano, M.V.; Sialve, B.; Ferrer, J.; Steyer, J.P. Microalgae-Bacteria Consortia in High-Rate Ponds for Treating Urban Wastewater: Elucidating the Key State Indicators under Dynamic Conditions. J. Environ. Manag. 2020, 261, 110244. [Google Scholar] [CrossRef]
- Arcila, J.S.; Buitrón, G. Influence of Solar Irradiance Levels on the Formation of Microalgae-Bacteria Aggregates for Municipal Wastewater Treatment. Algal Res. 2017, 27, 190–197. [Google Scholar] [CrossRef]
- Iasimone, F.; Panico, A.; De Felice, V.; Fantasma, F.; Iorizzi, M.; Pirozzi, F. Effect of Light Intensity and Nutrients Supply on Microalgae Cultivated in Urban Wastewater: Biomass Production, Lipids Accumulation and Settleability Characteristics. J. Environ. Manag. 2018, 223, 1078–1085. [Google Scholar] [CrossRef]
- Hall, I.J.; Prairie, R.R.; Anderson, H.E.; Boes, E.C. Generation of Typical Meteorological Years for 26 SOLMET Stations; Sandia Laboratories: Albuquerque, NM, USA, 1978.
- Leite, K.N.; Martínez-Romero, A.; Tarjuelo, J.M.; Domínguez, A. Distribution of Limited Irrigation Water Based on Optimized Regulated Deficit Irrigation and Typical Metheorological Year Concepts. Agric. Water Manag. 2015, 148, 164–176. [Google Scholar] [CrossRef]
- Marion, W.; Urban, K. User’s Manual for TMY2s Radiation Data Base; National Renewable Energy Laboratory: Golden, CO, USA, 1995.
- Fernández, M.D.; López, J.C.; Baeza, E.; Céspedes, A.; Meca, D.E.; Bailey, B. Generation and Evaluation of Typical Meteorological Year Datasets for Greenhouse and External Conditions on the Mediterranean Coast. Int. J. Biometeorol. 2015, 59, 1067–1081. [Google Scholar] [CrossRef]
- Heinemann, P.H.; Walker, P.N. Effects of Greenhouse Surface Heating Water on Light Transmission. Trans. ASAE 1987, 30, 0215–0220. [Google Scholar] [CrossRef]
- Marbis, J.M. CO2 Enrichment and Hot Water Heat in a Greenhouse as a Mean of Recovering Bioresources from Swine Waste; North Carolina State University: Raleigh, NC, USA, 2001. [Google Scholar]
- Martínez-Romero, A.; Domínguez, A.; Landeras, G. Regulated Deficit Irrigation Strategies for Different Potato Cultivars under Continental Mediterranean-Atlantic Conditions. Agric. Water Manag. 2019, 216, 164–176. [Google Scholar] [CrossRef]
- Shen, Q.H.; Jiang, J.W.; Chen, L.P.; Cheng, L.H.; Xu, X.H.; Chen, H.L. Effect of Carbon Source on Biomass Growth and Nutrients Removal of Scenedesmus Obliquus for Wastewater Advanced Treatment and Lipid Production. Bioresour. Technol. 2015, 190, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Baneshi, M.; Gonome, H.; Maruyama, S. Wide-Range Spectral Measurement of Radiative Properties of Commercial Greenhouse Covering Plastics and Their Impacts into the Energy Management in a Greenhouse. Energy 2020, 210, 118535. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Generation of Typical Meteorological Year (TMY-2) for Nicosia, Cyprus. Renew. Energy 2003, 28, 2317–2334. [Google Scholar] [CrossRef]
- Pissimanis, D.; Karras, G.; Notaridou, V.; Gavra, K. The Generation of a “Typical Meteorological Year” for the City of Athens. Sol. Energy 1988, 40, 405–411. [Google Scholar] [CrossRef]
- Skeiker, K. Generation of a Typical Meteorological Year for Damascus Zone Using the Filkenstein-Schafer Statistical Method. Energy Convers. Manag. 2004, 45, 99–112. [Google Scholar] [CrossRef]
- Huld, T.; Paietta, E.; Zangheri, P.; Pascua, I.P. Assembling Typical Meteorological Year Data Sets for Building Energy Performance Using Reanalysis and Satellite-Based Data. Atmosphere 2018, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Cebecauer, T.; Suri, M. Typical Meteorological Year Data: SolarGIS Approach. Energy Procedia 2015, 69, 1958–1969. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Li, Z.; Xiao, F. Analysis of Typical Meteorological Year Selection for Energy Simulation of Building with Daylight Utilization. Procedia Eng. 2017, 205, 3080–3087. [Google Scholar] [CrossRef]
- Georgiou, G.; Eftekhari, M.; Eames, P.; Mourshed, M. A study of the effect of weighting indices for the development of TMY used for building simulation. In Proceedings of the BS2013: 13th Conference of International Building Performance Simulation Association, Chambéry, France, 26–28 August 2013; pp. 922–929. [Google Scholar]
- Yang, L.; Wan, K.K.W.; Li, D.H.W.; Lam, J.C. A New Method to Develop Typical Weather Years in Different Climates for Building Energy Use Studies. Energy 2011, 36, 6121–6129. [Google Scholar] [CrossRef]
- Chan, A.L.S.; Chow, T.T.; Fong, S.K.F.; Lin, J.Z. Generation of a Typical Meteorological Year for Hong Kong. Energy Convers. Manag. 2006, 47, 87–96. [Google Scholar] [CrossRef]
- De Miguel, A.; Bilbao, J. Test Reference Year Generation from Meteorological and Simulated Solar Radiation Data. Sol. Energy 2005, 78, 695–703. [Google Scholar] [CrossRef]
- Lund, H. Short Reference Years and Test Reference Years for EEC Countries; Technical Report. (Final Report, Contract ESF-029-DK, Report EUR 10208 EN.); Thermal Insulation Laboratory, Technical University of Denmark: Lyngby, Denmark, 1985. [Google Scholar]
- Lund, H. The Design Reference Year. In Proceedings of the 91th Conference, International Building Performance Simulation Association, Nice, France, 20–22 August 1991; pp. 600–606. [Google Scholar]
- Liem, S.H.; Van Paassen, A.H. Establishment of Short Reference Years for Calculation of Annual Solar Heat Gain or Energy Consumption in Residential and Commercial Buildings Part 1 and 2; Technical Report. (Report EUR 8912 EN); Commission of the European Communities: Luxembourg, 1984; pp. 1–38. [Google Scholar]
- Zang, H.; Xu, Q.; Bian, H. Generation of Typical Solar Radiation Data for Different Climates of China. Energy 2012, 38, 236–248. [Google Scholar] [CrossRef]
- Rodríguez, F.; Castro, A.; Marín, F.; Roldán, G.; Viteri Moya, F. Typical Meteorological Year Based on the Precipitation of Nanegalito and Pacto-Ecuador. Enfoque UTE 2019, 10, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Holzworth, D.P.; Huth, N.I.; de Voil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a New Generation of Agricultural Systems Simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Kephe, P.N.; Ayisi, K.K.; Petja, B.M. Challenges and Opportunities in Crop Simulation Modelling under Seasonal and Projected Climate Change Scenarios for Crop Production in South Africa. Agric. Food Secur. 2021, 10, 1–24. [Google Scholar] [CrossRef]
- Huesemann, M.; Crowe, B.; Waller, P.; Chavis, A.; Hobbs, S.; Edmundson, S.; Wigmosta, M. A Validated Model to Predict Microalgae Growth in Outdoor Pond Cultures Subjected to Fluctuating Light Intensities and Water Temperatures. Algal Res. 2016, 13, 195–206. [Google Scholar] [CrossRef] [Green Version]
- Wigmosta, M.S.; Coleman, A.M.; Skaggs, R.J.; Huesemann, M.H.; Lane, L.J. National Microalgae Biofuel Production Potential and Resource Demand. Water Res. 2011, 47, 1–13. [Google Scholar] [CrossRef]
- Darvehei, P.; Bahri, P.A.; Moheimani, N.R. Modeling the Effect of Temperature on Microalgal Growth under Outdoor Conditions; Elsevier Masson SAS: Îledefrance, France, 2018; Volume 43, ISBN 9780444642356. [Google Scholar]
- Baxevanou, C.; Fidaros, D.; Katsoulas, N.; Mekeridis, E.; Varlamis, C.; Zachariadis, A.; Logothetidis, S. Simulation of Radiation and Crop Activity in a Greenhouse Covered with Semitransparent Organic Photovoltaics. Appl. Sci. 2020, 10, 2550. [Google Scholar] [CrossRef] [Green Version]
- García-Rodríguez, A.; García-Rodríguez, S.; Granados-López, D.; Díez-Mediavilla, M.; Alonso-Tristán, C. Extension of PAR Models under Local All-Sky Conditions to Different Climatic Zones. Appl. Sci. 2022, 5, 2372. [Google Scholar] [CrossRef]
- Viruela, A.; Murgui, M.; Gómez-Gil, T.; Durán, F.; Robles, Á.; Ruano, M.V.; Ferrer, J.; Seco, A. Water Resource Recovery by Means of Microalgae Cultivation in Outdoor Photobioreactors Using the Effluent from an Anaerobic Membrane Bioreactor Fed with Pre-Treated Sewage. Bioresour. Technol. 2016, 218, 447–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breuer, G.; Lamers, P.P.; Martens, D.E.; Draaisma, R.B.; Wijffels, R.H. Effect of Light Intensity, PH, and Temperature on Triacylglycerol (TAG) Accumulation Induced by Nitrogen Starvation in Scenedesmus Obliquus. Bioresour. Technol. 2013, 143, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cabello, J.; Toledo-Cervantes, A.; Sánchez, L.; Revah, S.; Morales, M. Effect of the Temperature, PH and Irradiance on the Photosynthetic Activity by Scenedesmus Obtusiusculus under Nitrogen Replete and Deplete Conditions. Bioresour. Technol. 2015, 181, 128–135. [Google Scholar] [CrossRef]
- Jabri, H.A.; Taleb, A.; Touchard, R.; Saadaoui, I.; Goetz, V.; Pruvost, J. Cultivating Microalgae in Desert Conditions: Evaluation of the Effect of Light-temperature Summer Conditions on the Growth and Metabolism of Nannochloropsis Qu130. Appl. Sci. 2021, 11, 3799. [Google Scholar] [CrossRef]
- Müller, R.; Pfeifroth, U.; Träger-Chatterjee, C.; Trentmann, J.; Cremer, R. Digging the METEOSAT Treasure-3 Decades of Solar Surface Radiation. Remote Sens. 2015, 7, 8067–8101. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, L.; Deng, S.; Xu, W.; Zhang, Y. A Critical Review of the Models Used to Estimate Solar Radiation. Renew. Sustain. Energy Rev. 2017, 70, 314–329. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Köppen, W.; Geiger, R. Das Geographische System Der Klimate; Gebrüder, B., Ed.; Mit 14 Textflguren: Berlin, Germany, 1936. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Skeiker, K. Comparison of Methodologies for TMY Generation Using 10 Years Data for Damascus, Syria. Energy Convers. Manag. 2007, 48, 2090–2102. [Google Scholar] [CrossRef]
- Zarzalejo, L.F.; Téllez, F.M.; Heras, M. Creation of TMY for Southern Spanish Cities. In Proceedings of the International Symposium Passive Cooling of Buildings, Athens, Greece, 19–20 June 1995; pp. 61–73. [Google Scholar]
Parameters | wf_1 | wf_2 | wf_3 | wf_4 | wf_5 | wf_6 | wf_7 | wf_8 | wf_9 |
---|---|---|---|---|---|---|---|---|---|
Tmx | 0.10 | 0.05 | 0.05 | 0.10 | 0.05 | 0.05 | 0.05 | 0.05 | 0.10 |
Tmn | 0.10 | 0.05 | 0.05 | 0.10 | 0.05 | 0.05 | 0.05 | 0.05 | 0.10 |
Tme | 0.30 | 0.40 | 0.30 | 0.25 | 0.25 | 0.45 | 0.40 | 0.40 | 0.20 |
Trg | - | - | - | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.10 |
PAR | 0.30 | 0.20 | 0.30 | 0.25 | 0.30 | 0.20 | 0.30 | 0.15 | 0.20 |
Nsol | 0.20 | 0.30 | 0.30 | 0.25 | 0.30 | 0.20 | 0.15 | 0.30 | 0.30 |
Spring | ||||||
---|---|---|---|---|---|---|
Temperature (°C) | Solar Irradiance (W/m2) | |||||
Tmx | Tmn | Tme | Trg | PAR | Nsol | |
Mean | 16.25 | 5.40 | 10.84 | 10.85 | 91.26 | 13.05 |
Median | 16.05 | 5.11 | 10.45 | 10.98 | 92.99 | 13.13 |
Av. Std. Des | 4.81 | 3.41 | 3.97 | 3.43 | 28.99 | 1.04 |
Summer | ||||||
Temperature (°C) | Solar irradiance(W/m2) | |||||
Tmx | Tmn | Tme | Trg | PAR | Nsol | |
Mean | 28.46 | 15.54 | 22.29 | 12.91 | 126.57 | 14.35 |
Median | 29.21 | 16.00 | 22.88 | 13.30 | 130.40 | 14.58 |
Av. Std. Des | 4.41 | 3.26 | 3.80 | 2.48 | 20.52 | 0.57 |
Autumn | ||||||
Temperature (°C) | Solar irradiance(W/m2) | |||||
Tmx | Tmn | Tme | Trg | PAR | Nsol | |
Mean | 17.27 | 8.00 | 12.39 | 9.27 | 61.25 | 10.91 |
Median | 16.71 | 8.06 | 12.06 | 9.42 | 58.03 | 10.85 |
Av. Std. Des | 6.10 | 4.54 | 5.18 | 3.35 | 26.51 | 1.02 |
Winter | ||||||
Temperature (°C) | Solar irradiance(W/m2) | |||||
Tmx | Tmn | Tme | Trg | PAR | Nsol | |
Mean | 8.61 | 0.50 | 4.10 | 8.11 | 39.68 | 9.63 |
Median | 8.54 | 0.12 | 4.12 | 8.00 | 41.24 | 9.39 |
Av. Std. Des | 2.91 | 2.98 | 2.65 | 3.07 | 16.35 | 0.55 |
wf | wf_1 | wf_2 | wf_3 | wf_4 | wf_5 | wf_6 | wf_7 | wf_8 | wf_9 | |
---|---|---|---|---|---|---|---|---|---|---|
lags | ||||||||||
lags = 10 | 1082 | 1082 | 642 | 641 | 642 | 235 | 642 | 235 | 235 | |
641 | 235 | 235 | 235 | 235 | 641 | 235 | 641 | 641 | ||
642 | 641 | 641 | 642 | 641 | 642 | 641 | 642 | 642 | ||
235 | 642 | 1082 | 1082 | 1081 | 1081 | 1081 | 1082 | 378 | ||
507 | 1081 | 1081 | 378 | 507 | 1082 | 1082 | 1081 | 1082 | ||
lags = 20 | 642 | 642 | 642 | 642 | 642 | 642 | 642 | 642 | 642 | |
1082 | 1081 | 1081 | 641 | 641 | 235 | 641 | 235 | 235 | ||
641 | 1082 | 641 | 235 | 235 | 1081 | 235 | 641 | 641 | ||
496 | 641 | 235 | 1082 | 1081 | 641 | 1081 | 1081 | 1082 | ||
235 | 235 | 507 | 496 | 507 | 1082 | 1082 | 1082 | 864 | ||
lags = 30 | 642 | 642 | 642 | 642 | 642 | 642 | 642 | 642 | 642 | |
1082 | 1082 | 507 | 235 | 235 | 1081 | 235 | 235 | 235 | ||
496 | 1081 | 1081 | 641 | 641 | 235 | 1081 | 1081 | 641 | ||
641 | 641 | 641 | 1082 | 507 | 641 | 641 | 939 | 378 | ||
507 | 496 | 1082 | 496 | 1081 | 1082 | 507 | 641 | 1082 |
Number of Week | Frequency | Year | Month | Day | ||
---|---|---|---|---|---|---|
235 | 24 | 1993 | 5 | 2 | 13.91 | 0.78 |
378 | 3 | 1995 | 4 | 3 | 12.64 | 0.49 |
496 | 5 | 1996 | 5 | 5 | 14.05 | 0.92 |
507 | 8 | 1996 | 5 | 16 | 14.41 | 1.28 |
641 | 27 | 1998 | 4 | 8 | 12.91 | 0.22 |
642 | 27 | 1998 | 4 | 9 | 12.96 | 0.18 |
864 | 1 | 2001 | 3 | 4 | 11.31 | 1.82 |
939 | 1 | 2001 | 5 | 18 | 14.44 | 1.31 |
1081 | 18 | 2003 | 4 | 18 | 13.35 | 0.21 |
1082 | 21 | 2003 | 4 | 19 | 13.39 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wane, O.; Zarzalejo, L.F.; Ferrera-Cobos, F.; Navarro, A.A.; Rodríguez-López, A.; Valenzuela, R.X. Generation of Typical Meteorological Sequences to Simulate Growth and Production of Biological Systems. Appl. Sci. 2023, 13, 4826. https://doi.org/10.3390/app13084826
Wane O, Zarzalejo LF, Ferrera-Cobos F, Navarro AA, Rodríguez-López A, Valenzuela RX. Generation of Typical Meteorological Sequences to Simulate Growth and Production of Biological Systems. Applied Sciences. 2023; 13(8):4826. https://doi.org/10.3390/app13084826
Chicago/Turabian StyleWane, Ousmane, Luis F. Zarzalejo, Francisco Ferrera-Cobos, Ana A. Navarro, Alberto Rodríguez-López, and Rita X. Valenzuela. 2023. "Generation of Typical Meteorological Sequences to Simulate Growth and Production of Biological Systems" Applied Sciences 13, no. 8: 4826. https://doi.org/10.3390/app13084826
APA StyleWane, O., Zarzalejo, L. F., Ferrera-Cobos, F., Navarro, A. A., Rodríguez-López, A., & Valenzuela, R. X. (2023). Generation of Typical Meteorological Sequences to Simulate Growth and Production of Biological Systems. Applied Sciences, 13(8), 4826. https://doi.org/10.3390/app13084826